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0. Summary. A recent theorem of Orey [12] (see also [1], [6], [7], [13]) asserts
that if T is an L, operator induced on a discrete measure space by an irreducible
recurrent aperiodic Markov matrix, then the condition (C) holds: feL,, [f=0
implies that 7"f converges to zero in L. In an attempt to determine when (C) holds
for more general operators, we at first prove the following (Theorem 1.1): Let T
be a positive linear contraction operator on L, ; if T"fand T"" f intersect slightly,
but uniformly in f in the unit sphere of L,, then T"f— T"*'f converges to zero in
norm. (C) follows if T is conservative and ergodic (Corollary 1.3). In Section 2 we
derive from this a simple proof of Orey’s theorem. The main result of the paper is
in Section 3 and could be called a “zero-two’ theorem: Let P(x, A) be a Markov
kernel, and assume that there is a o-finite measure m such that for each 4, m(4) =0
implies P(x, A) = 0 a.e. and m(4) > 0 implies Y ;> o P™(x, A) = oo a.e. Then the
total variation of the measure P®(x, -)—P®*V(x, -) is either a.e. 2 for all n or it
converges a.e. to 0 as # — oo. In Section 4 it is shown that a version of the zero-two
theorem essentially contains the Jamison-Orey generalization of Orey’s theorem to
Harris processes.

Section 1 and Section 2 of this paper do not assume any knowledge of either
operator ergodic theory or probability. Some known results in ergodic theory are
applied in Section 3, but the proof of the main theorem does not depend on them.

1. Operator theorems. Let (X, o/, m) be a measure space, and let L, be the class
of integrable functions from X to the real line. L, * is the class of nonnegative
elements of L, ; an operator T on L, is called positive iff TL,* = L,*. The relations
below are frequently understood to hold modulo sets of measure zero. The L,
norm of a function or an operator is denoted by || ||. T'is a contraction iff || T|| < 1.

If T is a contraction, || 7"(f— Tf)|| is a non-increasing sequence of numbers con-
verging to a limit. We investigate when this limit is zero.

THEOREM. 1.1. Let T be a positive linear operator on Ly with ||T|| < 1. Assume
that for every fe L,* with || f]| = 1,

(L.1) lim,,||T"f—T"“f|| <2(1—¢)
where ¢ is a positive constant independent of f. Then for each fe L,

(12) lim, || T — T"* 'f|| = 0.
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Proor. It suffices to prove (1.2) for feL,* with ||f|| = 1. Given such an f,
choose a fixed N so large that ||TVf— T"*'f|| < 2(1—e). Let & = inf(T"f, TV 'f).
Then for some g, g'eL,*,

(1.3) T = h+g,
(1.4) TN Yf=h+g,
(1.5) llg+9'|| = || T+ TV*f—2h|| = || T - T ||

Applying T to (1.3) and adding the outcome to (1.4) gives
2T¥*Yf = h+ Th+Tg+g'.
Hence, on settingn, = N+ 1, hy = h/2, g; = (Tg+g')/2, we have
(1.6) T"f=h{+Th, +g,
and ||gy|| < 1 —esince
2||g:ll = lITg+4| < llgll+llg'll = llg+'ll = |1 T"F=T"*" 1.
Now apply the same argument to g,/||g, ||, obtaining
(1.7) T"g, = hy+Th, +3,
with ||g,|| < (1—¢)*. On letting n, = n, +17,, one has from (1.6) and (1.7):
T"f=hy+Thy+9,
with 4, = T"h,+h; and ||g,|| < (1—¢)?. Continuing in this way, one obtains a
sequence of integers n, < n, < - - such that for every positive integer k,
T = h+ Th+ g

