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1. Introduction. This paper deals with the waiting time X{(¢) in the queuing model
GI/GJ1. X(¢) is defined as the time needed to complete the serving of all those
units which are present in the system at time z. In order to obtain information about
the distribution of X(¢), we use the auxiliary variable Y(¢), defined as the time
between ¢ and the first arrival after ¢. The vector (X(¢), Y(¢)) forms a Markov
process. We consider the distribution function L33(t; y, x) = P,{¥Y(t) < y, X(t) <
x] Y(0) = yo, X(0) = x,} and obtain in the case x, = 0, ¥, = 0 a closed expression
for

I:’;" 0;s,w) = _[,“’:0];”:0 ff:o— e“"e‘sye_w"L’;‘Z)(t; dy,dx)dt.

0

This contains as a special case an expression for f,’y‘g (0;0,w), which is the Laplace-
Stieltjes transform with respect to x and the Laplace transform with respect to ¢ of
the distribution function of X(¢), thus determining this distribution function
completely. The results are valid for arbitrary service-time distribution function
B(t) concentrated on [0, o) and for any interarrival-time distribution function
A(t) with A(0) = 0. Our analysis is based on the method of stages, described in [4].
This method exploits the fact that every distribution function F(¢) concentrated on

[0, 00) can be approximated weakly as u tends to infinity by distribution functions
F () = FO)+ Y% 1 {F(kju)—F((k—1)/u)} E,(0),

where E,*(¢) is the k-fold convolution of the distribution function 1 —e ™" (see [4]).

The results seem to be new. Keilson and Kooharian ([3]) investigated the system
and derived expressions for Laplace transfcrms of the regeneration and server
occupation time distributions. They were led to Wiener-Hopf type equations, and
this aspect of the problem appears in our analysis as well, although we do not use
the corresponding techniques. Takacs ([5]) has derived the limiting distribution of
X(2) as ¢ tends to infinity, using the same auxiliary random variable Y(¢) that we
use.

The method of stages, as applied in this paper, consists essentially of associating
to the Markov process (X(¢), Y(¢)) a family of discrete-state Markov processes,
whose members approximate it. The theory of this procedure is intended to be
presented in a wider context at a future time and we feel therefore justified in
omitting the proof for its validity in this paper. Unfortunately, our method does
not cover the case x, > 0, corresponding to a non-empty queue at ¢ = 0. Although
we are able to derive the desired expressions in this case for the approximating
system, their unwieldy appearance makes the limiting procedure seem intractable.
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2. A factorization problem. Let 4(¢) and B(¢) be distribution functions concen-
trated on [0, c0), and let a(s), b(s) be their Laplace-Stieltjes transforms. For real
0 > 0, the function a(s)b(6 — s) has to be considered in the analysis of the following
sections. This function is regular in the strip 0 < Re(s) < 6. (In this paper, a function
is called regular in a closed region, if it is regular in the usual sense and continuous
on the boundary.) If C(¢) is the distribution function determined by setting
C(t) = 1—B(—1t) for the continuity points ¢ = 0 of B(¢), then

2.1) (b(8)) 1" dC(t) = dD(1)

determines a distribution function concentrated on (— oo, 0]. For the convolution
F(t) = A(t)* D(t) we obtain

2.2) [foe ™" dF(t) = (b(0))™ ' a(s)b(0—s)
in the mentioned strip. We need in Sections 3 through 5 a representation
23) 1—a(s)b(0—s) = (1=f 7 (0;9) )1 —f~(6;9)),

where 1— f*(0; s) is regular and non-zero in Re(s) = 0 and 1— f~(0; s) is regular
and non-zero in Re(s) < 0. Writing 1 —a(s)b(0 — s) as 1 —b(0)a(s)b(0 — 5)/b(0) reveals
the possibility of applying known results from the fluctuation theory of random
walks. A brief description of the required results follows.

