ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE HYPOTHESES¹

By K. C. S. Pillai, S. Al-Ani² and G. M. Jouris³

Purdue University

1. Introduction. Let $\mathbf{X}(p \times n)$ be a matrix variate with columns independently distributed as $N(\mathbf{0}, \mathbf{\Sigma})$. Then the distribution of the latent roots, $0 < w_1 \le \cdots \le w_p < \infty$, of $\mathbf{X}\mathbf{X}'$ is first considered in this paper for deriving the distributions of the ratios of individual roots w_i/w_j ($i < j = 2, \cdots, p$). In particular, the distributions of such ratios are derived for p = 2, 3 and 4. The use of these ratios in testing the hypothesis $\delta \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2$, $\delta > 0$ unknown, has been pointed out, where $\mathbf{\Sigma}_1$ and $\mathbf{\Sigma}_2$ are the covariance matrices of two p-variate normal populations.

Further, the non-central distributions of Wilks' criterion, $\Lambda = W^{(p)} = \prod_{i=1}^{p} (1-c_i)$, are obtained in the following cases: (1) test of $\Sigma_1 = \delta \Sigma_2$, $\delta > 0$ known, (2) MANOVA and (3) Canonical correlation, where c_i 's stand for latent roots of a matrix arising in each of the situations. The density functions are given in terms of Meijer's G-function [12] and for p=2, the density and distribution functions are explicitly evaluated. For Case (2), Pillai and Al-Ani [15] have derived the density for p=2, 3 and 4 using some results on Mellin transforms [2, 3, 4], and Jouris [9] has shown by induction that the G-function can be expressed in an alternate form than given in the paper; this latter form includes as special cases the results of Pillai and Al-Ani [15].

2. Distribution of ratios of the roots of a covariance matrix. The distribution of the latent roots, $0 < w_1 \le w_2 \le \cdots \le w_p < \infty$ of XX' depends only upon the latent roots of Σ and can be given in the form (James [6])

(2.1)
$$K(p, n) |\mathbf{\Sigma}|^{-\frac{1}{2}n} |\mathbf{W}|^m \{ \exp(-\frac{1}{2} \operatorname{tr} \mathbf{W}) \}$$

 $\cdot \prod_{i>j} (w_i - w_j)_0 F_0(\frac{1}{2} (\mathbf{I}_p - \mathbf{\Sigma}^{-1}), \mathbf{W}), \quad 0 < w_1 \leq w_2 \leq \cdots \leq w_p < \infty,$

where

$$m = \frac{1}{2}(n - p - 1), K(p, n) = \Pi^{\frac{1}{2}p^{2}}/\{2^{\frac{1}{2}pn}\Gamma_{p}(\frac{1}{2}n)\Gamma_{p}(\frac{1}{2}p)\},$$

$$\mathbf{W} = \operatorname{diag}(w_{1}, \dots, w_{p}),$$

$$(2.2) _{p}F_{q}(a_{1}, \dots, a_{p}; b_{1}, \dots, b_{q}; \mathbf{S}, \mathbf{T})$$

$$= \sum_{k=0}^{\infty} \sum_{\kappa} [(a_{1})_{\kappa} \dots (a_{p})_{\kappa}]/[(b_{1})_{\kappa} \dots (b_{q})_{\kappa}] \cdot C_{\kappa}(\mathbf{S})C_{\kappa}(\mathbf{T})/[C_{\kappa}(\mathbf{I}_{p})k!]$$

Received 17 April 1969.

¹ This research was supported by the National Science Foundation Grant No. GP-7663.

² Now with Department of Mathematics, The University of Calgary, Calgary, Alberta,

³ Now with Westinghouse Electric Corporation, Pittsburgh, Pennsylvania.

where $a_1, \dots, a_p, b_1, \dots, b_q$ are real or complex constants and the multivariate coefficient $(a)_k$ is given by $(a)_k = \prod_{i=1}^p (a - \frac{1}{2}(i - 1))_{k_i}$, where $(a)_k = a(a + 1) \dots (a + k - 1)$. The partition κ of k is such that $\kappa = (k_1, k_2, \dots, k_p), k_1 \ge k_2 \ge \dots \ge k_p \ge 0, k_1 + k_2 + \dots + k_p = k$ and the zonal polynomials, $C_{\kappa}(\mathbf{S})$, are expressible in terms of elementary symmetric functions (esf) of the latent roots of \mathbf{S} , James [7].