and ||g,|| < (1—#)*. Therefore, for N large, T"f may be approximated in norm by
functions of the form &+ 7Th, and || f|| = 1 implies that we can have ||A|| < 4 or
||7h|| < 4. We may and do assume ||h|| < §: if ||Th|| < 4, replace 4 by Th and N by
N+1. Again, for N’ large, T¥'h may be approximated by functions of the form
K +Th' with ||i'|| < 4; hence, for N” large (N = N+ N’), TV f may be approxi-
mated by functions of the form (I+ T)*h" with ||#”|| £ 4, etc. Continuing in this
way, we obtain that for N large T"f may be approximated by functions of the form
(I+T)"h, where n is arbitrary, h is nonnegative and ||A|| < $"; hence || T"f— T"*'f]|
may be approximated by (I+ T)"(I— T)h. To prove the theorem, it now suffices to
show that

(1.8) lim, Y- [()— G| 27" = 0.

It suffices to consider # even. Since () is an increasing (decreasing) function of k
for k < 1n (k > 4n), the sum in (1.8) may be written as a difference of sums Z,?i 1
and ZL n+ 1> With the absolute value signs removed in each sum and cancellations
occurring. (1.8) is now seen to follow from the convergence of (J,,)27" to zero, which
is an immediate consequence of Stirling’s formula.

We now require a theorem about uniqueness of invariant functions. We state the
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result with greater generality than needed; the main particular cases of Theorem 1.2
are well known.

If L is a class of real-valued functions, we call an operator ¥V on L positive
iff VL*<L* where L™ = {f in L with f=0}. We write V,, for the operator
I+V+V3i4 -,

THEOREM 1.2. Let X be an abstract set, and let L be a set of real-valued functions
on X, which is a linear space and a lattice under pointwise operations. Assume that
V is a positive linear operator on L and

(1.9) foreach f#0 in L', Vof=0 on X.

Let f, # 0 andf, in L* be such that Vf, = f, and Vf, = f,. Then for some constant c,
of1 =fa )

ProoF. Let g be such that Vg = g. Write g* for sup(g, 0). Then Vg* = Vg =
g=g" on 4={g>0} and Vg* 2 g* =0 on A°; thus, Vg* = g*. Now set
g=fi—frand f=Vg* —g*. f+Vf+ - +V"7f=V'g" —g" S V9T SV, =
f1; hence, by (1.9), f= 0 and Vg* = g*. Therefore, 4 = {V 9" = 0}, and, again
by (1.9), 4 = X or A = & (empty set). Replace f; by cf; where ¢ is a constant; we
showed that for each ¢, ¢f; > f, or ¢f; < f5. It easily follows that there exists cq
with ¢o f1 = f>.

REMARK. In ergodic theory the assumption (1.9) is usually expressed by calling
V ““conservative and ergodic”.

Theorem 1.2 will be applied in the case when L is L, of a o-finite measure space
(X, &/, m) and V' is T*, the adjoint of a positive linear operator T on L,. We note
that: (i) (1.9) holds with L = L, and ¥V =T, if and only if: (ii) (1.9) holds with
L=L,, V=T* We only show that (i) implies (ii); the converse implication is
proved similarly. Assume (i). If 7* f < oo on a set of positive measure, then there
exists a set 4 with 0 < m(4) < oo and a function gin L, * such thaton 4, T* f < g.
By the duality relation, one has | f* T,,1, < j g, which by (i) implies f = 0.

COROLLARY 1.3. Assume that T is a positive linear operator on L, and ||T|| <1
Assume that (1.9) holds with L = L, and V = T (equivalently: with L = L, and
V = T*). If for every fe L,* with || f|| = 1 (1.1) holds with an & > O independent of f,
then (C) holds: for every fe Ly with | f = 0, one has

(1.10) lim, || T"f|| = 0.

