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TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY MODEL'

By I. Oukin AnD S. J. PrEss

Stanford University and University of Chicago

1. Introduction. Tests of hypotheses for the means of a p-variate normal dis-
tribution, given that the covariance matrix £ = (v4;) has some special structure,
or that the covariance matrix has a special structure, have been considered in the
literature. Some of the covariance structures that have received attention are:

H.:Z = 3, aknown matrix, Hy:Z = o'Z,
Hsioi = o, oij = ap, (G #7), H,:Z unrestricted.

The test of H, versus Hy, the sphericity test, was considered by Mauchly (1940),
Girshick (1941), and more recently by Gleser (1966). The test of Hs versus Hy,
and the test for the equality of means when H; holds, form the basis of the
hypotheses of Wilks (1946). An analog to Hotelling’s test that the means are
zero when H; holds has been considered by Geisser (1963).

Alternative models which have been considered are those for which the co-
variance kernel is weakly stationary, i.e., 0ij = oi-j;, or which arise from
stochastic difference equations, e.g., oi; = o°p'* ’'. The model considered here
combines a circular symmetry condition with weak stationarity. Although the
genesis of the model stems from a physical situation (described below), there are
other applications, e.g., in time series, for which the model is suitable. *

Consider a point source located at the geocenter of a regular polygon of p sides,
from which a signal is transmitted. Identical signal receivers (with identical
noise characteristics) are positioned at the p vertices, denoted sequentially by
Vi, -+, V,. The signal received at vertex V; is denoted by ;. The main as-
sumption is that the signal strength is the same in all directions, and that co-
variances depend only on the number of vertices separating the two receivers, so
that

(1.1) Var (x:) =0, Cov (i, i) = 0opk, P& = Ppt,
i=1>"'>p; k=1,"',17_1; 2§z+k§p.

If the points V1, -+ -, V, were on a line, (1.1) would be equivalent to stationar-
ity, but because V, is adjacent to V1, a circularity is introduced.

Specifically, the assumptions are that ¢ = (21, -- -, #,) is a random vector
having ap-variate normal distribution with mean vector uy = (u1, -+, pp) and
covariances given by (1.1). The covariance matrices differ in the middle terms
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for p even or odd. For example, for p = 4 and p = 5, we have the structure

1 1 p1 po p2 p1
p1 P2 p1

pr 1 p1 p2 pe
pm 1 g op

2 2

a0 R g [p2 m 1 p1 pe

e 1 p
J p2 p2 ;1 pr

p1 p2 p1 1

[ p1 P2 p2 p1 1]

Such covariance matrices have the property of being symmetric and cyelic, and
for brevity we refer to them as circular.

The circularity condition may be introduced from temporal rather than spatial
considerations. This leads to a stochastic process in which the covariance kernel
is Cov (s, Teyr) = o'pr., Where pxyr = pv—1 = pz. . The stationary process which
yields a Laurent covariance kernel Cov (z;, ;) = Cov (%1, Zj+) has been
studied in detail by Whittle (1951). Following his development, Wise (1955)
considered the modification to a circular process for which Cov (2:, Zsz) = ooz,
where PN+L = PN—L = PL.

The concern in this paper is with: (i) tests for symmetries in the covariance
matrix, and with (ii) tests of hypotheses for the means when the covariance
matrix is circular. The particular symmetries of interest are p; = p,_;, the cir-
cular symmetry model; p1 = -+ = p,_; = p, which is the intraclass correlation
model;and p1 = - -+ = p,_1 = 0, which is the spherical model. For each hypothesis
we obtain the likelihood ratio test and the asymptotic distribution of the likeli-
hood ratio statistic (LRS) under the hypothesis and alternative.

2. Canonical forms and estimation. We first review the notation used. Row
vectors are generally denoted by lower case letters, matrices by capital letters.
The dimensionality of a matrix is indicated by the symbol A : r X s. By A > 0
we mean that the (symmetric) matrix 4 is positive definite. The special vector
1, ---, 1) is denoted by e.

To emphasize that a matrix A4 is circular and therefore has the form

ay Qe Q3 e Qp
ap aq QAo “ e ap—l
A = ,
Ay Q3 Q4 LRI/ £}
we sometimes write A¢(a1, * -+, a,) or simply A¢. Since circular matrices are

basic to the ensuing analysis, several properties of such matrices are now re-
viewed. Whittle (1951) provides a general discussion of Laurent matrices, and
specialization to the case when the circular matrix is positive definite (sym-
metric) is discussed by Wise (1955) and Press (1964 ).