It may be pointed out that the form (2.1) can also be viewed as a limiting form of the non-central distribution of the latent roots Khatri [10] associated with the test of the hypothesis: $\Sigma_1 = \Sigma_2$, where Σ_1 and Σ_2 are the covariance matrices of two p-variate normal populations, when $n_2 \to \infty$, where n_2 is the size of the sample from the second population. Now, if we wish to test instead the null hypothesis $\delta \Sigma_1 = \Sigma_2$, $\delta > 0$ unknown, the ratios of the latent roots would be of interest as test criteria. In this context, in the limiting form (2.1), Σ should be replaced by $\delta \Sigma_1 \Sigma_2^{-1}$.

Now, let $l_i = w_i/w_p$, $i = 1, \dots, p-1$, then the distribution of l_1, \dots, l_p, w_p can be written in the form

(2.3)
$$K(p, n) |\mathbf{\Sigma}|^{-\frac{1}{2}n} w_p^{\frac{1}{2}pn-1} |\mathbf{L}|^m |\mathbf{I} - \mathbf{L}| \prod_{i>j} (l_i - l_j) \exp{-\frac{1}{2}(w_p \operatorname{tr} \mathbf{L}_1)} \cdot [\sum_{k=0}^{\infty} w_p^k / (2^k k!) \sum_{\kappa} C_{\kappa} (\mathbf{I}_p - \mathbf{\Sigma}^{-1}) C_{\kappa} (\mathbf{L}_1) / C_{\kappa} (\mathbf{I}_p)],$$

where $\mathbf{L} = \operatorname{diag}(l_1, \dots, l_{p-1})$ and $\mathbf{L}_1 = \operatorname{diag}(l_1, \dots, l_{p-1}, 1)$. Integrating (2.3) with respect to w_p , then the distribution of l_1, \dots, l_{p-1} is of the form

(2.4)
$$K_1(p,n)|\mathbf{\Sigma}|^{-\frac{1}{2}n}|\mathbf{L}|^m|\mathbf{I}-\mathbf{L}|\prod_{i>j}(l_i-l_j)$$

$$\cdot [\sum_{k=0}^{\infty} \Gamma(\frac{1}{2}pn+k)/k! \sum_{\kappa} C_{\kappa}(\mathbf{I}_n-\mathbf{\Sigma}^{-1})C_{\kappa}(\mathbf{L}_1)/\{C_{\kappa}(\mathbf{I}_n)(\operatorname{tr}\mathbf{L}_1)^{\frac{1}{2}pn+k}\}],$$

where $K_1(p, n) = 2^{\frac{1}{2}pn}K(p, n)$. An expansion similar to the above but in a slightly different form has been given by James (See (5.2) and (5.6) of [8]).

Case 1. Let p=2 in (2.4); then the distribution of $l=w_1/w_2$ is of the form

(2.5)
$$K_1(2,n)|\mathbf{\Sigma}|^{-\frac{1}{2}n}l^{\frac{1}{2}(n-3)}(1-l)$$

 $\cdot [\sum_{k=0}^{\infty} \Gamma(n+k)/\{k! (1+l)^{n+k}\} \sum_{\kappa} C_{\kappa}(\mathbf{I}_2 - \mathbf{\Sigma}^{-1})C_{\kappa}({}_{0-1}^{l-0})/C_{\kappa}(\mathbf{I}_2)].$

Girshick [5] has given the distribution of $L_e = 2l^{\frac{1}{2}}/(1+l)$, which takes a simpler form.

