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INTEGRAL FUNCTIONALS OF BIRTH AND DEATH PROCESSES
AND RELATED LIMITING DISTRIBUTIONS'

By DoNALD R. MCNEIL
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1. Introduction. While integrals of nonnegative stochastic processes arise
naturally in the theory of inventories and storage (see, for example, Naddor (1966),
Moran (1959)), the investigation of moments and distributions of these quantities
seems to be a recent development. In an inventory system or storage reservoir the
integrated process is of interest because it represents the holding cost associated
with the stock in the system over a particular period of time. For queueing processes,
particularly those involving automobile traffic such as traffic jams and intersection
bottlenecks, the integral of the process up to dissipation s related to the cost of the
flow-stopping incident, and it was in this context that Daley (1969), Gaver (1969)
and Daley and Jacobs (1969) investigated its distribution. The first of these papers
relates to the queue GI/M/1, while M/G/1 is considered in the other two. In
particular, limit theorems as the initial number in the system tends to infinity are
established.

Another model in which the integrated process may be important is the classical
birth and death process. The growth of insect and other biological populations is
often well-described by birth and death processes. Here the integrated process up
to extinction has a physical meaning too—it is simply related to the quantity of
food consumed, or, in the case of an epidemic, to the number of man-hours lost. In
this note we observe and discuss the consequences of the result that the distribution
of an integrated birth and death process (or, for that matter, any integral functional
of the process) is the same as that of the first passage time for another process with
rescaled parameters. We conclude with a discussion of limiting distributions for

some special cases.

2. The first passage time. Consider a birth and death process, X(¢),0 = 7 < oo,
defined on the nonnegative integers with initial state X(0) =i, and transition
probabilities

PrX(t+61) = n+j|X(t) = n] = p, 6t+0(51), j=-1
(1) = 1—(4,+ u,) 6t + 0(dt), j=0
= A, 8t+o(51), j=1

= 0(0t), otherwise,

where 1, 2 0, A, > 0 for n > 0, and yo = 0, u, > 0 for n > 0. If 1, = 0 the process,
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having reached the zero state, remains there, but if 1, > 0 transitions out of the
zero state are possible. A random variable of interest for such a process is the first
passage time, Z;, defined by

)] Z; = inf{t; X(t) = 0}.
Of course Z; may be infinite with non-zero probability. An integral representation

for the distribution of Z; was given by Karlin and McGregor (1957a), and this
may be described as follows. Define

3 P(t) =Pr[X(H) = 0| X(0) = i].
Note that if A, = 0in (1), we have

4 Pr[Z; = x] = P(x).

In any case it is easily shown that the Py(¢) satisfy

%) P/(t) = p; P () — (A + 1) PLO) + A, Pyy 1 (D).

i=0,1,2,---, where P_,(t) = 0. Equations (5) are the backward equations of the
birth and death process, and Karlin and McGregor showed that provided

o Elen)e (i)
equations (5) have a unique solution, and when 1, = 0 this solution is
M : P/(t) = u & e"*Qu2)¢(d2),

where Q,(z) are polynomials satisfying

® = XQ(%) = s 1@ 1(X) = (At 1 + s D@ul(X) + Ay 1@ 1(X),
(Qo(x) =0, Q,(x) = 1) and ¢ is a (unique) measure such that

® My §& Qu()Qm(x)(dx) = J,".

It follows from (4) that Z; has a probability density function which is given by the
right-hand side of equation (7).

While the representation (7) gives immediate insight into the nature of the
process, the measure ¢ is difficult to obtain, in general. Karlin and McGregor
(1958a, 1958b, 1959, 1962) evaluated ¢ for various special cases, in particular when
A, and u, are linear functions of n. In some cases the right-hand side of equation (7)
takes the same form as the result obtained using simple generating function tech-
niques (see, for example, Kendall (1948), Bailey (1954)).