>
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Letri = exp 2a¢(k — 1)/pfork = 1, - -+ , p denote the p roots of unity. Then
T = amy + -+ aprkp_l

are the eigenvalues of Ac(a1, - -, ap). If A¢ is symmetric, then a,_j12 = a;,
(G =2, -, p). In this case the eigenvalues are real and are given by

(2.1) 71 =Y lPaajcos2mp k — 1)(p —j+ 1), k=1,.---,p.
If
2.2) v = p Heos 2rp ' (j — 1)(k — 1) + sin 20p™*(j — 1) (k — 1)),

then T' = ('y,k) is orthogonal and transforms A¢ to diagonal form, namely,
A¢ = ID.I’; where D, = diag (r1, - -+, 7). A critical point is the fact that this
dlagonahzatlon is achieved by an orthogonal matrix whose elements are con-
stants, 1ndependent of the elements of A¢. (Note that the first row (and column)
of T is p*¢ and that T' is symmetric.)

The condition of positive definiteness, namely, r; > 0, is equivalent to linear
constraints in the elements a;, as given by (2.1). From (2 1), with a; = ap—j42,
Jj =2, ---,p, and from trigonometric identities, it follows that 7; = 7,_j2,
Jj= 2,--,Dp.

2.1. Canonical form for circular model. Given a sample (Tia, *** , Tpa), @ = 1,

, N, of size N from a p-variate N (u, Z) distribution, we may (by sufficiency)
consider the mean vectorZ = (£1, - - - , &, ) and covariance matrix S/n, S = (si),
Sy = Z“-l (®ia — i) (@ja — &), m = N — 1, as our starting point. Denoting
by £(Z) the law of the random matrix (or vector) Z, we note that Z and S are
independently distributed, with

£(N'8) = N(V'%, 2),  £(8) = WE,pin),
i.e., S has density function
p(S) = c(p, n)|Z[S| T IRIETS g5 0,3 > 0,
clp,n) = 27" PP I T3 (n — ¢ + 1))

Making the transformations y = N*T, V = I'ST, where T is defined by (2.2),
we have that y and V = (vi;) are independently distributed with

(2.3) Ly)=N®mZ2), &WV)=WE p;n),
n=NWr, £ =13

When 2 is circular, £ = D, = diag (11, -+, 7p), 75 = Tpj2,j = 2, - -+, p, and
(24) £@y) =N D), £(V)=W(D,,p;n).

Because 7; = 7p_j12,J = 2, - -+, p, we can achieve a further reduction by noting
that the minimal sufficient statistic for (g, 71, - - -, 7,) is given by

(2.52) (y,v1,v2, ***, Um, V1)

= (Y, v,V + Vo, ', Unm + Uni2mi2, Vmtimad),
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(2.5b) = (y, vu, V2 + Vpp, ', Untimil T Umizmiz),

when p = 2m and p = 2m + 1, respectively. For later use define v; = v,_j;2,
j = 2’ ) , p.

Since the 3’s and v’s are independently distributed when Z is circular, we have
as a canonical model:

(2.6) L) = Nm,n), ;) = Ny, 75), 75 = Tpjy2, j = 2, -+-, p;
2.72) £m/n)
Whené) = 2m,

(27b) L(/m) = xa»  LO/T) = Xa, k=2, m+1,

when p = 2m 4+ 1.

For each of the hypotheses considered the starting point is either (2.3) or
(2.6), and (2.7), from which the LRT is obtained. In all the problems considered,
the LRS is distributed as a product of independent beta variates when the
hypothesis is true. Consequently, except for some special cases, it is not feasible
to obtain exact distributions in closed form, and we obtain an asymptotic ap-
proximation accurate to O (N"). Under the alternative hypothesis, we use the
delta method to obtain the asymptotic distribution of a suitably normalized
function of the LRS.

2.2. Estimation of parameters for the circular model. For the model in which
@12y *** 5 Tpa), @ = 1, -+, N is a sample of size N from N (u, Z), where Z is
circular with elements given by (1.1), we obtain MLE and confidence intervals,
for the mean u, the common variance oo, and for the circular correlation coeffi-
cients (p1, * -+, pp_1) Where p; = ppj,j =2, -+, p.