Case 2. Putting p=3 in (2.4) and by the use of the results of Khatri and Pillai [11], the distribution of l_1 , l_2 can be written in the form

(2.6)
$$K_{1}(3, n)|\mathbf{\Sigma}|^{-\frac{1}{2}n} (l_{1}l_{2})^{\frac{1}{2}(n-4)} (l_{2} - l_{1}) (1 - l_{1}) (1 - l_{2}) \\ \cdot [\sum_{k=0}^{\infty} \Gamma(a_{k})/k! \sum_{\kappa} C_{\kappa} (\mathbf{I}_{3} - \mathbf{\Sigma}^{-1})/C_{\kappa} (\mathbf{I}_{3}) \\ \cdot \sum_{i=0}^{k} \sum_{\eta} b_{\eta,\kappa} C_{\eta} {\begin{pmatrix} l_{1} & 0 \\ 0 & l_{2} \end{pmatrix}} \sum_{r=0}^{\infty} {\begin{pmatrix} -a_{k} \\ r \end{pmatrix}} l_{1}^{r} (1 + l_{2})^{-r-a_{k}}],$$

where $a_k = (3n/2) + k$, $b_{\eta,\kappa}$ are the constants defined in [11], and η is the partition of i into not more than p elements.

It may be noted that the distribution of l_1 and of l_2 can be found by writing $C_{\eta}({}_{0}^{l_1}{}_{0}^{0}) = \sum_{i_1+i_2=i} a_{i_1,i_2} l_1^{i_1} l_2^{i_2}$ and expanding $(1 + l_2)^{-r-a_k}$ and integrating l_2 and l_1 respectively.

In (2.6) let $h_1 = l_1/l_2$ from which the distribution of h_1 , l_2 can readily be found. Integration with respect to l_2 yields

(2.7)
$$K_{1}(3, n(|\mathbf{\Sigma}|^{-\frac{1}{2}n} h_{1}^{\frac{1}{2}(n-4)} (1 - h_{1})) \cdot [\sum_{k=0}^{\infty} \Gamma(a_{k})/k! \sum_{\kappa} C_{\kappa}(\mathbf{I}_{3} - \mathbf{\Sigma}^{-1})/C_{\kappa}(\mathbf{I}_{3}) \sum_{i=0}^{k} \sum_{\eta} b_{\eta,\kappa} C_{\eta} \binom{h_{1} \ 0}{0} \cdot \sum_{r=0}^{\infty} \binom{-a_{k}}{r} h_{1}^{r} \sum_{k=0}^{\infty} \binom{-r-a_{k}}{h} \{\beta(a_{1}', 2) - h_{1}\beta(a_{1}' + 1, 2)\}],$$

where $a_1' = n - 1 + i + r + h$.

Case 3. Let p=4 in (2.4), then the distribution of l_1 , l_2 , l_3 can be written in the form

(2.8)
$$K_{1}(4, n) |\mathbf{\Sigma}|^{-\frac{1}{2}n} \prod_{i=1}^{3} \{ l_{1}^{\frac{1}{2}(n-5)} (1 - l_{i}) \} \prod_{i>j} (l_{i} - l_{j}) \cdot [\sum_{k=0}^{\infty} \Gamma(2n + k) / \{ k! (1 + l_{1} + l_{2} + l_{3})^{2n+k} \} \cdot \sum_{\kappa} C_{\kappa} (\mathbf{I}_{4} - \mathbf{\Sigma}^{-1}) / C_{\kappa} (\mathbf{I}_{4}) \sum_{i=0}^{k} \sum_{\eta} b_{\kappa, \eta} C_{\eta}(\mathbf{L})],$$

where $\mathbf{L} = \operatorname{diag}(l_1, l_2, l_3)$.

Now, in (2.8) let $h_i = l_i/l_3$, i = 1, 2 and integrate l_3 from 0 to 1, then the distribution of h_1 , h_2 can be obtained as a series involving zonal polynomials of $\mathbf{H}_1 = \operatorname{diag}(h_1, h_2, 1)$. Further, from this series the distribution of h_1 or h_2 can be found using the method outlined in Pillai and Al-Ani [14] and integrating with respect to h_2 or h_1 such that $0 < h_1 \le h_2 < 1$.