PROOF. Let Ly = {f: feL,, [ f=0}. To prove the corollary, it suffices to show
that (I— T)L, is dense in L,, and then to apply Theorem 1.1. A linear functional ¢
on L, may be extended to L,; hence each § corresponds to a bounded function
hs by the relation: 5(f) = [ fhs, € Lo. Assume that & vanishes on (/—T)L,; then
T*h; = hs. On the other hand, applying (1.9) with L= L, V =T%*, f=1-T*I,
we obtain: T*1 = 1. Therefore, by Theorem 1.2, h; is a constant, and hence ¢
vanishes on L,. It follows (Hahn-Banach) that (I—T)L, is dense in L,. (This
argument is standard.)
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2. Application to Markovian matrices. Let (X, &/, m) be the space of non-
negative integers with counting measure. A Markovian matrix (p;;) acting on the
right (left) is an L,(L,,) operator denoted by T(T*), and T(T*)is positive, linear, of
norm one. If f = 1, then (T7f); = p{ and (T*"f); = p{p. We assume (1.9) for L,
and T (equivalently, for L,, and T*); i.e., we assume that )., p{} = co for all i, j;
indeed, it suffices to consider functions f of the form f = 1. In the terminology of
Markov chains, (1.9) is the assumption that the matrix (p;;) is irreducible and
recurrent (= persistent). Such a matrix is called aperiodic iff there exist integers
ios jo» Mo With & = inf(p{"%), p{xer ) > 0. Since linear combinations of functions of
the form 1;, — 1, are dense in Lo, Orey’s theorem may be stated as follows.

THEOREM 2.1. Let (p;;) be an irreducible recurrent aperiodic matrix. Then for any
integers i, k,

@1 lim, Y ; |p{P — pi| = 0.

ProOOF. The theorem will follow from Corollary 1.3 if we show that for some
¢ > 0, (1.1) holds for all f of the form /= 1;,i =0, 1,---. Set

hy = lim, ¥, | — p+ Y| = lim, || T"1 gy — T" 43|

Note that h;, < 2(1—&,) if &, = 36 because T is a contraction of L, ; therefore our

io =

proof will be completed if we show that A; is independent of i. Let & = (h;)iZo; then
@2 (T*h) = Xipahy = 1im, T, X pa [ = 255"
2 lim, Y, |pi* V= 57| = e

Thus T*h = h, and applying (1.9) with L = L ,, V = T*, f = T*h—h, we obtain:
T*h = h. Since T*1 = 1, Theorem 1.2 implies that 4 is a constant.

3. Application to Markov kernels. From now on we assume that the o-field o/
is separable, i.e. generated by a countable collection of sets and {x}es/ for each
x€X. These assumptions are satisfied in nearly all cases of interest. A function of
two variables P(x, A), xeX, Aes/ is called a Markov kernel iff the following
conditions are satisfied : For each fixed x€ X, P(x, +) is a probability measure on </
for each fixed 4esf, P(-, A) is a measurable function of x. A Markov kernel is
called m-measurable (in terminology of E. Hopf [3]) iff m(4) = 0 implies P(x, A) =0
a.e. on X; the exceptional null set of x’s for which P(x, 4) # 0 depends on 4. An
m-measurable Markov kernel acting on the right (left) defines a positive linear
contraction operator on L,(L,), denoted by 7(T*). Identifying under the Radon-
Nikodym isomorphism L, with the space of m-continuous finite signed measures ¢
on &/, we write:

(3.1 To(A) = [ p(dx)P(x, A) peLy;
(3.2) T*h(x) = | P(x, dy)h(y) heL,.
We set P (x, A) = P(x, A) and

3.3) PO+ D(x, 4) = jP(x, dy)P"™(y, A).



L, CONVERGENCE TO ZERO 1635

Then P" acting on the right (left) corresponds to T"(T*") by relations analogous to
(3.1) and (3.2). An operator T on L, and the kernel P which induces it are called
conservative iff foreach fe L, T, f=0or oo a.e. on X. A set A4 is called (T—) closed
iff feL,™, support fc Aesf implies support Tf=A. T and P are called ergodic
iff the only closed sets are ¢§ and X. The assumption that T is both conservative
and ergodic is equivalent with the assumption that T* is (see Section 1); hence it
. may be stated as follows: For each non-null set AeZ, T*,1, =Y, P™(x, A) = o0
a.e. on X, the exceptional null set depending on 4.