From (2.6) and (2.7), the statistics T; = (y; — #;)/v; are distributed as
t,./ni or lon/ (2n)i depending on whether £ (v,/7;) = X" OF X3 . The statistics T';
and Tp—.y2 are dependent and have a bivariate {-distribution (e.g., see Dunnett
and Sobel (1954)) but are independent of all other statistics. Because
P{Tic @, Tpis2e B} = P{T; e Q}P{Tp,_i12» ¢ B}, we obtain a conservative con-
fidence region for 71, - - - , 7, by choosing P{ly; — n]| S viei} =1 — (1 —a)'? =
1—9,j=1,+-+,p,wherec; = t,(v)/n ortan (v)/ (2n)}. A confidence region for u
is then easily found from p = nI"/N*, where T'is given by (2.2).

The MLE of o7 and p; are obtained indirectly. From (2.7) it is clear that
#; = v;/n or v;/2n, depending upon whether (v;/7;) = xa' or x3.. Using (2.1),
let ‘

(tiy * o+ s Tmpa) = 602(1’ p1, *, Pm)B,

where B = (by;) is the (m + 1) X (m + 1) matrix with
be; = ajcos [(2r/p)(k — 1)(p — j + 1)],

ar=1,as= - =ap=20and ams = Lif p = 2m, amys = 2if p = 2m + 1.
Consequently, the MLE of (a¢’p;) are

]

an, ‘B(vk/Tk) = x%n ’ k= 2, ,ym, £(vm+1/7m+l) = Xn2,

(5'02’ &02ﬁ1 ) "ty é(fﬁm) = ($1) Tt 1);m—l-'l)-B“l)
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that is,

Zm+1 A bzl

Q)

and
pi= (UM 2"/ (T AT, =1, m,
where B = (b").

The assumption of circularity implies that each z; = 6¢%%;,7 = 0, 1, --- , m,
po = 1,4s distributed as a linear combination of central chi-square variates (with
coefficients of negative and positive sign). Hence, interval estimates of oo and p;
are difficult to obtain when N is small. However, in the large sample situation,
the limiting normal distribution provides a useful approximation. Accordingly,
we may use the asymptotic result

limyaw €N [0, -+, 2m) — (@0, 00pL, - -, 00pm)]} = N (0, Q),
where @ = (i), 4, =0, 1, --- ,m; @ = 2B'D,B™, D, = diag (1, -+ , Twp1)-
In particular,
limy-w SN? (60" — 00)] = N (0, o),
limy.. 8[N* (3; — 0;)] = N (0, "),
where
5,‘2 = (pjzwoo - 2w0,~ + wjj)/604, for all ] = 1, cee, M.

The above representation for z requires the determination of B~ '. The following®
alternative avoids this calculation, and may at times be useful. It also has the
virtue of being more intuitive. Write

2; = tr A2 = tr /A T Dy = tr G;D;, Dy = diag (71, -+, %),

where the elements of A; consist of zeros except in those positions corresponding
to where p; occurs in =. At these positions there is a normalizing constant so that
the sum of all the elements is unity. For example, for p = 4,

0
) AZ:

Cof =

A0= , A1=

I
O~ OO

0 0
0 0
0 1
1 0

-0 oo

0
1
0
0

OO O
SO = O
- O = O
O = O =
- O

O = O+
OO O

Consequently, z; = g fa= D p by #e,i = 0,1, m 4 1, Ga = (g:f),
by = g, hay = 988 + g%, ete. Writing z = (71, - - ,Tm,+1)H where H = (hij),
the covariance matrix of the asymptotic distribution of Nz is 2HD,H'.

2.3. Distribution preliminaries. In this section we present some distributional
results which permit a representation of the LRS as a product of independent beta
variables. In order to obtain asymptotic approximations, we modify the procedure
of Box (1949) to suit the needs of the statistics considered.
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If 21, -+, 2n are independently distributed with £(z;) = N (&, 1), then
£(227) = % (5) denotes the noncentral chi-square distribution with m degrees
of freedom and noncentrality parameter = Y 1 £, (We write xm = xm’ 0).)

If » and v are independently distributed, € (u) = x3., £ (®) = x3.(3), then the
random variable z = u/ (w 4+ v) has the noncentral beta distribution with @ and b
degrees of freedom and noncentrality parameter §, denoted by 8(a, b; 8), i.e.,
with density

p@) = 2 le(3/2)% 7 (1 — ) /[j1B(a, b + )], 0<z<1.

(The central beta distribution has § = 0 and is denoted by 8(a, b).)