Now, in the joint distribution of h_1 , h_2 let $h_1' = h_1/h_2$, then the distribution of h_1' can be written in the form

$$K_{1}(4, n)|\mathbf{\Sigma}|^{-\frac{1}{2}n} h_{1}^{'\frac{1}{2}(n-5)} (1 - h_{1}^{\prime})$$

$$\cdot \sum_{k=0}^{\infty} \Gamma(2n + k)/k! \sum_{\kappa} C_{\kappa} (\mathbf{I}_{4} - \mathbf{\Sigma}^{-1})/C_{\kappa} (\mathbf{I}_{4})$$

$$\cdot \sum_{i=0}^{\infty} \sum_{\eta} b_{\kappa, \eta} \sum_{i=0}^{i} \sum_{\tau} b'_{i, \tau} C_{\tau} \binom{h_{1}^{\prime}}{0} \sum_{\tau=0}^{\infty} \binom{-2n-k}{\tau} (1 + h_{1}^{\prime})^{\tau}$$

$$\cdot \sum_{h=0}^{\infty} \binom{-2n-k-\tau}{h} \{\beta(b, 2)\beta(C, 2) + h_{1}^{\prime} [\beta(C + 2, 2)\beta(b + 2, 2)$$

$$-\beta(C + 1, 2)\beta(b, 2)] + (1 + h_{1}^{\prime})\beta(b + 1, 2) (h_{1}^{\prime}\beta(C + 2, 2)$$

$$-\beta(C + 1, 2)) - h_{1}^{\prime 2}\beta(b + 2, 2)\beta(C + 3, 2)\},$$

where b = 3(n-1)/2 + i + h + r, C = n-2 + t + r and constants $b'_{i,\tau}$ and τ are defined in [11].

3. Preliminaries in connection with Wilks' criterion. The non-central distributions of Wilks' criterion for the three cases mentioned in the Introduction will be obtained in the following sections in terms of Meijer's G-function.

Meijer [12] defined the G-function by

$$G_{p,q}^{m,n}(x \mid a_1, a_2, \dots, a_p)$$

$$(3.1) = (2\pi i)^{-1} \int_{C} \left[\prod_{j=1}^{m} \Gamma(b_{j} - s) \prod_{j=1}^{n} \Gamma(1 - a_{j} + s) \right] / [\prod_{j=m+1}^{q} \Gamma(1 - b_{j} + s) \prod_{j=n+1}^{p} \Gamma(a_{i} - s)] x^{s} ds,$$

where an empty product is interpreted as unity and where C is a curve separating the singularities of $\prod_{j=1}^{n} \Gamma(b_j - s)$ from those of $\prod_{j=1}^{n} \Gamma(1 - a_j + s)$, $q \ge 1$, $0 \le n \le p \le q$, $0 \le m \le q$; $x \ne 0$ and |x| < 1 if q = p; $x \ne 0$ if q > p. It has been shown that [2]

$$G_{2,2}^{2,0}(x\mid_{b_1,b_2}^{a_1,a_2})$$

$$(3.2) = x^{b_1} (1-x)^{a_1+a_2-b_1-b_2-1} / \Gamma(a_1 + a_2 - b_1 - b_2)$$

$$\cdot {}_2F_1(a_2 - b_2, a_1 - b_2; a_1 + a_2 - b_1 - b_2; 1-x), \qquad 0 < x < 1,$$

where ${}_{2}F_{1}$ here is the Gauss hypergeometric function. The *G*-function of (3.1) can be expressed as a finite number of generalized hypergeometric functions as follows: [13]

$$G_{p,q}^{m,n}(x \mid a_1, \dots, a_p) = \sum_{h=1}^{m} \left[\prod_{j=1, j \neq h}^{m} \Gamma(b_j - b_h) \prod_{j=1}^{n} \Gamma(1 + b_h - a_j) \right] /$$

$$\left[\prod_{j=m+1}^{q} \Gamma(1 + b_h - b_j) \prod_{j=n+1}^{p} \Gamma(a_j - b_h) \right] x^{b_h}$$

$$\cdot {}_{p}F_{q-1}(1 + b_h - a_1, \dots, 1 + b_h - a_p;$$

$$1 + b_h - b_1, \dots^* \dots, 1 + b_h - b_a; \quad (-1)^{p-m-n} x,$$

where the asterisk denotes that the number $1 + b_h - b_h$ is omitted in the sequence $1 + b_h - b_1$, \cdots , $1 + b_h - b_q$.

The above results on G-function will be used in the sequel.