Denote the set of all finite signed measures on <7 by ®. Remark that (3.1) defines
the action of 7 on @, not only on L;. In particular, if d, is a probability measure
concentrated at a point x, then T"5, = P™(x, -). Total variation of measures in ®
is denoted by || ||; for measures in L, the total variation.coincides of course with
the L; norm. It is easy to see that T is a positive linear contraction operator on ®

endowed with thenorm || ||.

THEOREM 3.1. (zero-two theorem). Let P be an m-measurable conservative ergodic
Markov kernel, and let for xe X
(3.4) h(x) = lim, ||P™(x, -) - P+ V(x, -)||.

Either h(x) =0 a.e. on X or h(x) =2 a.e. on X. In the first case the condition (C)
holds: For every measure @ € L, with ¢(X) = 0 one has

(3.5) lim, || T"|| = 0.

Proor. We assume that the o-field & is generated by a countable collection of
sets, say Ay, A,, . For n fixed let &,(+) be the signed measure P™(x, -)—
P"*(x, -) and let &,* be the restriction of &, to the o-field o7, generated by the
sets Ay, Ay, o+, Ag; k=1,2,---. By a version of the martingale convergence

theorem ([11], page 144,1V.5.3)
ek N dé,
d|6,| “d|é,]

a.e. (|6,]) and in L,(|&,|), hence the sequence of measurable functions of x

| de x
6.4 = j F

dé,
d|é|
which is therefore measurable. We also sketch an alternate argument, making no
appeal to the martingale theorem. Let H* and H be the Hahn sets of measures

& and &,. For k large H and H° may be approximated in the |#,|-metric of sym-
metric differences by &/, measurable sets, say B, and B,°. The relation

6. (B =&, (By) £ 6. (HY— &, (H,") < 6.(H)~6,(H°)

d|é,]
converges as k — oo to

dle] =|l&d],
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now implies that
[16.4] = 8.4H) ~ 8 HS) =1 8.(H) 8. (H) = |6

The measurability of ||#,|| is needed in the following lemma.

LeMMA 3.2. Let for x€ X and eachn
(3.6) hy(x) = ||P™(x, ) - P"* D(x, -)||.
Then h(x) = lim,|h,(x) is constant a.e. on X.

ProoF oF THE LEMMA. Foreach xe X, Ae«/, and each n let
(3.7 7a(%, A) = PO(x, A)— P D(x, A);
then (3.3) implies )
(3.8) JP(x, dy)yu(y, A) = Vs 1(x, A).

Let H,(x) be the Hahn set of the measure y,(x, +); we have for every ye X, every
Aed

(39) hn(y) = Yn(y’ Hn(y) ) - 'Yn(y’ an(y) ) 2 Yn(y’ A) - ‘Yn(y, Ac)
Applying this, (3.2) and (3.8), we obtain
T*hn(x) g yn+1(x9 A)_‘Yn-i- l(x’ Ac) AGM’

hence on substituting 4 = H,,,(x) we conclude that T*h, = h,, . Therefore
T*h = T*limlh, = lim T*h, = limh,, , = h. (The monotone continuity property
of the operator T* is established e.g. in [11].) T*h = h implies that T*h =h
because the operator T(T*) is conservative and ergodic and (1.9) may be applied
to the function 7*h—h. From Theorem 1.2 we now conclude that 4 is a constant,

which proves the lemma.
To prove the theorem we may and do assume that the a.e. constant function 4

is less than 2(1 —¢) on a set X’ = X— N,, where m(N,) = 0 and ¢ > 0 is a constant.
Let pe®, ||p|| =1 and let R, be the Hahn set of the measure [7,(x, - )p(dx). We

have
1T = T"* 0| = ||f7a(x, )e(dx)|
= [ [7a(%, R = 7a(%, R,)]p(dx)
(3.10) < [ [yalx, Hy(%)) = a(x, H,5(x))]p(dx)
= [||7a(x)|| ¢(dx) | | h(x)¢p(dx)
< 2(1—e)+ iy, h(x)p(dx).

