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0. Summary. Henry Teicher [10] has initiated a systematic study called “iden-
tifiability of finite mixtures” (these terms to be defined in Section 1) which has
significance in several areas of statistics. [10] gives a sufficiency condition that a
family § of cdf’s (cumulative distribution functions) generate identifiable
finite mixtures, and consequently establishes that finite mixtures of the one-
dimensional Gaussian or gamma, families are identifiable. From [9] it is known that
the Poisson family generates identifiable finite mixtures, and the binomial and
uniform families do not. In [11], Teicher proves that the class of mixtures of n
products of any identifiable one-dimensional family is likewise identifiable (and
that the analogous statement for finite mixtures is valid). Spragins and I have
shown [13] that the finite mixtures on a family of edf’s is identifiable if and only if
& is linearly independent in its span over the real numbers, and that § generates
identifiable finite mixtures if § is any of the following: the n-dimensional normal
family, the union of the n-dimensional normal family and the family of n prod-
ucts of one dimensional exponential distributions, the Cauchy family, the nega-
tive binomial family, and the translation parameter family generated by any
one dimensional cdf. (In this last case, our proof directly generalizes to any n-
dimensional translation parameter family.)

In view of the fact that many of the important distribution families have been
seen to give identifiable finite mixtures, it would seem appropriate to seek meth-
ods for performing this identification, and therefore the intention of this paper is
to reveal (Section 2) a general algorithm for construction of a consistent esti-
mator. In Section 3 we demonstrate that the algorithm is effective for all the
identifiable families mentioned above. OQur results, in addition to having applica-
tion to an interesting problem in communication theory [6], can be used to extend
the empiric Bayes approach to a certain type of decision problem. Section 4 will
discuss the details of this application.

1. Introduction. Let
(1) F = {F(x;a):a e B}
be a family of n-dimensional edf’s indexed by a parameter & whose domain is
parameter space R;”, a Borel subset of Euclidean m-space. Define G to be all

discrete m-dimensional edf’s G which have only finitely many mass points and
whose measures e assign probability 1 to RB,™. @ is defined to be the mapping

2) Q@) = lem F(z; @) dG(a) = D> F(z; ai)p(as) aiia mass point of G.
p.a;) is the mass that G assigns to a; ¢ Ri™. The subscripting in (2) is not in-

Received 13 December 1967; revised 25 February 1969.
1728

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [&

&4

The Annals of Mathematical Statistics. IIKOJ2N ®

WWWw.jstor.org



IDENTIFICATION OF FINITE MIXTURES 1729

tended to imply anything about the cardinality of . A edf such as @ (G) is termed
a finite mixzture on §. The edf G is called a mizing distribution. From the descrip-
tion of the set G it is evident that 3¢ = @ (G) is the convex hull of §. It is consistent
with earlier papers to say that the set 3¢ of finite mixtures of & is identifiable if Q
has an inverse, denoted Q. That is, 3¢ is identifiable if and only if the equation
S LipF (25 ;) = > pi F(x; o) implies that N = M, and foreach ¢, 1 < ¢
< N, thereis some j, 1 < j < N, such that p; = p; and a; = a;.

The question of identifiability of finite mixtures arises, for example, in the situa-
tion in which a finite set of experiments {E;, - -- Ey} gives rise to a sequence of
rv’s {X} as follows: At each observation time ¢ with probability p;, at the ex-
clusion of the other experiments, experiment E;, (whose cdf is F;(z)) is selected
and an observation x is made. z is taken to be the ith element of an observation
of the sequence {X,}. The statistician does not know the parameters p1, - -+ pw
nor the edf’s F1, - -+, Fy or even the value of N. He'is told that the distributions
Fy, ---, Fy are distinet and are all members of a specified family § as defined in
(1). The wdentification problem is the problem of determining the number N, the
parameters p1, - - - , Pv, and the distributions F;, - - - , Fy solely on the basis of
knowledge of ¥ and an observation of the sequence {X,} determined as we have
described. It is to be emphasized that the statistician is never told which experi-
ment was performed at any time.

It is evident that a solution exists to the identification problem only if & gen-
erates identifiable mixtures. For if Q" is not defined (Q not one-to-one), then
observations of { X}, being distributed as Q (G) = Q (@) for some G, @ are of no
avail in deciding whether G or @ is the actual mixing distribution.

The purpose of this paper is to show that whenever a parametric family of
distribution functions yields identifiable finite mixtures and is weakly continuous
with respect to the parameter (that is (9; — 6) implies (Fo, = Fo)), then by the
algorithm we propose, a consistent estimator for the mixing distribution G' can
be found.

Our algorithm bears some resemblance to the Wolfowitz distance method [12]
(which, however, is not directly applicable to the identification problem). We
intend to explore this relation in a future note to this journal.