4. The non-central distribution of $W^{(p)}$ in Case 1. Let $X(p \times n_1)$ and $Y(p \times n_2)$, $p \leq n_i$, i = 1, 2, be independent matrix variates with the columns of X independently distributed as $N(0, \Sigma_1)$ and those of Y independently distributed as $N(0, \Sigma_2)$. Hence $S_1 = XX'$ and $S_2 = YY'$ are independently distributed as Wishart (n_i, p, Σ_i) , i = 1, 2. Let $0 < f_1 < f_2 < \cdots < f_p < \infty$ be the latent roots of the determinantal equation

$$|\mathbf{S}_1 - f\mathbf{S}_2| = 0$$

and $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_p < \infty$ be the characteristic roots of

$$|\mathbf{\Sigma}_1 - \lambda \mathbf{\Sigma}_2| = 0.$$

For testing the hypothesis $H_0: \delta \Lambda = \mathbf{I}_p$, $\delta > 0$ being given, we will use

(4.3)
$$W^{(p)} = \prod_{i=1}^{p} (1 - e_i) = |\mathbf{I}_p - \mathbf{E}|$$

where $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_p)$, $e_i = \delta f_i/(1 + \delta f_i)$, $i = 1, 2, \dots, p$, and $\mathbf{E} = \operatorname{diag}(e_1, \dots, e_p)$.

To find $E[W^{(p)}]^h$ we multiply the density of E given by Khatri [10] by $|\mathbf{I}_p - \mathbf{E}|^h$, transform $\mathbf{E} \to \mathbf{HVH}'$, where H is an orthogonal and V a symmetric matrix, and integrate out H and V using (44) and (22) of Constantine [1]. We get

$$(4.4) \quad E[W^{(p)}]^h = [\Gamma_p(\frac{1}{2}n)\Gamma_p(\frac{1}{2}n_2 + h)]/[\Gamma_p(\frac{1}{2}n_2)\Gamma_p(\frac{1}{2}n + h)] |\delta\Lambda|^{-\frac{1}{2}n_1}$$

$$\cdot {}_2F_1(\frac{1}{2}n, \frac{1}{2}n_1; \frac{1}{2}n + h; \mathbf{I}_p - (\delta\Lambda)^{-1}),$$

where $n=n_1+n_2$, and ${}_2F_1$ is a hypergeometric function of the matrix variate defined in (2.2). Using (2.2), the coefficient of $C_{\kappa}(\mathbf{I}_p-(\delta\mathbf{\Lambda})^{-1})$ in (4.4) is given by

$$(4.5) \{C_{p}(\frac{1}{2}n)_{k} (\frac{1}{2}n_{1})_{k} \prod_{i=1}^{p} \Gamma(r+b_{i})\}/\{k! \prod_{i=1}^{p} \Gamma(r+a_{i})\},$$

where $r = \frac{1}{2}n_2 + h - \frac{1}{2}(p-1)$, $b_i = \frac{1}{2}(i-1)$, $a_i = \frac{1}{2}n_1 + k_{p-i+1} + b_i$, and $C_p = \{\Gamma_p(\frac{1}{2}n)/\Gamma_p(\frac{1}{2}n_2)\}|\delta\mathbf{\Lambda}|^{-\frac{n}{2}n_1}$.

Now using results on inverse Mellin transform [2, 3, 4]

$$(4.6) \quad f(W^{(p)}) = C_p \sum_{k=0}^{\infty} \sum_{\kappa} \left\{ \left(\frac{1}{2} n \right)_{\kappa} \left(\frac{1}{2} n_1 \right)_{\kappa} / k! \right\} C_{\kappa} (\mathbf{I}_p - (\delta \mathbf{\Lambda})^{-1}) \left\{ W^{(p)} \right\}^{\frac{1}{2} (n_2 - p - 1)} \cdot (2\pi i)^{-1} \int_{c-i\infty}^{c+i\infty} \left\{ W^{(p)} \right\}^{-r} \prod_{i=1}^{p} \Gamma(r + b_i) / \prod_{i=1}^{p} \Gamma(r + a_i) \right] dr.$$