Let X;, X,, -+ be independent random variables with a common distribution
F(t)and define S, =0, S; = X, S; = X; +X,, -~ If N* and N ~ are the epochs of
first entry of {S,},n >0, into (0, c0) and (—oo, 0] respectively, then for the
characteristic function ¢(¢) of F(¢) the relation 1—z¢(¢) = (1—E[zV" exp (i{Sy+)])
(1—E[z"" exp (i{Sy-)]) holds for |z| < 1. E stands for expectation. For |z| < 1

log[1—E[z"" exp(i{Sy+)]1]17* = Yoo n™ 12" [, €4 dF™(1),
log[1—E[z" exp(i{Sy-)] 17" = Yo n™ 12" [20, €4 dF™ (1),
(Feller [2] page 569).

Observing that for Re(s) < 0 and F(¢) as in (2.2) [2%, e™*'dF"(t) converges by
influence of the factor ¢” in (2.1), and that [§, e~ dF™(t) converges for Re(s) = 0,
we conclude that, for |z| < 1, the functions 1 —E[z"" e™*¥*] and 1—E[z"™ e™*5%"]
are regular and non-zero in s for Re(s) = 0 and Re(s) < 0, respectively, and that
the relation 1—zE[e™*] = (1 —E[z"" e™*¥*]) (1 - E[z" e™*¥]) holds for |z]| < 1
and 0 < Re(s) < 0. Here E[e™**] = (b(0)) ™ 'a(s)b(0 — 5). Putting z = b(f) we obtain

1—a(s)b(0—s) = exp (=Y. n~ ' (b(0))" |34 e~ dF™ (1))

cexp(~ Xizs n™ (6(0))" [, e (1)),
The first factor on the right-hand side will be denoted in the following sections by
1—f7(0; s), the other one by 1 — £~ (8; s).

3. The approximating system. We consider the queuing system GI/G/1 under the
restriction, that the distribution functions are of the types

(3.1 A =Y a E"(t)
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for the interarrival times and
(3.2) B(t) = Y=o b ES (D)

for the service times, where {q,}, {b,} are probability distributions and E,” (¢) is
the /-fold convolution of the distribution function 1—e~#. If the service for a unit
is performed with probability b, in k consecutive independent stages with common
exponential distribution of mean p~!, then the service time distribution function is
of type (3.2). If a unit starts its arrival procedure immediately after the arrival of the
preceding unit, and if this procedure lasts with probability a, for / consecutive
independent time phases with common exponential distribution of mean 1™ !, then
the interarrival time distribution function is of type (3.1). We may take the point of
view, that a unit at its time of arrival creates k stages and / phases, with probabilities
b, and a,, respectively.

Let k(¢) = 0 be the number of stages waiting at time 7 = 0, including the one
under performance. Let /(¢) = 1 be the number of phases the unit to arrive next has
yet to go through, including the one it is in at time ¢. Then {z(¢) = (k(?), I(¢)), t = 0}
is a Markov process with state space E = {(k, I)lk =0,1,2,--;1=1,2,3,}
and stationary transition probabilities pi(¢) = Pr {z(r) = (k, [)| z(0) = (u, v)},
(u, v), (k, I) e E. These probabilities satisfy the system

@/dtpip(t) = —lp:?(t)+up:.‘(t)+w:: e 1 (D) +ApaS(t)a, bo

(3.3) (d[d)pii(t) = — A+ wpi(t) +uplt (@) +Ap5Ts 1 (1)
+AY 5o Phi(®ay by, k=0,
pvl(O) = O fOI' (u’ U) # (k’ l)a

=1 for(u,v) =(k,1).