If peL,, then the last integrallis zero and the assumption (1.1) of Corollary 1.3

holds. We conclude that the condition (C) holds.
To prove that A(x) is zero a.e., a somewhat more involved argument is needed.

Let N, = {x: P™(x, Ny) > 0 for some n} and, assuming N, defined, let Ny, =
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{x: P™(x, N) >0 for some n}; k=1,2,-+-. Let N= NygUN,U - and set X' =
X—N. Define a “sub-Markov kernel” P’(x, A) on (X x &) by setting P'(x, A) =
P(x, AnX") for xe X'; P'(x, A) =0 for xe N. P’ has the properties of a Markov
kernel except that P’(x, X) is less or equal, rather than equal, to one. The m-
measurability of P implies that m(N) = 0, and it is easy to see that P™(x +) =
P'™(x, +), hence h'(x) =4¢¢ lim, ||P'®(x, -)—P'®*(x, -)|| = h(x) for xe X", while
for xe N, h'(x) = 0. Let @ be the class of measures in ® with support in X', and
define an operator T’ on @ by T'¢(4) = | P'(x, A)p(dx), pe®'. Theorem 1.1
together with its proof remains valid if L,, T are replaced by @', T’, provided
that the infimum of two measures 6, = at a set 4 is defined to be n(AnH)+
0(AnH°), where H is the positive Hahn set of the measure § —n. We conclude
that |7 —T'"*Ygp|| < 2(1—¢) for pe®’; hence by .the analogue of Theorem
1.1 we obtain that lim,||T"¢—T'"*Y¢|| =0 for ¢e®’, and in particular
lim, ||778,— T+ V6,|| = K'(x) = h(x) = 0 for xeX’. This completes the proof
of the theorem.

In keeping with the “ergodic”’ approach of the present paper, the assumption
that all powers of T are ergodic replaces below the assumption of aperiodicity.
We thus avoid the discussion of the existence of a period (for which see e.g. [9]),
but the two treatments are essentially equivalent.

PRrROPOSITION 3.3. Let T be a positive linear conservative contraction on Ly. If (C)
holds, then every power of T is ergodic.

Proor. The proposition follows easily from results about positive contractions
first proved by E. Hopf ([3], see also [11], Chapter V; it does not matter that in the
present paper we allow m to be g-finite rather than finite). The relation

Tof = (To(f+Tf+- -+ T'f) feL”

and the Hopf decomposition theorem applied to T* ([11], page 196) imply that T*
is conservative for each k. For a fixed integer k, set S = T*; then S preserves the
integral of positive functions, and S-closed (equivalently, S*-invariant) sets form
a o-field ([11], page 196). If S is not ergodic, then there exists a non-trivial set
Aegf such that both 4 and A4 are S-closed. Let ¢ in L, be such that support
¢* <A, support ¢~ cA°, p(4) =p(4°) =1. Then ||S"¢|| =2 for all n, which
contradicts (C).

There exist numerous examples of point-transformations to show that the
ergodicity of every power of a conservative operator T does not imply the condition
(C). However, the ergodicity of every T* renders more striking the dichotomy
0-2 in Theorem 3.1. We have indeed the following version of Theorem 3.1.

THEOREM 3.4. Let P be an m-measurable conservative Markov kernel, and assume
that every power of P is ergodic. Then either the condition (0) or the condition (2)
holds:

(0) Foreverykanda.e.xeX

31D lim, |[P®(x, -) = P"*9Gx, || = 0;
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(2) for everyn,kanda.e. xe X
(3.12) |[P™(x, )= P"*P(x, +)|| = 2.
Under the alternative (0) the condition (C) holds.