Noting that the integral in (4.6) is in the form of Meijer's G-function we can write the density of $W^{(p)}$ as

$$(4.7) \quad f(W^{(p)}) = C_{p}\{W^{(p)}\}^{\frac{1}{2}(n_{2}-p-1)} \\ \cdot \sum_{k=0}^{\infty} \sum_{\kappa} \{ (\frac{1}{2}n)_{\kappa} (\frac{1}{2}n_{1})_{\kappa}/k! \} C_{\kappa} (\mathbf{I}_{p} - (\delta \mathbf{\Lambda})^{-1}) G_{p,p}^{p,0} (W^{(p)} | a_{1}, a_{2}, \dots, a_{p} \atop b_{1}, b_{2}, \dots b_{p}).$$

Special Case. Letting p = 2 in (4.7) and using (3.2) we obtain

$$f(W^{(2)}) = C_2\{W^{(2)}\}^{\frac{1}{2}(n_2-\delta)} \sum_{k=0}^{\infty} \sum_{\kappa} (\frac{1}{2}n)_{\kappa} (\frac{1}{2}n_1)_{\kappa}/k!$$

$$(4.8) C_{\kappa}(I_2 - (\delta \mathbf{\Lambda})^{-1})\{1 - W^{(2)}\}^{n_1+k-1}/\Gamma(n_1 + k)$$

$$\cdot {}_2F_1(\frac{1}{2}n_1 + k_1, \frac{1}{2}(n_1 - 1) + k_2, n_1 + k; 1 - W^{(2)}).$$

The probability that $W^{(2)} \leq w(\leq 1)$ can be obtained by integrating (4.8) by parts $a_1 = \frac{1}{2}n_1 + k_2$ times when n_1 is even. Using the relation [4]

$$(4.9) \quad (d^n/dz^n)[z^{c-1}{}_2F_1(a,b;c;z)] = (c-n)_n z^{c-n-1}{}_2F_1(a,b;c-n;z),$$

and recalling that $\kappa = (k_1, k_2)$, we obtain the cdf of $W^{(2)}$ as

where $a = a_1 - 1$ and $b = a_2 - b_2$, $a_2 = \frac{1}{2}n_1 + k_1 + \frac{1}{2}$ and $b_2 = \frac{1}{2}$. When n_1 is odd, after integrating (4.8) by parts a_2 times, the cdf of $W^{(2)}$ is (4.10) with $a = a_2 - 1$ and $b = a_1 - b_2$.

5. The non-central distribution of $W^{(p)}$ in Case 2. Let $\Lambda = W^{(p)} = \prod_{i=1}^{p} (1-g_i)$ where g_1 , g_2 , \cdots , g_p are the latent roots of the determinantal equation

$$|\mathbf{S}_1 - g(\mathbf{S}_1 + \mathbf{S}_2)| = 0$$

where S_1 is a $(p \times p)$ matrix distributed as non-central Wishart with s degrees of freedom, Ω is a matrix of non-centrality parameters and S_2 has the Wishart distribution with t degrees of freedom, the covariance matrix in each case being Σ . Constantine [1] has given the $E[W^{(p)}]^h$ in this case in the following form: (Writing n = s + t) $E[W^{(p)}]^h = \Gamma_p(h + \frac{1}{2}t)\Gamma_p(\frac{1}{2}n)/[\Gamma_p(\frac{1}{2}t)\Gamma_p(h + \frac{1}{2}n)] \cdot {}_1F_1(h; h + \frac{1}{2}n; -\Omega)$, and hence using (3.1)

$$(5.2)$$
 $f(W^{(p)})$

$$= C_{p}\{W^{(p)}\}^{\frac{1}{2}(t-p-1)} \sum_{k=0}^{\infty} \sum_{\kappa} \{(\frac{1}{2}n)_{\kappa} C_{\kappa}(\Omega)/k!\} G_{p,p}^{p,0}(W^{(p)}) \mid {}^{a_{1},a_{2},\ldots,a_{p}}_{b_{1},b_{2},\ldots,b_{p}}),$$