This system can be derived in the usual manner. If we write it as (d/dt)P(¢) = P(t)Q,
where P(t) = {pi(t)} is the transition matrix, then the matrix Q thus defined is
conservative and bounded, whence it follows that P(z) is standard (terminology of

Chung [1]).
Taking Laplace transforms
(3.4) PO = [$ e pi(t) dt, 0>0,
we derive from (3.3) for
(3.5) LYO;5,w) = Yo 2021 PROY (L +5/)7' (L +w/w) ™
the relation

O=w=s)L)(0;5,w) = (L+s/H)7(L+w/p) ™ —w T2 (1+s/D)7'p(0)
=21 =a(s)b(w)) Y=o (1 +w/w)~*P3i(6),

. 0>0, Re(s) =0, Re(w) = 0, where a(s), b(w) are the Laplace-Stieltjes transforms
of A(t), B(t), respectively. L,“(0; s, w) is obtained in terms of known expressions in

(3.6)
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Section 4. If L,*(¢; y, x) denotes the probability, that at time ¢ the waiting time for
the next arrival is at most y and the time needed to finish the service for all present

units is at most x, then
L0353, w) = [20 [0 o0 €xp (=0t —sy—wx)L, (t; dy, dx) dt.
Hence L,%(0; s, w) completely determines the desired L,*(t; y, x). This inversion
problem, however, is not a topic of this paper.
4. Calculation of L ,*(0;s,w). The functions
4.1 0,4055) = Y221 (1+5/2)7'p5(6) and
(4.2) P05 w) = Yo (14+w/w) 7 p}i(6)
have to be determined in order to obtain L,%(8; s, w) from (3.6). 0,48; s) is of
independent interest, because
4.3) U,0;9) = [2o 520 e” "7 L, (t; dy,0)dt.
Putting now w = 0—s, we derive from (3.6), using the regularity properties of
L,*8; s, w), the relation
0= (1+5/A)" (L +(0—9)/p) ™~ (O0—25)0,(8;5)— A1 —a(s)b(0 —5))V,(0; 0 —5)

for 0 < Re (s) < 0. The results of Section 2 allow this to be rewritten as
(L +s/)T[L=f *(0;9)] 7 =1 +(O—9)/w)*(O0—s)[1 =S *(8;9] ' 0,%6;5)

= A1—f7(0;9))(1+(0—5)/W)"V,"(0;0—s5)
for 0 < Re(s) < 0. The left-hand side of (4.4) is regular in Re(s) = 0, whereas the
right-hand side is regular in Re(s) < . Since there is a common strip to both sides,
they are but different representations of the same function P%(8; s), regular for all
finite 5. Moreover, examination of bothsides yields thatlim o(PO; 9)s"* ) =0.
Thus, by the theorem of Liouville-Hadamard, P,%(8; s) is a polynomial of degree
less than or equal to «. The knowledge of its coefficients would imply the knowledge
of U,%9;s) and V,“@; 0—s) and hence of V,“(6; w). The left-hand side of (4.4)
yields the relation

(L+O=5)/W"O—)[1—f *(0;9)]710,40;5) = (1 +s/D°[1=f(8;9)] "
—P)(0;9)

4.4)

for Re(s) = 0. The regularity of U,%(8; s) in Re(s) = 0 requires the right-hand side
of this relation to have a zero at s = 6 and another one of degree u at s = 0+ p.
These conditions determine the polynomial P,“(; s) completely.

In addition to (4.5) we have from (3.6)
(4.6) M =f7(0;)A+(O—9)/w)"P,"(0;6—5) = P,"(0;5)
for Re (s) < 0, or, after replacing 8 —s by w,
4.7 PHO;w) = A" [1=f~(0;0—w)]" (1 +w/w) P, (0;0—w)
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for Re (w) = 0. Substitution of (4.5) and (4.7) into (3.6) results in a relation between
L,%@; s, w) and known expressions. The actual calculation of P,*(; s) is unpleasant
and does not seem, in view of the generalization in mind, to lead to simple expres-
sions. Fortunately, however, the case u = 0, corresponding to a system starting
without a unit in service, leads further. For u = 0, the polynomial P,°(0;s) de-
generates to the constant (1 +60/4)"°[1— f*(0; 0)] !, which can be readily seen from
(4.5). We obtain