3. An integral functional of the process. For a birth and death process X() with
first passage time Z; define

(10) Wi = [§g{X(t)} dt,
where g is an arbitrary function defined on the positive integers. Put
(11) W(0) = E[e~?"1].
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Let S denote the time which elapses before the first transition. Then if 4 denotes
the event that the first transition is a birth and B the complementary event, we have

W(6) = E[e™*"!| A]Pr[A]+E[e | B] Pr[B],
= E[e™*Wir1*S0O  pr[ 4]+ E[e~0"i-1+5¢01] pr[B].
Using equation (1), this becomes
W) = Wiy 1(0) f& e~ De™ Kt hdsp, ds+ W, 1(0) [¢° e =0 De ~ it uoy, ds,
= A{di+ i+ 0g(D} ™ Wiy 10)+ s {4+ 1+ 0g(i)} ™ Wi 1(6).
Hence
(12) OW(0) = w* Wi 1(0)— (4;* +u,-*)Wi(9)+ii* Wi11(0),

(Wo(0) = 1) where A,* = 1,/g(i), u;* = u;/g(@). But if we take Laplace transforms
in equation (5) we get

) 020) = 15 2o )~ (A + B)ZO) + A Z11 ,(O),
(Zy(0) = 1) where
(14) Z(0) = [§ e~ "P/(t)dt (= E[e”"*1]).

Hence equations (12) are essentially nothing other than the backward equations
for the birth and death process with rescaled parameters 1,* = 1,/g(n) and
w* = p,/g(n), and consequently the distribution of W, is known whenever the
distribution of Z; is known for the process with parameters A,* and y,*.

Note that if g(x) = 1 in equation (10), W, = Z,, while if g(x) = x, W, is just the
area under X(¢) up to the time when the process vanishes for the first time. If the
process is a queue then Z, is the busy period and W, is the total waiting time of all
customers served during a busy period. For the queue M/M/1 (which corresponds
to A, =4, u,=p,n>0) Daley and Jacobs (1969) found the Laplace-Stieltjes
transform of the distribution of W, as the ratio of two Bessel functions but were
unable to invert this transform to obtain the distribution explicitly. The reason for
the difficulty is now apparent, because the problem is equivalent to finding the first
passage time distribution for a birth and death process with parameters A/n and
#/n, n > 0, and for this model the measure ¢ appearing in (7) is yet to be evaluated.

4. Applications. If one is interested in making inferences about a stochastic
process, it often does not matter what statistic is used, as long as its distribution is
known. The above result enables the distribution of an easily computable statistic
to be found for any birth and death process for which the ratio A,/u, has a simple
form, e.g., when 4,/u, is the ratio of two linear functions of n, whereas tests based
on other functionals previously considered (the first passage time, the maximum,
the total number of transitions before first emptiness, etc.) require that both 4, and
U, be simple functions of n. The following example should illustrate this:
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For biological populations confined between two limits, N, and N,, say, it is
natural to consider a stochastic logistic process (see Moran (1964)) in which

(15) An=An(Ny—n),  p, = pun(n—Ny).

It is difficult, however, to find the first passage time (to N,) distribution for this
model, and Prendiville (1949) suggested the modification of (15) to

(16) An=MNy—=n),  p=p(n—Ny),

which, with a change of origin, gives rise to the classic Ehrenfest model for which
the distribution of Z; is known. If one does not wish to alter the assumptions (15),
one can still proceed if attention is directed to W, with g(x) = x rather than Z;. In
this case W is simply related to the quantity of food consumed by the population,
and its distribution is the same as that of Z; where the parameters are given by (16).
Finally, general expressions for the moments of W; in terms of the 4, and p, are
found by using the results of Karlin and McGregor (1957b) for moments of first

passage times. In particular
i—-2

(1) BIW] = ¥ okt Dt Y g+,

i k=0 _]=0‘)'j+1nj k=j+1

whenever (6) is satisfied.

It is of interest to investigate the limiting distributions of W; as i — oo and some
special cases are considered below. Results are obtained for Z; and W; with
g(x) = x. Since most of the results concerning first passage time distributions are
essentially known, derivations are not given.

5. Limiting distributions in special cases. (a) A,= 4, u,=pu, for all n>0.
The process with these parameters corresponds to the queue M/M/1. The
distribution of Z; has (see Bailey (1954)) Laplace-Stieltjes transform Z,(0) =

T A+ p+0—[(A+u+0)2—4u]*})". When g(x) = x, W, is the total wait in a
busy period starting with i customers, and Daley and Jacobs (1969) showed that