The following lemmas permit us to represent certain statistics as products of
independent beta variates and are used repeatedly in the analysis. The proofs of
the first two lemmas are based on equating moments—which, because the vari-
ables are bounded, determine the distribution uniquely. In so doing, it is helpful
to use the Dirichlet integral

Joce: i 287 (Baa) de = {T @) TIE T (0s) [5 277 ) e,

where ¢ = D1 ¢, and the duplication formula
Pk + a) = @)y "2 [iT(k + (@ + 5 — 1)/r),

where 7 is an integer.
Lemma 1. Let Ury--+, Unyy, Vi, -+, Vm, be independently distributed,
L(U;) = xa', £(V;) = Xt . If

L= "I U I VA" U+ V)Y, M = m + 2m,,
then £(L) = £(J[¥' X;), where Xy, -+, Xu_1 are wndependently distributed,

.

£X;) =6Gn,Jj/M), j=1,--,M—m — 1,
LX) =BG +1),j/M —3%), j=M-m, -, M—1
Lemma 2. Let Wo, Wy, -+, W, be independently distributed, £ (W,) = x4 i
j=0,1,--- 7. If
L=rJLiw)Wo+ 21W,)7,
then &(L) = £(]iX;), where X1, -+, X, are independently distributed,

LX;) =B(aj, (@+j— 1)y —a;),'a= D ta;.
Lemma 3. Let Zy , - - -, Z, be independently and identically distributed, each as

B(g, 1). If
L=1]Iiz",  then P{—2logL =t} = P{xi, < qt/M}.

Proor. EL ™" = (BZ™™) = (1 — tM/q)™", 50 that £ (—2¢M log L) = x&.[]
If £(Z) = B(a,b), then EZ* = B(a + ¢,b)/B(a, b). Suppose W,0 = W < 1,
is a random variable whose distribution is that of a product of independent beta
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variables, so that
28) EW"=k][iTlx@ + A) + £1/Tlx(1 + &) + 2], h~=0,1,---,

where k is determined from EW® = 1, and (z, &, n;) are known quantities. The
procedure of Box (1949) for finding the asymptotic distribution of W is based on
expanding the characteristic function to yield a linear combination of chi-square
variables:

(29) P{—2plogW =t} = (1 + 0)P{x/ =} — wP{xjuu =t} + ON),

where f = 22 (n; — &), p = (x — b)/z, and b = (& — n°) + 1. The factor w
is obtained from

w=[6(x — b 2 1[B:s(d + &) — B (b + )],

where B;(z) = (22* — 32° 4+ 2)/2 is the Bernoulli polynomial of degree 3.
Because the computations become tedious, the following representation may
prove useful:

Bs(z + 1) — Bs(z) = 37,
(2.10) B;(z + 1) — B;(z) = 32(22 — 1)/4,
25 [Bs@ +j/¢) — Bi(@)] = r(r + 1) 4e) I (r + 1)
+ (2r +1)(2 — 1)c " + 62" — 62 + 1].

To obtain the noncentral asymptotic distribution of c.g(V), where
£(V) = W(Z, p;n) and ¢, is a normalizing constant, we use the standard delta
method (Cramér (1946), pp. 354, 366). First let Z = = 'V="!/n, so that
£(Z) = Wl, p;n) and g(V) = gm2Z2!) = h(nZ). If h is scale invariant,
ie., h(cZ) = h(Z), and satisfies mild regularity conditions (which is the case for
the problems considered) then

(2.11) el (Z) — hI)]} — N (0, 2tr H?),

where H = (hy), hij = 30h/024j|2=1, for © % j, and hy; = 0h/d2:i|2=1 . The
asymptotic variance is given by

Voo = Zi,j Zk,l hij hie n Cov (Zij , Zkl).

Since Cov (2ij, 2re) = n '[0adjc + 8idji), where 8;; is the Kronecker delta, we
obtain

(212) Vo = 2 Zi,ih%j = 2tl‘H2.
3. Tests for symmetries in the covariance structure. The hypotheses
Hy:2 =4I, H; 05 = o, o = a'p(@ # j),

H312=2¢, H412>0,
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represent various degrees of specialization in the covariance matrix. The tests
for Hy versus Hy (sphericity), H, versus Hs (Wilks’ hypotheses) are known. The
test for sphericity given homogeneity of variances and covariances (H; versus H)
is the test that the intraclass correlation is zero and is a standard F-test. Our
concern is mainly with tests involving circularity: sphericity given circularity
(H1 versus H;), homogeneity of covariances given circularity (H, versus Hs), and
test for circularity (H; versus H,).

