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Let {X,, #,,n=0,1,2,---} be a martingale with X, =0 as., X,=Y7-, Y,
n =1, and &, the o-field generated by X,, X, -+, X,,. Write

= E(Ynz | ‘q’-n— 1)’ sn2 = Z?=l Eal;29

and suppose that there is a constant 8, with 0 < & < 1, such that E|Y,|>**?* < oo,
n=1,2,---. It is the object of this paper to establish the following theorem on
departure from normality.

THEOREM. There exist finite constants K,, K, depending only on é, such that
sup, [P(X, < 5, X) — ()|
1) <K {s, 2200 E|Y|** P +E |Xi-10)— s,2|LHoyyLe+2D
< Ky{s," 2 (N0 E|Y PP+ E|(Xh- 1 YY) —s, 2| FO)FC*29,

where
O(x) = 2n) " * e du.
Thus, if
©)) lim,.,s, 2" 2y E|Y|**? =0, and
@ lim, - o E|(5, 72 Thes ¥2)—1]+2 =0
or more generally, (2) and
4 lim,,_,wE|(s,,'22';=la,2)—1|1+" =0
then lim,_, , P(X, < s,x) = ®(x), and a bound on the rate of convergence is given by
M.

The interesting feature of this result is the bound on departure from normality.
More general central limit results for martingales are known, under conditions
related to (2), (3) and (4) (see for example Brown [1]), but rates of convergence are
not available.

We note that if Y,, Y,, - are independent, or more generally if 6,2, 0%,
are constants a.s., then 5,”2)7_,0,> =1 as., (4) is trivially true, and the first
bound in (1) assumes a simplified form, since its second term vanishes. The utility
of the second bound in (1) is that it does not depend on the conditioning by the
sequence of o-fields {#,}.

The proof of the theorem is based on a martingale form of the Skorokhod
representation theorem which we state as a lemma in the interests of clarity.
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LEMMA. (Strassen [3], Theorem 4.3) Let Z,, Z,, - - - be random variables such that
for all n, EZ2|Z,-,, ", Z,) is defined and E(Z,|Z,_,, "+, Z;) =0 a.s. Then,
there is a Brownian motion W together with a sequence of nonnegative random
variables Ty, T,, - -+ such that

N Z=W(Qi-1 T) as.

for all n. Moreover, if 4, is the o-field generated by Z,, Z,, -+, Z, and W(t) for
0=<t=<Y}_, T, then T, is 4,-measurable, E(T, | 9,-1) is defined and

E(Tn I gn—l) = E(Zn2 |gn—1) = E(Zn2 | Zn—l’ ) Zl) a.s.
Ik is a real number > 1 and E(|Z,|*| Z,—,, -+, Z,) is defined, then E(T,*|%,_,) is
also defined and
E(T}|%,- 1) £ LLE(Z,|** | %n-1)
= L E(|Z,|*|Z,-1, ", Z)) as,
where L, are constants which depend only on k.
Applying the lemma to the sequence of random variables s,”* Yy, * -, s, 1Y,

we note that there exists a Brownian motion W and nonnegative random variables
T,., -, T,, such that

©)] S X, =WQI, T,) as.

for all n. Moreover, if 4,; is the o-field generated by Y,,---, Y; and W(t) for

0<t<Yi T, 15iZn,then T, is ¥,-measurable and

(6) - K(T, | Gpi-1) = s E(Y? | Gni-1)
=5, 20 as.
Now define
Q) Zyy= Z;'= 1 Ti—1,

noting that EZ,, = 0, from (6). Then, from (5) and (7),
P(X, < s,x) = P(W(1+Z,,) < x),
so that
®) |P(X, < 5,%) = ®(x)| = |P(W(1+Z,,) < )~ P(W(D) < x)].
Next, let {¢,} be a sequence with 0 < ¢, < 1 and lim,_,, & = 0. We have
P(W(1+Z,,) < x)
® = PW(1+Z,,) < %3 |Zyw| S &)+ PW(L+Z,) < %3 |2, > &)
< P(infyy <., W +1) < x;|Z,,| < &)+ P(|Z,,| > &)
< P(infy <., W1 +1) £ %)+ P(|Z,,| > &),
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and similarly,

P(W(1+Z,,) > x) £ P(supj <., W(1+1) > X)+ P(|Z,,| > &,),
or equivalently
(10) P(W(1+Z,) £ x) 2 P(supyy 5o, W(L+1) £ X) = P(|Z,] > £0).