W(0) = (#/l)%i-lm (A+p)/0 {2(1/1)%/0}/J(1+”)/0 {2(}41)%/0},

J,(z) being the Bessel function of order x and argument z. In fact (see Gaver
(1969)) the moments are more easily calculated by taking derivatives of (12) at
0 =0 and using generating functions. It is found that provided p < 1, where

p =2,

i i(1+p) i2(1—=p)+i(1+p)
Hzl= iy Vorlad= oy B = =50
] _2i%(1—p)*(14p)+3i%(1— p)(1+6p+ p*) +i(1+ p)(1+28p +p?)
verlW] = 61— p)° |

The asymptotic normality of {Z;—iu~'/(1—p) }/i* follows from the fact that Z;
can be written a sum of independent random variables, each distributed as Z;.
Daley and Jacobs proved that (normalized) W, also has a limiting normal
distribution.
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(b) A, = An, p, = pun. This process is the linear growth model investigated by
Kendall (1948), who derived

Pr[Z,-§x]:{

1—exp[—u(1—p)x] }i
L—pexp[—u(1—p)x]f’

where p = A/u. On the other hand W; has the same distribution as Z; has in
example (a), as observed by Karlin (1968, page 335), and this is (Bailey (1954))

Pr[W, < x]=ip~ ¥ [5e 0, Quptr) dt,
where I,(z) is the modified Bessel function of order »n and argument z. Note that
log i 1—(1/i —pu(1—p)x])’
PrI:Zi—- ogi éx]:{ (1/iyexp[—u p)k]} s exp[— (1 — p)e-r1-77]
w(1—p) 1—(p/i)exp [—pu(1—p)x]
as i— oo. Thus, if p <1, Z;—(logi)/{u(1—p)} has a limiting extreme value

(Gompertz) distribution as i — oo, with location and scale parameters {log(1—p) }/
{u(1—p) } and p(1— p) respectively.
() A, = 4, u, = un. In this case the process corresponds to the queue M/M /[0, or,

alternatively, the immigration-death process. The distribution of Z; was obtained
by Karlin and McGregor (1958a), and is

N

(18) PrlZ,<x]=1-p f e (sl s Ape ™,

n=0 Sn
where s, < 5, <8, < (un < s, < un+p) are the (simple) zeros of
S (AW
n=0 n!(ny~s)’
o, = {AuB'(s,) } ~' and ¢;*(x; a) are polynomials satisfying the recurrence relations
ac*(x;a)+(x—i—a)ef ((x;a)+ic (x;a) =0, (¢ (x;a) =0, ¢o*(x;a) = 1).
To discuss the limiting situation as i — co, write
(19) Zi:Gi+Gi—1+”‘+Gl9

where G; is the first passage time from state j to state j—I. It is clear that the G;
are independent, and for large j,

1 1\?
E[G]~—, Var[G;]~{—} .
61~ varlo~ (1)

It follows that random variables G;— E[G ] do not satisfy the Lindeberg condition

for asymptotic normality (see Feller (1966) page 256), but Z;,— E[Z,] does have a

limiting distribution with zero mean and finite variance as i — oo (Feller page, 259).

This distribution has the same form as that of Z,—u~'logi, and, using equation
(18), this is

B(s) = e~ **

© 1\sn/#
(20) PrlZ,—p 'logi<x]=1-p) a"(,—) c; ¥ (sl Alwe =~
i

n=0 °n
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The limiting distribution is thus obtained by taking the limit as i — co of the
right-hand side of equation (20).

As i — oo the polynomials ¢;*(x; a) have the same asymptotic form as the classical
Charlier polynomials (Erdélyi (1953) page 226) and thus (i) *c,*(x;a) - (—a)™*
asi— oc.

Consequently equation (20) becomes, in the limit as i — oo,

0 2\ Sn/1
lirn,_,o0 PI‘ [Z,'—‘u,_l logi é x] = 1—# Z al(f) Cos(nsn/#)e“Snx’
su\W

n=0

that is, the limiting distribution of Z;— E[Z;] has an exponential tail.
The limiting distribution of W; is much easier to obtain. Writing (as in equation
(19)) Wi=H;+H;_+ -+ H,, it is easily shown that H(0) = E[e~®"/] satisfies

1) (Afj+n+0)H (0) = (A/)H,;+ 1(O)H (0) + i,

so H;(0) ~ p/(u+0) as j — co. Consequently the distribution of (u/i*){ W, — E[W,] }
is asymptotically standardized normal, using Lyapunov’s theorem (Feller, page
278).
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