In this section we assume the means are unknown. A slight modification i in'the
development yields analogous results when the means are known. Fromkthe
canonical model (2.6), (2.7), the hypotheses on = are translated to hypotheses

ont = (1, ---,7,) as represented by the regions
={rin = =1Thp, 0 <7 < oo},
={r:0<n < o, Te = 20t = Tpgl, 0<m < w},
={r0<m <o, j=12"--,m+ 1},
= {Z:Z > 0}.

It is straightforward to obtain the maxima of the likelihood functions L (V, y).
Spherical model. From (2.6) and (2.7),

3.1) sups, L(V, y) = c¢(V)e ™" (pN )P (F Vi)Y

where ¢ (V) = (27r )—13/2C (p, n)lVl("_p_Dlz.
Intraclass correlation model. From (2.6) and (2.7),

(3:2) sups, L(V, y) = c(V)e ™ [N?(p — 1) T (28 via)* T
Circular model. From (2.6) and (2.7a) or (2.7b)

(3:3) supay L(V, y) = ¢(V)e "N 2" ([ 7 )7,
General Z. In this case we start with (2.3),
(3.4) Supe, L(V, y) = c(V)e Ve iV pioN

Note that (3.1)-(3.4) have been given in a form whereby the factor ¢(V) is
common.
The various LRS in this section are denoted by

)‘ii = SUPw; L(V7 y)/squ,- L(V; y)
3.1. Test for sphericity versus circularity. From (3.1) and (3.3), the LRS is

given by
2/N — pp2—2(p—m—l) Hp 1)] Zm-l—l v; )—

When the hypothesis is true, from Lemma 1, we have the representation
SNy = ¢ (1?7 T;), where the T are 1ndependent

£(T1) = B(§n7]/p)7 .7 = 1) e, Mm,
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In its canonical form, this problem is that of testing for homogeneity of vari-
ances, for which Bartlett (1937) suggested replacing N by n. This problem has
been considered by many authors (see e.g., Box (1949), Rao (1952)). For com-
pleteness, we merely note the result, obtained as a specialization of the multi-
variate problem, as given by Anderson (1958, p. 255).

If Vi = MY, then

Pl=2plog Vs = 2} = (1 + )P{x;" = 2} — wP{x}u = 2} + O(™®),

where

D= 2m, f = p/2,
p=1— ("4 6p—4)/(6p™n), w=I[p( —p)/ ),
p=2m -+ 1, = (p — 1)/2,

p=1—(+4)/6pn), o=1[p— 1A — )1/ (8").

To obtain the noncentral asymptotic distribution let (when p = 2m + 1)
Rjj = vjj/Tj . Define

— on-l _ T s N AN
h(z) = 2N " log M3 = log 21121 — 111 Ti 21: 3%/ )

where 2; = 2;; . Then from (2.14), 2(I) = Zlog 7; — p log 7, where # = Zr,/p, so
that ks = 1 — 7/7, hyj = 0 (i £ 7). Consequently,

L{n'h(Z) — KDY - N(©, 2 27 (r: — 7)Y/7).

The case p = 2m yields the same result.
3.2. Test for intraclass structures versus circularity. From (3.2) and (3.3), the
LRS is given by

)\%N — (p _ l)p—12—2(p—m—1) H%: v; (Zgﬁl vj)—(p—l)'
When the hypothesis is true, from Lemma 1, we have the representation
ey = (] T;), where the T; are independent and
£(Ty) = BGn, j/ (0 — 1)), J=1-,p—m—1,
L) =BG+ 1),j/0p—1)—%), j=p—m--,p—2

We note that this problem also reduces to a test for homogeneity of variances.
This is because 71 is unrestricted in both w; and ws, so that the hypothesis is, in
effect, that 7s = -+ = 7,1 . As in Section 3.1 (Anderson (1958), p. 255) we ob-
tain the asymptotic distribution when the hypothesis is true to be

P{—2logVs =2} = (1 + 0)P{x’ < 2} — wP{xtu S 2} + O™,
where Vi = A%,

p=2m’ f= (p_2)/27

p=1— (p+3)/[6(p — 1)n], w=[(p—2)1A—p)1/(8"),
p=2m+1’ f=(p_3)/2,
p=1—(+1)/Brm—1)], o=I[p—3)1-p)l/(8").
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The noncentral asymptotic distribution is obtained as in Section 3.1, namely,
L{w'h(Z) — D) — N 0,2 38 (i — 7)/7),

where h(Z) = (2/N)loghs, h(I) = D.Flogri — (p — 1)log7r, where
T = Z%’n/(p - 1).