48) (0-90°0;9) = (1 +s/H)™ =(L+0/)7[1=f*(0:;0)]'[1-f*(0;5)] and
4.9 VoO;w) = A7 [1=f7(0;0—w) ] (1 +0/D)™[1=f*(0;0)]"
With these relations, (3.6) becomes

— )0 —s—w)L.%0: _O—s—w L L
(4 0 (0 S)(G N W)Lp (G’S’W)_(1+S/}.)v+(1+0/l)v 1_f+(0,0)
| ' Wl—_Lb(e_s)—(f)- )M
1—f7(6;9) N F=0:0-w) |

Finally, for this section, we establish the transforms for the distribution of principal
interest, that is the distribution of the virtual waiting time. These transforms are
obtained by putting s = 0. Thus

1 1

(+6/2° 1=f7(0;0)
[ 1-b(6) _, 1-bw) ]

0(0—w)L,°(0;0,w) = 0—w+

@.11)

UT=f70:0) 1= (0:0-w)

where L,°(0;0,w) = [, [3o- e” 7 L2(t; 00, dx)dt, and
11 1 1-£%;0)
0 0(1+6/2)°1—=f*(0;0)
where 0,%(8;0) = [2oe™% L,°(t; 00,0) dt.

5. The unrestricted system. The unrestricted system GI/G/1 allows any distribu-
tion function A(¢) concentrated on (0, c0) and any B(?) concentrated on [0, o). For

A1) = Y2 (AU~ A= D/ ES () and
B,(t) = B(0)+ Y% 1 (B(k/p) — B((k— 1)/m)) E,*(1)

we have, by the theorem mentioned in the introduction, lim, _, , 4,(t) = 3(4(t—)+
A(t+)) and lim,,,, B,(t) = 3(B(t—)+ B(t+)). Clearly A,(t) and B,(t) are distri-
bution functions of the types (3.1) and (3.2), respectively. This implies weak
convergence and hence lim, ., ,, a;(s) = a(s), lim,_, ,, b,(s) = b(s). It is not hard to
see that the factors of 1—a;(s)b,(0 — s) (as defined in (2.3)) tend to the corresponding

sfactors of 1 —a(s)b(0—s). We intend now to carry the results (4.10), (4.11), and
(4.12), obtained for the approximating A4,(t) and B,(t), over for A(t), B(t) and

(4.12) 0,°0;0) =
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interpret them as results for the unrestricted system. This requires taking care of
the initial condition v, which has in this form no meaning in the unrestricted system.
v is the number of initially outstanding arrival phases. Each phase has an expected
length A~ ! and variance A~ 2. As A tends to infinity, we have to increase v in order
to maintain a positive expected length of delay before the first arrival. Keeping v/A
constant thus means keeping the expected value of the time before the first arrival
constant. The variance of this random variable however tends to O and the results
obtained by letting 4 — o0, v/A =y, are to be interpreted therefore as results for
GI/G/1 starting at ¢ = 0 under the virtual waiting time 0 and a delay y, of the first
arrival. Transition to the limits in (4.10), (4.11), and (4.12) now yields

1
—~f*(6;0)
) l—a(s)b(é)—s)_(o_ ) 1—a(s)b(w)
YIS 03s) Y IoF0;0—w)

(0_3)(0—3—'“))[‘:20(0;5, W) = (e—s_w)e_syo+e—0yol

1—-b(6) —0 1—b(w)
1=f%0;0) " 1==(0:0)  1—f~(0;0—w)
and 00°,(0;0) = 1 —e™°[1—f *(0;0)]/[1—f *(8;0)].

(o]

06 —w)L3,(6;0,w) = (0—w)+e~®°

As has been mentioned in the introduction, a rigorous analysis justifying this
limiting procedure is omitted.
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