Proor. Apply Theorem 3.1 to S = T*, and apply monotonicity of the sequence
h,.

It may be worthwhile to give a probabilistic interpretation of the dichotomy 0-2
in the above theorem. Let X, X, * -+ be a Markov process with stationary transi-
tion probabilities P(x, 4) on the state space (X, o). If the alternative (2) holds,
then for a.e. xe X there exists a decomposition of the state space X into countably
many disjoint sets 4y(x), 4,(x), - -+, such that X, = x implies that with probability
one each X, belongs to exactly one of the sets 4,(x), say 4, (x), and n # n’ implies
ky # k. )

The process (X,) is time-determining in the following sense: knowing the starting
state, i.e., the value of X, and the state after a time n, i.e., the value of X,,, we can
determine the elapsed time » with probability one. The probabilistic meaning of the
alternative (0) is, in a sense, opposite. Assume again that we know the value of X,
and the value of X,,, and n is unknown but equal to one of the numbers: N, N+1,
“++, N+k;k fixed. Then for N large the probabilities of events {n = N}, {n = N+1},
.-+, {n = N+k} are close to each other. Thus for N large the elapsed time cannot
be determined.

Harris [2] introduced the following recurrence condition for a Markov process:
For each xe X, each event 4 of positive measure, the probability is one that the
process starting at x will visit 4 infinitely often. Notice that this condition is clearly
incompatible with alternative (2). Indeed, assume that (2) holds and the Harris
ccndition is satisfied. For each x the set |J, 4x(x) is of positive measure since its
complement is never visited by the process; hence for some k the set 4,(x) is of
positive measure and is visited infinitely many times by the process, which is a
contradiction. Thus the alternative (0) holds for an aperiodic Harris process. The
converse is not true, as is shown by the following simple example due to the referee
(the authors knew of a more complicated one). Let X be the unit circle and suppose
that a particle at x remains at x with probability £ and goes to x+« (« irrational)
with probability 4. Then the process is not time-determining, hence (0) must hold,
but the process is not Harris because the complement of the (countable) orbit of x
will never be entered.

4. The essential Harris condition. This condition may be stated as follows (see
[4], [8], and especially [5], condition (C,)):

(H) The Markov kernel P(x, A) is m-measurable, conservative and ergodic.
Furthermore, for each m-null set N there exists a point x,€ X— N and an integer
ny > 0 such that the measure P™(x,, -)is not singular with respect to m.

The following theorem is essentially due to Jamison and Orey [6].

THEOREM 4.1. The condition (H) and ergodicity of every power of P imply the
condition (C).
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ProOF. Assume that for a kernel P(x, 4), P* is ergodic for all k > 0, (H) holds
and (C) fails. Then the alternative (2) in Theorem 3.4 holds, and there is an m-null
set N such that for xe X— N the measures T"5,, n =0, 1, - -+ have mutually dis-
joint supports. Let x, and n, be like in (H), let # be the non-vanishing m-continuous
component of the measure P"(x,, -) = T™5, , and set p = dn/dm. Since T is
conservative and ergodic, T, p = o0 a.e. on X, and there exists an integer k > 0
such that the supports of p and T*p intersect. This is a contradiction, because these
supports are contained in the disjoint supports of 75, and T"**§,.

In Theorem 4.1 the condition (C) may be strengthened to (C): ||T"¢|| - 0 for
¢ e® with ¢(X) = 0. It suffices to show that under (H) the m-singular part of T"p
is small in norm for large n (apply e.g. Theorem 2 of [10])?, and then to apply
Theorem 4.1 to T"¢ instead of ¢. Finally, in Theorem 4.1 the assumption that the
o-field & is separable may be removed by consideration of ‘“admissible” o-fields
introduced by Doob (see [6]), in view of the fact that the o-field generated by T,
n=1,2,--- ffixed, is separable.
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