3.3. Circular versus general structure. From (3.3) and (3.4), the LRS is given
by

@5) N =20 /(T e = 297 R TTE v/ (LTF 09,

where R is the correlation matrix. In order to obtain a representation as a product
of independent beta random variables, let V = TT', where T is lower triangular.
Then |V| = [P i, 05 = D imitia,j =2, -+, p. If welet
Gm+1 = tm+1/ (t'm+l + Qm+1),
Gi =ty ya/ (s + bojir + & + Gooir2),  J=2,---,m+1,
where t; = 3;,¢; = D o=ilia,j = 2, -+ , D, then
)\giN = (H;” Gi)ém+17 p = 2m,
(L7 6)Gmn, p=2m+ 1L

When H; is true (the covariance matrix is circular), it may be directly verified
that all the ¢;; are independently distributed, so that the G; are independent.
Also, because 7; = 7p_j12,7= 2, - - - , D, the elements of the jth and (p — j + 2)th
rows of T have the same scale, namely, .

£(t§a/7'j)=£(x12), a:l’-..’j_l,a¢j
L(Gi/1i) = S(Xn—gn1)y  J =2, ,p.

Because G is invariant under a scale change t; — ct; , we may (under H;) assume
7; = 1. From Lemma 2, we then obtain (for both even and odd p), that
") = e([[F T;), where the T; are independent,

(8.6) £(T;) = B((n —7)/2,7/2), J=1,m,
£Ty) =60 —7)/2 G+1)/2), j=m+1---,p—1
When H; is true, we obtain from the representation (3.5)
ENs=c [T T — 3G+ D))/A0 (A= DI"T @™, A =3iNA+h),

where ¢ is a normalizing constant so that ENys = 1. From (2.8) we make the
association

x=N/2, p=1_2b/N’ £i=—(j+1)/2’j=17"':p_1>

I
I

M= =qm = —3, Nyt =+ = Np1 = 0.
Hence (when Hj; is true)

P{—2ploghu = 2} = (1 + w)P{x," £ 2} — wP{x}a = 2} + O(N ),
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where f and b are determined from (2.10), and (2.11):
f=b@+1)—2m+1)/2 b=p@+1)2p+7)—18(m + 1)I/24f.
From (2.9) and (2.10),
6(z —b)w =22 [B:s(b — j/2) — Bs(®)] + (m + D[B:s(d) — Bs(d — %)
a0 + ab + ab’,
where gz = —31/2, a1 = 3bf, a0 = [24(m + 1) — p(p + 1)*(p + 8)1/32, so that
6(z — b)w = % + [24(m + 1) — p(p + 1)’ (» + 8)1/32.

Therefore, when

p=2m, f=@—2)/2 b=I[2"+9" —2 —B/120" —2)};

whenp =2m + 1,f = (p* —1)/2,b = (2p + 9)/12. In either case, » simplifies
tow= —(p* — 1)(2p* — 9)/8(6n — 2p — 3)".

To obtain the noncentral asymptotic distribution, let Z = =7tz Denote
the jth row of = by s, , so that vj; = s;As{ = tr (ZA;), where 4; = s;'s; . When
p = 2m + 1, we have

h(Z) = 2N 'loghu = log {277 |2 2]/ ((tr ZA1) [18 [tr Z (4; + Ap-sd)]},

and

(3.7) S{N2N " log Nt — h(I)]} = N (0, v0),

where .
h(I) = log {|P| [1% [(0j 0p-is2)/3 (o)’ + op-pna)]},

o) = gj;and P = (pi;) is the correlation matrix. To obtain v, = 2 tr H?, note
that

Il

H=1-—2711(4;+ Apjp2)/tr (A; + Apj2)] = I — B,
where A1 = 0. Since tr B = p, tr H* = tr B* — p. From
tr A:A; = tr (sis:) (si's;) = o3, trd; = o,
we immediately obtain
tr B* = 2, { (br A:d)/ltr (Ai + Apiia) tr (4; + Apsir)l}
= Y ui{©@i)/1008 + opir) (0] + opir2)]},

where g,11 = 0. Consequently, v, = 2 (tr B — ).
The result (3.7) is valid for p = 2m, if we replace 20241 by o1 .