Choi [2] has given an estimator for the mixing distribution which is effective if
the statistician knows in advance the number of experiments giving rise to the
mixture. In some cases, Choi has been able to establish a rate of convergence of
his estimator. Boes [1] has published a method for estimating the mixing distribu-
tion when ¥ is a finite set. The author is indebted to the referee for calling his at-
tention to these last two papers.

2. Construction of an estimator for an unknown mixing distribution in S.
For the various sets of ¢df’s which enter our discussions, it will serve our pur-
poses to use an n-dimensional version of the Lévy metric:

L(F, G) = infimum over all positive numbers e which for all z ¢ R" satisfy
- (3) the inequality
F(x_' (é,é, "'76)) —€= G(x) = F(II}+ (6’67 "‘,6))+€.
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In this regard, a fact which will be useful in the sequel is

LeMMA. L convergence is equivalent to weak convergence, and L distance never
exceeds Prohorov distance.

Proor. It is immediate from the definition of L that if F; converges in L to G,
then F'; converges pointwise to G' at every point of continuity of the latter edf,
i.e. F; converges weakly to G.

Prohorov [7] proved that the metric P defined below is equivalent to weak
convergence.

4) P(G, F) = max {ere, €cr}, where
4) ere = inf ¢ such that for all closed sets A, ur(4) = ue(4°) + ¢

where A° = {z:|lx — y|| < e for some y ¢ 4}. egr is defined similarly. ur is the

measure induced by F.
For any ¢ > P(F, @) and all x ¢ R",

6) F(@) =pr(—»,2] S pe(—w, 2+ q§) + ¢ = pe(—o,2+ g
+q¢=GEe+q +q

whereg = (g, ¢, -+, q), and (— «, ) denotes the points in R" whose coordinates
are less than the respective coordinates of z. The closed n-dimensional interval is
designated in the same fashion.

For any ¢ > P(F, G) and all z ¢ R",

7) G —7q) =pe(—o,2— g £ pr(—,2) + ¢ = pr(—, 7]
+q¢=F()+q

This gives G(x — §) — ¢ < F(z), and from (6) and (7) we conclude that
P(F,@) =z L(F, G), and further, that weak convergence implies convergence L.

TraeoreEM 1. If Fy is continuous (L) with respect to its parameter 0, then Q s
continuous.

Proor. In the sequel, if F is any cdf, ¥» denotes its characteristic function.
Also ¥(t) denotes the characteristics function of Fy. Suppose @; —1 G (and
thus G; = @), and that F, is continuous (L) with respect to its parameter 6. By
the lemma and the equivalence of weak convergence and pointwise convergence
of characteristic functions, ¥s(#), for ¢ fixed, is a continuous bounded function of
6. Then for each t ¢ R",

(8) [ we(t) da;(6) — [ wu(t) dG(0).

The above equation shows that the characteristic functions of the sequence
{Q(G;)} converge pointwise to Yo(e) , implying that Q(G:) = Q(G). In view of
the lemma, we thus have

9) L(Q(Gy), @(@)) — 0.

* Let n be any positive integer and B be any subset of parameter space, Ry",
and define G (B, n) to be the members of § which have at most » mass points, all
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of which are contained in B and all of which are at least a distance 1/n apart.
Then we have the following.

THEOREM 2. If B is a compact subset of Ri™, then G (B, n) is compact.

Proor. Since (§(B, n), L) is a metric space, it suffices to show that any se-
quence {G;} (GjeG(G,n),n = 1) has alimit point G £ (B, n). As in the proof
to Theorem 1, it is convenient to regard G; as its sequence of mass point pairs
Gi = {0:(7),0:())}34, @) < n). Here the subscripting is arbitrary. Let p; be
any limit point of {p;(j)}j= and {1 a sequence of increasing positive integers
such that pi(£1(j)) — p1. 61 is any limit point of {6: ({1 (7))} and ¢, an increasing
subsequence of the integers in the range of {; such that 6; ({2 (7)) — 6.

We continue this construction until we have found a sequence {5, such that

(10) Pi(C2n(j)) = i and  0:($2a(5)) — 05, (1=7=n).

The construction terminates at » < n if only finitely many elements of
{Gtso»,J = 1} have v + 1 mass points. Define G = { (p;, 6:)}7—1 where either
v = nor (as just described) v < n and observe that G ¢ G (B, n), i.e., > i=1pi =1,
16: — 6x]| = 1/nif ¢ = k, and 6; € B. 6; ¢ B because, by hypothesis, B is compact,
and the other two assertions are a consequence of the fact that since for each 7,
Gty € §(B, ), for all j,

(11) 2 pin(i) =1, thus Xiip; =1, and
6:(m (5)) — 6:(ea ()] = 1/n, thus [|6: — 6| = 1/n.

