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1. Introduction. Increasing hazard rate (IHR) distribution functions of one
variable have been discussed in the literature for many years and many of their
properties have been obtained, for examrle, see [2]. In this paper, a definition

which extends the notion of ITHR to multivariate distributions is given and it is -

shown to satisfy certain desirable multivariate properties.

2. Multivariate IHR Distributions. Consider the randor vector (X, X5, -+, X,)
with distribution function F(x;, x5, ", X,) = P[X; S x;, X, £ x5, -+, X, £x,].
We say that the set of random variables X, X, , - - - X, is right corner set increasing,
written RCSI (X,, X,, - X,) if P[X;>x;, "X, > x,| X, > x,, - X, >x,/] is
nondecreasing in x,’, - -+, x,’ for every choice of x,, ---x,. This generalises some
notions of dependence that were studied by Lehmann [4] and Esary and Proschan
[3]. Setting F(x,, x5, - ** x,) = P[X; > x1, X5 > X5, ", X,, > x,] we have:

DEFINITION. A distribution function F(x;, x,,***, X,) on the nonnegative
orthant is multivariate THR if it satisfies the conditions:

(l) F(x1+ta T xn+t)/F(x1’ ) xn) é F(x1,+ta .“xn,_'_t)/F(xlla T xnl) fOI'
all x;= x/ =0andall t = 0.
(ii) RCSI (X, -+ X,).

REMARKS. a. In the context of life-testing, condition (i) is essentially a “wear-out”
condition analogous to the univariate case.

b. Condition (ii) characterises a positive dependence between the random
variables which has much intuitive appeal if one thinks of the X; as lifetimes of
devices in a common environment with corresponding high or low stress levels.

c. It is of interest to know what possible distribution functions can satisfy (i)
when the inequality sign is replaced by an equality. The general form of such
a distribution in the bivariate case was determined by Marshall and Olkin [5],
and they showed further that if the marginal distributions are exponential,
then the distribution is the bivariate exponential distribution: F(x,, X,) =
exp [— (A Xy + 4, x5 + 4y, max (xy, X5)) |-

For the n-dimensional case, the requirement that the (n—1)-dimensional
marginals be multivariate exponential (M VE) yields the n-dimensional MVE. This
result is similar to the univariate case in which the “boundary” of the class of IHR
distributions is the class of exponential distributions.
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We now derive some properties of multivariate IHR distributions.
(P,). Any subset of multivariate THR random variables is multivariate IHR.

PrOOF. Let us suppose that (X, X,, -, X,) are multivariate ITHR; setting
x, = x{" =01n (i), we have:

F(t,xy+t, -+, %, +0)/F0, x5, -+, x,) S F(t, x;, +1,- -+, x,/ +1)/F(0, x;/, -+, x,)).
Also from RCSI (X, X,, - X,), we have:
F(t, xy+1t, -+, x, +)/FO, x,+t, -+, x,+1)
= F(t,xy) +t, -, x, +0)jF0, x,/ +1, -+, x,/+1)
where x; = x; fori=2,3,---,n and ¢t > 0. Combining these two inequalities, we
get: .
F(O, xy+1, -, x, + 0)[F(0, X5, ++, x,) £ F(0, x,'+1, -+, x,/ +1)[F(0, x,', -+, x,)

Moreover, it is clear that RCSI (X, X,, - - X,,) implies RCSI(X,, - -, X,). Thus
we have shown that (X,, - -+ X,,) are multivariate IHR and the proof is completed
by induction.

(P,). The union of two mutually independent sets of multivariate 1HR random
variables is itself a set of multivariate THR random variables.

ProOF. The result is a trivial consequence of the factorization of the distribution
function into the two corresponding parts.

(P3). 4 single multivariate THR random variable is THR in the usual sense.

Proor. This is an immediate consequence of condition (i). Condition (ii) is
trivially true for a single random variable.

(P,). Sets of minimums of multivariate IHR random variables are multivariate
IHR.

PrROOF. Suppose that (Y, - Y,) are multivariate IHR. Let X; = min,, ¥;,
i=1,-+-, n, where J;c {l,--+, m}. Let I;={i|jeJ;}, y;= max,y,x;, and
y;j = max,x;,j=1, . m. Then:

P[Xl>x1+t"“,)(n>xn+t|Xl>x1"“,Xvn>xn]
=P[Y1>)’,+f,"', Ym>ym+tlY1>yl9'”’Ym>ym]

is nonincreasing in x, ‘-, x, since y,, ‘-, y,, are nondecreasing in x, -, X,
and Y,, ---, Y, are multivariate IHR. Thus condition (i) holds for X;, -+, X,. In
addition:

PIXy > xp, 0, X, > x| Xy > x,0, X, > %]
=P[Y1 >yl"“’an>y;nlY1>y1,"”9Ym>ym’]

and this is nondecreasing in x,’, -, x,’ because y,’,* -, »,’ are nondecreasing
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in x;,---,x, and RCSI (Y{,---,7Y,). Hence RCSI (X, -, X, and so
X, -+, X, are multivariate IHR.

Property P, generalises an important structural property of the univariate THR
distribution. Together with properties P, and P;, it shows that the multivariate
distributions constructed by taking minimums over an independent basis of
univariate IHR distributions are themselves multivariate IHR, and in particular
that the multivariate exponential distribution defined by Marshall and Olkin [5]
is in the class.