4. Tests for means given that the covariance matrix is circular. In this
section we are concerned with testing that the means are zero and that the means
are equal, given that the covariance matrix is circular. From (2.3), the test that
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= - = p, = p* is equivalent to n = N*uI' = N¥u*eTI', where T is given by
(2.2). But T is orthogonal with first row p?e, so that eI' = p¥(1,0, - - - ,0). Thus
we have as our starting point (2.6) and (2.7), and regions

wl* = {"I, TN = 07 0< TJ'}’
w2*={"777:n= (?71)0,"'70)’0<TJ'})
W =gy ri—0 << 0,0 < 7).

The LRS for testing (1, 7) € wi* versus w;” is denoted by £;; .
4.1. Test that means are zero. From (2.6) and (2.7) the LRS is given by

68 = TI7 [@i/ @i + w))],

where forp = 2m + 1, wy = ', w; = ¥ + yoj2,j = 2, -+ ,m + 1; and for
2 2 2 . 2 .

P =2m,w =y, W =Yy + Yps2,] = 2, "+, M, Wny1 = Y41 . From Section

2.1 and the fact that if £(X) = 8(a, 1), then £(X*) = B(a/2, 1), we obtain the

representation

e(”) = (T T)HTwn), p = 2m,
= e(IIr™ 1), p=2m+ 1,
where the T'; are independently distributed as
41) &(T) =6M®m/2,%), £(T;) =8m/21),
i=2-,m  &(Twa) = B(n/2,%)

When the hypothesis of zero means is true, we obtain from the representation
4.2),

(42) Bl = 04 = HI/(C @)@ + Hr,

A =3NQA+h).
From (2.8) make the association:z = 3N,p =1 — 2b/N, 1 = - -+ = fpu = —3,
M= " =Npm1= % Mm=" " =1ma = 0. Hence P{—2plog {15 < 2} =

(1 + @)P{x® £ 2} — wP{xjs < 2} + O(N?), where f and b are determined

from (2.9), (2.10):f = p,b = (2m + 2 + p)/4p.
6(x — b)w
(m + DB — 3) — @n+2 = P)B®) = (0 — m — DBs(b + 3)
— (@ —m — 1)[Bs(d + 5) — Bs(b)] — (m + 1)[Ba(b) — Ba(b — 3)]
ao + ab + adb’,
where a; = —3p/2, a1 = +3pb, ap = —3(m + 1)/4. Hence

w = 1p{@m + 2 — p)/[2Np — (2m + 2 + p)]}".
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To obtain the noncentral asymptotic distribution, note that under the alterna-
tive £2" is the product of independent random variables. Using the delta method
on each term, we obtain
L{N"[log [v;/ ; + ¥/ + Yy-i)] — log [1/(L 4+ &)1} = NO, 1 — (1 + 8)7),
where 6 = 1112/‘1'1 , 0; = ('qf + nf,_j.,_g)/rj , for ] = 2, cee,m + 1, and
mi1 = Nas1/Tme1 . A convolution then yields

4.3) £{GN)'log " — log IIF 1/(1 + )} = N (0,p — 227 1/(1 + 8)").
4.2. Tests that the means are equal. From (2.6) and (2.7) the LRS is given by

(4.4) 6" = TI8 @i/ 5 + w)l.
By Lemma 2 and Section 4.1,
(4.5) e = (I T)Tma), p=2m,
= e(II*" 1)), p=2m+ 1,

where the T; are independently distributed, and are defined by (4.1).

When p = 2m + 1, the exact result
P{—2log s < 2} = P{xo1 < (N — 1)/Nz}

is obtained from Lemma 3 with the association (r, ¢, M) = (m,n/2, N).
When p = 2m, we have from (4.2) that

T (A - 1) "
Bl = —f— A =N (1 + h). .
r <A + 5)
From (2.8) make the association
z=N/2 p=1—2/N, hi=-=fu=—} m=-=m=
Hencef=p — 1,b= (2p — 1)/4(p — 1), and
6= b= —m(Bb + 1) — B0 — )] + [B® + 3) — B)]
=a 4+ ab+ alb
where a; = —3f/2, a1 = 3fb, a0 = —3p/8; thus
w=(p —1)/{42n(p — 1) — 11}
The noncentral asymptotic distribution is obtained as in Section 4.1 to yield
4.6) £{N'log 65" — log 15 1/(1 + 8,1}
—NO,p—1-220"1/1 +8)").