It is evident that (10) implies that Gy —1 G, where at last we have returned
to viewing G, G; as cdf’s rather than sequences of mass point pairs.

A fina] task in preparation for explaining the construction of the estimator for
mixing distributions is to recall some facts about convergence of empiric distribu-
tion funections. If {z;}, (1 < ¢ < »), is a sequence of v observations on an n-
dimensional random variable, the associated empiric distribution function (df)
is defined, for each n-tuple z, by: vF,(x) = number of observations in {x}
(1 = 7 = v) such that no coordinate of z; is greater than the corresponding co-
ordinate of . In Theorem 3, below, |H|| = sup, |H (z)|.

TrEOREM 3. Let n be any posttive integer. F, is the empiric df constructed from
v independent n-dimensional 1v’s identically distributed according to the cdf F. If
¢ and d are any positive numbers, one may compute a number N (c, d) such that if
v> N(cd), foral F,

(1z) Pl|F, — F|| > ¢] < d.

The number N (¢, d) does not depend on F, but does depend on the dimension
of the random variables X;. Kiefer and Wolfowitz [4] have proved something
much stronger than Theorem 3. Let » be any positive integer. There exist positive
numbers ¢y, ¢’ such that for every n-dimensional cdf F, every positive integer o,
and every positive number 7,

(13) Pl |F, — F|| > 1] < ¢ exp (—c7?).
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They give an effective procedure for bounding ¢’ from above, and mention that
Co can also effectively be bounded, thus justifying our assertion that N (¢, d) can
be found. In the special case that n = 1, Massey [5] gives a recurrence relation
from which the smallest possible N (¢, d) may be computed, in the case that F is
known to be continuous. (This number is an upper bound in case F is not con-
tinuous.)

Algorithm for construction of a consistent estimator for a finite mixing distribu-
tion.

Conditions. § = {Fy:0 ¢ R/"}. Fy is continuous (L) with respect to 6, and &
generates identifiable finite mixtures. B,™ is the limit of a monotonically i increas-
ing (by containment) sequence {B;} of compact subsets of R™.

Step 1. For each positive integer j, find a number §; such that if H,
H' ¢ Q(§(By,J)) and L(H, H') < §;, then L(Q™ (H), Q_’(H')) < 1/j. (For
each j, a number §; as described exists because @ is continuous (Theorem 1) and
G(B;, j) is compact (Theorem 2). Q" exists as & is hypothesized to generate
identifiable mixtures. Thus Q" is uniformly continuous on the compact set
QG (B, 1))

Step 2. For each j, find a number N; (N; > N;-) such that, in the notation of
Theorem 3, for dimension 7 the same as the c¢df’s in &,

(14) Pl|F, — F|| > 8;/2] < 1/j

if v > N;. (Theorem 3 allows us to conclude that N;, as described, can be com-
puted. In fact, N (34;, 1/7) suffices.)

Step 3. For each positive number v > N;, our estimate G, of the mixing df G
is constructed as follows. Find j such that N; < v < N, . Compute the empiric
df H, associated with » observations distributed according to the finite mixture
Q(@). Choose, if possible (otherwise choose @, arbitrarily), any member G, of
G (Bj, j) such that

(15) LQ(G), H,) = 35;

Then G, is the estimate for G.

The assertion that @, , so determined, is a consistent estimate for G (i.e., for
any positive number ¢, lim,.., P[L(G,, @) > ¢] = 0) admits the following justi-
fication. Eventually (say M), GeG(B;,j)ifj = M. Always, L(F,G) £ |[F — G
and thus if

(16) [Hy — Q@) = 35

some element (@ itself, for instance) of G(B;, j) will satisfy condition (15). By
construction of N;, (16) will happen with probability >1 — 1/7 Gf j > M).
Thus, if ¥ > N;, with probability at least 1 — 1/j, (15) and (16) will simul-
taneously be satisfied, and

(17) L@Q(@),Q(G.)) = L(Q(®),H,) + L(H,,Q(G:))
= Q@) — Hil| + L(H,, Q(Gh)) = 30 + 33, = §;
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As @, G, are both in G(B;, j), by construction of {§;}, (17) implies that
L(G, G,) < 1/4. In summary, for v > max {N;, M},

(18) PIL(@G, Gv) > 1/4] < 1/5,

which completes the demonstration.

Without altering the conditions of the algorithm, it can be adjusted to provide
a sequence of estimators {G;} such that with probability 1, G; — G. Observe that
the results of Kiefer and Wolfowitz [4] which we already cited also imply that
one can compute M (¢, d) such that Plsup.sue,a [|[Fn — F|| > ¢] < d.