An alternative definition of the multivariate IHR concept is given by (i)*, but
this leads to an undesirable negative dependence:

(1)* F(x1+115x2+t2’”'axn+tn)/F(x1:x2a'”axn)
é F(x1,+t1’ x2’+t2a “'axn,+tn)‘/F(xll, xz's Y, xnl)
for all x;=x,/ =0 and all ;0. Setting ¢, =x, =x3="""=x,=%," =%, =

ce=x,=0, we get F(x;,t,, ", 1)< F(x,0,--,0F0,1,,-,t), and by
repeating the process we get

F(xn Xyttt X,) S l—_[:"=l Fi(xy), for all x;,

where F; is the marginal distribution of X;.

This inequality represents some kind of negative dependence between the random
variables which is undesirable in reliability applications. For example, the concept
of positive quadrant dependence (Lehmann [4]), implies the reverse inequality and
hence with this definition of multivariate ITHR would force the random variables
to be independent.

3. A subclass of bivariate IHR distributions. A restricted class of multivariate
IHR distributions satisfying P, through P, could be generated from an independent
basis with appropriate marginals, see [1]. For example, in the bivariate case, take
X =min(U, W), Y = min (V, W+ a), where U, V, Ware arbitrary independent IHR
random variables and a = 0 is an arbitrary constant. Such a class would preclude
more general types of bivariate IHR distributions which are possible under the
definition in Section 2. Nevertheless, Theorem 3.1 and its corollary show that
bivariate distributions of the above type are of interest.

THEOREM 3.1. If Y = ¢(X), where ¢ is a nondecreasing function which is not
identically zero or infinity, and X has a marginal exponential distribution, then the
pair (X, Y) has a bivariate IHR distribution if and only if: ¢(x) = x+a,a = 0.

PrOOF. Let Y be the inverse function of ¢, which we can regard as implicitly
defined by the probability identity:

P[X > x, ¢(X) > y] = P[X > x, X > ¥(y)]

for all x = 0, y = 0. Since X is an exponential random variable, ¥ may as well be
taken to be a nonnegative function with, necessarily, (0) = 0. Then

F(x,y)=P[X > x, Y> y] = exp[ —Amax(x, ¥(»))],
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where 1 is a positive constant. Thus F(-,-) will satisfy condition (i) if and only if
the condition

(A) max {x+1, y(y+1) } —max {x, ¥(») }
> max {x'+1t, Y(y'+1) }—max {x', y(»") }

is satisfied forallx = x’ =0,y =y 2 0,and ¢ > 0.
Given that condition (A) holds, then:

0)) Y+ S Yy)+t forall y=z0 and t>0.

PrOOF OF (1). Suppose there exists an a =0 and ¢ >0 such that y(a+1t)>
Y(a)+1. Let x' = y(a) and x = Y(a+1)—1. Then x > x' = 0. Let ' = y = a. Then
condition (A) reduces to ¢ = Y(a+1)—(a), and there is a contradiction.

(2) max{x+t, Y(y+0}—max{x,y(y)} =t forall x 20, y=0, and ¢>0.

PROOF OF (2). From (1) y(¢) £ t. Let x' =y’ =0. Then condition (A) reduces to
t < max {x+1, Y(y+1) } —max {x, Yy(y) }. Also from (1), max {x+¢, Y(y+1)} <
max {x+1, Y(p)+1} = max {x, y(») }+¢. Then (2) follows.

It is then clear that condition (2), which can be written as max {(x+t, Y(y+1)} =
max {x+17, y(y)+1}, is equivalent to condition (A). If condition (2) holds, then

3) If Y(y)>0, then Y(y+1)=y(y)+t forall t> 0.

PROOF OF (3). Choose an x such that 0 < x < (). Then condition (2) becomes

max {x+1t, Y(y+1)} = Y(y)+1. Since x+1 < Y(y)+1, then Y(y+1) = Y(y)+t.
It is easy to see that condition (3) is equivalent to condition (2). Then the only
nonnegative functions ¥ with y(0) = 0 that satisfy condition (i) have the form:

y(») =0 if 0<y=aq,
=y—a if a=y;

i.e. correspond to functions: ¢(x)=x+a,a= 0. Condition (ii), RCSI (X, Y)
follows from the monotonicity of ¢.

COROLLARY. If X = min (U, W) and Y = min(V, $(W)), where U, V and W are
independent exponential random variables and ¢ is a nondecreasing function which
is not identically zero or infinity, then the pair (X, Y) has a bivariate THR distribution
if and only if: ¢(x) = x+a,a 2 0.

PROOF. If 4, , A,, A;, are the parameters of U, V, W respectively, then:
F(x,y) = P(X > X, Y > y) = exp [~ (4 x+ A, y + A2 max (x, ()}

Thus the requirement that F(-,-) satisfy condition (i) leads to the inequality (A)
since the terms in 4, and A, cancel. The result follows as in the theorem.

Thus for a bivariate IHR distribution with an exponential marginal distribution,
the presence of a singular part due to positive probability of a functional relation-
ship between X and Y is restricted by the form that the functional relationship may
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take. However, it does not seem that this result carries over for bivariate THR
distributions with non-exponential marginals.

Acknowledgment. 1 wish to thank the referee for several helpful comments, in
particular the definition of RCSI in Section 2 and the proof of Theorem 3.1.
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