Now,
P(inf}, <., W(1 +1) = x)

= P(infy, <, [W(1+1)— W(1—g)]+ W(l—¢,) < x)
(11 = P(W(1—gy)+infogig2., [W(A+D)=W(D] £ %)
= |2 P(W(1—¢,) < x—y)dP(info<,<2., W(t) £ y)
= (ne,) *[5 O((x+ y)(1—e,) "} exp(—y*/4e,) dy
=1 e O((x+e, z)(1—e,) e T dz,
and also, using a similar procedure,
(12)  P(supy,, W(L+1) £ x) = 17 [§ D((x—&,t2)(1—g,) " H) e */* dz.
But,
(13)  |@((xc+eiz)(1—e) H—O(x(1—2) H] < @m)* [2|e,*(1 —e)7H,
so that, using (13) in (11) and (12), we obtain
74 3 [O(x(1—e,) " —(2m) ze}(1—,) *]e 7 dz
< P(supy <., W(1+1) £ x) < P(infy <, W(1+1) S x)
< a7 [P [O(x(1—g,) ) +(2n) tze, (1 —¢,) "F] e dz,
which yields, for suitably large n,
P(W(1—¢,) < x)—¢;}
(14) S P(supy <., W1 +1) £ x) £ P(inf, <., W1 +1) S x)
S P(W(l—g) S x)+e,t
Combining (9) and (10). with (14) then gives
(1) |POF(1+2,) S )= P(W(1—¢,) < %)| < & + P(Zun| > 2).
Also, from a Taylor series expansion for ¢, < 4, and trivially for ¢, = 4, we have
(16) |[P(W(1—¢,) < x)—P(W(1) £ x) £ 2,
Consequently, (15) and (16) imply that, for n sufficiently large,
(17) |POW(1+Z,,) < x)— P(W(1) S %)| S 26,2 +P(|Z,| > &)

<2,}+e¢, ' °E|Z,,|'"?
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by Markov’s inequality. The sequence {e,} is then chosen to provide the best
possible order in (17). Take &, = (E|Z,,|' *%)*/**29, so that

(18) |P(W(1+Z,,) £ x)—P(W(1) £ x)| < 3(E|Z,|' **)/C+2?,
and the problem reduces to that of producing a bound on E|Z,,|' *°.
Write Z,, = A,,+ B,+C,, where
A= Z;=1 (Tnj_sn_zajz)’ 1=isn,
Bn=sn_zz;'=l(ai2—Yi2)’ Cn=sn_22?=1 Y2 -1,
and note that {4,;, %,, | £i<n} and {s,>B,, #,,n 21} are both martingale
sequences. Therefore, by Burkholder’s martingale extension of the Marcinkiewicz-
Zygmund inequality (Theorem 9 of [2]), there exists a finite universal constant
M, 5 such that
E |Ann| < Miss E(Z?: 1 (D=5, 20;'2)2)%(1 9
(19 §M1+6EZ?=1|T;u'—sn_26i2|1+69 since }(1+0) =1,
SM 28 Y0 (ET o+, 2" Eg* %)
= M1+6265n_2_2527=1 (Li+sE |YiI2+25+EGi2+2a)
using the lemma in the last step. Similarly,
(20) E|B,,|l+" < M1+6255n—2-252?=I(Eo.i2+2a+E | Y,~|2+2"),
so that an application of the inequality
Eai“z" — E[E(Y,.z | 9—'._1)]1“ < E[E(|Y,.|2+2" ‘ 97.‘—1)] — EIYJ“”
to (19) and (20) gives
1) ElAm'|1+a < Gasn—z-zoz}.:l ElYi|2+2o and
(22) E|B,,|1+"§ GaS,._Z_Z"ZLlEi}H“n
for all n, where G; is a finite constant depending only on . Consequently, applying
the inequality (3 3|a;|)' *® < 2°Y ?|a;|' *%, we have
E|Z,,|'*? S E|Ap+(B,+Cp['*?
(23) < 2XE|Am| *°+E|B,+C,[' )
é zé[Gé sn—2—26 Z:'= L E | Yil'2+26
+E |(sn_22'i'=1 o) — lllﬂ],
from (21), and the first part of (1) follows from (8), (18) and (23). To obtain the
second part of (1), note that
E|s, "2 ¥te109)—1]"*? = E|B,+C,[!*?
(24) < 2"(E|B,,|1+"+EIC,,|H")
é 26[66 sn—2—26 Z:"=l E ‘ Yi|2+25
+E (5,72 Y-, Y -1,
from (22), so that the required result follows from (24) and the first part of (1).
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REMARK. It is evident from the proof of the theorem that a sufficient condition
for lim,, ,, P(X, < s,x) = ®(x) for all x, is the condition Z,, —,0 as n — o0, i.e.

z?=17;'l—’pl as n— o,
which in turn is equivalent to the mean convergence
limn—mo E I(z'r'= 1 T;lz)_ 1| = 0’

since Z,, = —1 a.s. and EZ,, = 0. These conditions, though not explicitly in terms
of the martingale differences {Y,}, are in a form much simpler than other known
sufficient conditions for the central limit theorem for martingales (cf. [1]).
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