If M; = M (%5;,277) replaces N, in step 2 and M’ = max {M;, M} (where M is
as defined above), then

Plsupnsur L(Gn, G) > 1/4]
< PlUr»i [IL(Q(GW), Q(G)) = 8, foranyn (Mp=n = M)l

< D ipi Plsupnci, LQ(Gn), Q(@)) > &] < D i 27 = 2771,

3. Distribution families which satisfy the conditions of the algorithm. All
parameter spaces this author has encountered are limits of increasing sequences of
compact sets, and thus we focus our attention on the condition that Fs be con-
tinuous (L) with respect to 6. Our plan is to show that the multi-dimensional
normal family has this property. The demonstration proceeds in such a manner
that the reader will see how it can be directly and successfully applied to showing
that all the other families mentioned in Section 1 (as yielding identifiable finite
mixtures) satisfy the condition.

The n-dimensional normal distribution with covariance matrix A, mean vector
6 has the characteristic function

(19) Yas(t) = exp (—%tAt + it9), teR"

which, for ¢ a fixed real n-tuple, is obviously continuous with respect to (4, 6).
That is, if (A, 8;) — (4, 0), (convergence, of course, being in the Euclidean norm
of R" ™) then for ¢ fixed, ¥, .o, (t) — ¥a,6(t), convergence being in the com-
plex norm. We conclude the demonstration by observing that pointwise con-
vergence of characteristic functions to a continuous function is equivalent to
weak convergence of the corresponding cdf’s and that weak convergence (by
virtue of our lemma) is equivalent to convergence (L). It is trivial to similarly
verify that the other distribution families mentioned in Section 1 have charac-
teristic functions which are pointwise continuous with respect to their param-
eters.

4. Application to empirical Bayes decision problems. The basic component of
an empirical Bayes decision problem is a sequence { (X, 0;)} of independent,
identically distributed rv’s (X, 6), (X and 6 are not independent, however).
If 9; is the outcome of 0;, then X; has the cdf Fy, . 6 has the cdf G. The statisti-
cian does not know @, and he is permitted to observe only the X’s. He does know
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the parametric family § = {Fy:0 ¢ R}, and that @ is a member of a specified set
G of cdf’s. At each timen (n = 1, 2, - - - ), the statistician is to choose an action
@, from some (time-independent) set @. His choice may depend on {x;}j= (thus,
we write a, = &, (£.), £n = {x:}i=). The loss which results from that decision is
L(a., 0,).

The statistician is never permitted to know the outcomes 6, , but under certain
circumstances, it is possible to find a sequence {¢;} of decision functions such that,
regardless of the value G ¢ G, as n increases, the expected risk converges to the
Bayes risk relative to G. Robbins [5] has defined the sequence {¢;} of decision
functions for an empirical Bayes decision problem to be asymptotically optimal
if, for all G ¢ G, with probability 1,

(20) limse EG[L(tn (jn), on)] = B(G)7

where B(G) denotes the Bayes risk relative to G. Further, Robbins has provided
several techniques for constructing asymptotically optimal sequences. From our
viewpoint, a particularly interesting procedure is one in which an estimate G,
for G is constructed (from &,) such that G = G. Then one constructs {,} so that
i, is Bayes relative to G, . Under very weak conditions on the loss function, it
is easily concluded that {t,} is asymptotically optimal. One method proposed is
effective if G is the set of all cdf’s on parameter space and arbitrary mixtures on &
are identifiable, i.e. (| Fy dG = f Fyd@) = (G = Q). Deely and Kruse, follow-
ing a suggestion of H. Robbins, have devised [3] a method for constructing {G.,}
by solving, after each observation z, , a two-person zero-sum game. The methods
given for construction of {G,} for this situation cannot be carried over directly to
the case that & generates identifiable finite mixtures, (but unidentifiable arbitrary
mixtures) and G is as in Section 1 of this paper, because they depend on limits of
sequences, under weak convergence, being in G, a conclusion which does not hold
for G the set of discrete df’s with only finitely many mass points.

In view of the fact that some important families, while not generating identi-
fiable arbitrary mixtures, generate identifiable finite mixtures (e.g. the normal
family with mean and variance both considered as parameters), it is interesting
that the analysis of this paper provides a scheme for finding a sequence {G,}
which converges weakly to G under the circumstances that G is the set of all
discrete df’s with only finitely many mass points. In summary, for empirical Bayes
decision problems in which G is known to generate only finite mixtures, a rather
comprehensive theory is available. In [10], [9], and [13], one finds useful criteria
for establishing whether & generates identifiable finite mixtures. In case the
answer is affirmative, one may expect that the algorithm of this paper will be
useful in finding the required sequence {G.}.
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