5. Tests for means and covariances. There are various combinations of tests
which can be performed. We only consider two tests, (i) that the means are zero

[N



A CIRCULAR STATIONARY MODEL 1371
and the covariance matrix is circular, (ii) that the means are equal and the co-
variance matrix is circular, both against general alternatives. If we let

Q= {p,2ip = 0,2 = I},
Q= {u 2:p = p'e, T = 3,
Q= {pZi—0 < y; < ©,Z > 0},

then we wish to test that (s, Z) ¢ @ or Q; versus ©. Denote the LRS by L, and
L,, respectively. Because of a nesting of the various regions in Section 3 and
Section 4, we obtain (Anderson (1958), Lemma 10.3.1) that

(5.1) Ly = fishs, Ly = foghzs.

5.1. Simultaneous test that means are zero and covariance matriz is circular. Relat-
ing (5.1) to (3.9) and (4.1), we obtain

L12/N — 22(P_mv_1)|Rl Hf ((l)jj)/ (Uj + wi))’

where R is the sample correlation matrix corresponding to V. Using the develop-
ment of Section 3.3, we obtain the representation

(@) = (117 Uy,
where the U;’s are independently distributed,

(6<1}_%-|:'1;]§>’ j=1""’m+1’
IB(n g+1;]_|2-1>’ .7=m+27’p

When the hypothesis is true, we obtain from (5.2),
EL" = ¢ [ITT(4 —j/2)/ AT I I0 @ + P, A= 3N+ h),

where c is a normalizing constant so that EL," = 1
From (2.8) we make the association

x=N/2, p=1—2b/N, EJ=—]/2, .7=1,,p,

M= S =0, Mg = =y =

[N

Hence
P{—2plogli =2} = (1 +@)Pix, S 2} — wP{xja S 2} +O(N ),
where f, b and w are determined from (2.9):
f=p—m—14+1pp+1),
b= 1/24)lpe +1)2p + )2 + 7) + 6(p —m — 1)],
6@ —b)w = 20 [Bs(d —j/2) — Bs(®)] — (p —m — 1)(Bs(d + 3) — By(b)]
a0 + aib + ax b, '
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wherea, = —3f/2, a1 = 3bf, a0 = —p(® + 1) (p° + p +4)/32. Hence 6 (x — b)’w
= —pp+ 1)@ + p + 4)/32 + 3bf/2.

ReMARK. The statistics fi3 and s are not independent (which is often the case
with nested hypotheses) so that the subhypotheses should not be tested indi-
vidually.

Because plim log |R| = 0 under the hypothesis that 2 is circular, the asymp-
totic distribution of L,*¥272* ™ is the same as the asymptotic distribution of
£V given by (4.3).

5.2. Stmultaneous test that means are equal and covariance matriz is circular. Re-
lating (5.1) to Sections (3.3) and (4.2), we obtain

L22/N - 22(p—m~—1)|Rl Hg’ Wi/ i + w;)),

where R is the correlation matrix. Following the development of Section 3.3, we
obtain the representation € (L") = £(]]# U;), where the U’s are defined by
(5.2).

When the hypothesis is true, we obtain from (5.2)

BL' = ¢ [T — j/2)A0@I"TA + D™}, A =3NQ1 + 1),

and ¢ is a normalizing constant so that EL = 1.
From (2.8) make the association

z = N/2 p=1—2b/N, g =—(G+1)/72 j=2-,D,
m= - =1 =0 Mt = ¢ = Npm1 = 3.
Hence )

P{—2plogLs S 2} = (1 + @)P(X/ S 2} — wP{xjus S 2} + OV,
where f, b, and w are determined from (2.9):
f=3p@+1)+20@—m—2),
b= (1/24)p(p +1)2p +7) + 6(p — m) — 24],

6(x — b)w = 2F [Bs(b — j/2) — Bs(®)] — (p — m)[Bs(b + %) — Bs(®)]
+ [Bs(d + %) — Bs(b — 3)]
= qo + ab + @b’
where @y = —3f/2, a1 = 3bf, a0 = —p(p + 1)°(p + 8)/32 + %. Hence
6(x — b)w = (486" + 24 — p(p + 1)*(p + 8)1/32.

2/N2—2(p—m—1)

The asymptotic distribution of L,
distribution of £33" given by (4.6).

is the same as the asymptotic
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