where $C_p = \Gamma_p(\frac{1}{2}n)/\Gamma_p(\frac{1}{2}t)$ exp $(-\operatorname{tr} \Omega)$, $b_i = \frac{1}{2}(i-1)$, $a_i = \frac{1}{2}s + k_{p-i+1} + b_i$. The probability that $W^{(2)} \leq w(\leq 1)$ can be obtained by using (3.2) in (5.2), integrating by parts a_1 times when s is even, then using (4.9) we get the cdf of $W^{(2)}$ as

$$\Pr \left\{ W^{(2)} \leq w \right\} \\
= \exp \left(-\operatorname{tr} \Omega \sum_{k=0}^{\infty} \sum_{\kappa} \left\{ C_{\kappa}(\Omega)/k! \right\} w^{\frac{1}{2}(t-1)} \right. \\
\left. \cdot \left\{ \Gamma_{2}(\frac{1}{2}n) (\frac{1}{2}n)_{\kappa} / [\Gamma_{2}(\frac{1}{2}t)\Gamma(s+k)] \right. \\
\left. \cdot \sum_{r=0}^{a} \left\{ (s+k-r)_{r} / \left\{ \frac{1}{2}(t-1) \right\}_{r+1} \right\} w^{r} (1-w)^{s+k-r-1} \\
\left. \cdot {}_{2}F_{1}(\frac{1}{2}s+k_{1}, \frac{1}{2}(s-1)+k_{2}; s+k-r; 1-w) + I_{w}(\frac{1}{2}t, b) \right\}$$

where $a = \frac{1}{2}s + k_2 - 1$, $b = \frac{1}{2}s + k_1$. When s is odd, we integrate (5.2) by parts a_2 times and find the cdf is (5.3) with $a = \frac{1}{2}s + k_1 - \frac{1}{2}$, $b = \frac{1}{2}(s - 1) + k_2$.

6. The non-central distribution of $W^{(p)}$ in Case 3. Let the columns of $\begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}$ be independent normal (p+q)-variates $(p \leq q, p+q \leq n, n)$ is the sample size with zero means and covariance matrix

$$\mathbf{\Sigma} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}'_{12} & \mathbf{\Sigma}_{22} \end{pmatrix}.$$

Let $\mathbf{R}^2 = \text{diag } (r_1^2, r_2^2, \dots, r_p^2)$ where r_i^2 are the latent roots of

(6.2)
$$|\mathbf{X_1X_2'}(\mathbf{X_2X_2'})^{-1}\mathbf{X_2X_1'} - r^2\mathbf{X_1X_1'}| = 0$$

and $P^2 = \text{diag } (\rho_1^2, \rho_2^2, \dots, \rho_n^2)$ where ρ_i^2 are the latent roots of

(6.3)
$$|\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{12}' - \rho^2\mathbf{\Sigma}_{11}| = 0.$$

The density of r_1^2 , r_2^2 , \cdots , r_p^2 has been obtained by Constantine [1] and to find $E[W^{(p)}]^h$ where $W^{(p)} = \prod_{i=1}^p (1 - r_i^2)$, we multiply that density by $|\mathbf{I}_p - \mathbf{R}^2|^h$, proceed as in Section 4 for Case 1 and we find

(6.4)
$$E[W^{(p)}]^h = \Gamma_p(\frac{1}{2}n)\Gamma_p(\frac{1}{2}(n-q)+h)/[\Gamma_p(\frac{1}{2}(n-q))\Gamma_p(\frac{1}{2}n+h)] \cdot |\mathbf{I}_p - \mathbf{P}^2|^{\frac{1}{2}n} {}_2F_1(\frac{1}{2}n, \frac{1}{2}n; \frac{1}{2}n+h; \mathbf{P}^2).$$

Noting that (6.4) can be obtained from (4.4) by substituting

(6.5)
$$(n_2, n_1, (\delta \mathbf{\Lambda})^{-1}) \to (n - q, n, \mathbf{I}_p - \mathbf{P}^2)$$

it can be verified that the density of $\boldsymbol{W}^{(p)}$ in this case is

$$(6.6) \quad f(W^{(p)}) = C_{p} \{ W^{(p)} \}^{\frac{1}{2}(n-q-p-1)} \cdot \sum_{k=0}^{\infty} \sum_{\kappa} \{ (\frac{1}{2}n)_{\kappa} (\frac{1}{2}n)_{\kappa} C_{\kappa}(\mathbf{P}^{2})/k! \} G_{p,p}^{p,o}(W^{(p)} \mid {}_{b_{1},b_{2},\cdots,b_{p}}^{a_{1},a_{2},\cdots,a_{p}}) \}$$

where

$$Cp = \{\Gamma_p(\frac{1}{2}n)/\Gamma_p(\frac{1}{2}(n-q))\}|\mathbf{I}_p - \mathbf{P}^2|^{\frac{1}{2}n}, \ a_i = \frac{1}{2}q + k_{p-i+1} + b_i, \ b_i = \frac{1}{2}(i-1).$$

7. Remark. The densities of $W^{(p)}$ obtained above in the three cases can be put in a single general form given by

$$(7.1) \quad f(W^{(p)}) = \{ \Gamma_{p}(\frac{1}{2}n) / \Gamma_{p}(\frac{1}{2}\gamma) \} \alpha \{ W^{(p)} \}^{\frac{1}{2}(\gamma - p - 1)}$$

$$\cdot \sum_{k=0}^{\infty} \sum_{\kappa} \{ (\frac{1}{2}n)_{\kappa} \beta / k! \} C_{\kappa}(\mathbf{M}) G_{p,p}^{p,o}(W^{(p)} | _{b_{1},b_{2},\cdots,b_{p}}^{a_{1},a_{2},\cdots,a_{p}}),$$

where $a_i = \frac{1}{2}(n-\gamma) + k_{p-i+1} + b_i$ and $b_i = \frac{1}{2}(i-1)$ and

REFERENCES

- [1] Constantine, A. G. (1963). Some non-central distribution problems in multivariate analysis. *Ann. Math. Statist.* **34** 1270-1285.
- [2] Consul, P. C. (1966). On some inverse Mellin integral transforms. Academie Royale Des Science de Belgique 52 547-561.
- [3] Consul, P. C. (1967a). On the exact distributions of likelihood ratio criteria for testing independence of sets of variates under the null hypothesis. Ann. Math. Statist. 38 1160-1169.
- [4] Consul, P. C. (1967b). On the exact distribution of the W criterion for testing sphericity in a p-variate normal distribution. Ann. Math. Statist. 38 1170-1174.
- [5] Girshick, M. A. (1941). The distribution of the ellipticity statistics L_e when the hypothesis is false. Terrestrial Magnetism and Atmospheric Electricity 46 455-457.
- [6] James, A. T. (1960). The distribution of the latent roots of the covariance matrix. Ann. Math. Statist. 31 151-158.
- [7] James, A. T. (1964). Distribution of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 475-501.

- [8] James, A. T. (1966). Inference on latent roots by calculation of hypergeometric functions of matrix argument. *Multivariate Analysis* ed. P. R. Krishnaiah. Academic Press, New York, 209–235.
- [9] JOURIS, G. M. (1968). On the non-central distributions of Wilks' Λ for tests of three hypotheses. Mimeograph Series No. 164, Department of Statistics, Purdue Univ.
- [10] KHATRI, C. G. (1967). Some distribution problems connected with the characteristic roots of S₁S₂⁻¹. Ann. Math. Statist. 38 944-948.
- [11] KHATRI, C. G. and PILLAI, K. C. S. (1968). On the non-central distributions of two test criteria in multivariate analysis of variance. Ann. Math. Statist. 39 215–226.
- [12] MEIJER, C. S. (1946a). On the G-function. II, III, IV. Nederl. Akad. Wetensch. Proc. 49 344-356, 457-469, 632-641.
- [13] Meijer, C. S. (1946b). On the G-function I. Indag. Math. 8 124-134.
- [14] PILLAI, K. C. S. and AL-ANI, S. (1967). On some distribution problems concerning characteristics roots and vectors in multivariate analysis. Mimeograph Series No. 123, Department of Statistics, Purdue Univ.
- [15] PILLAI, K. C. S. and AL-ANI, S. (1967). On the distributions of some functions of the roots of a covariance matrix and non-central Wilks' Λ. Mimeograph Series No. 125, Department of Statistics, Purdue Univ.