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ESTABLISHING THE POSITIVE DEFINITENESS
OF THE SAMPLE COVARIANCE MATRIX

BY RICHARD L. DYKSTRA

University of Missouri
When dealing with a nonsingular multivariate normal distribution, one makes
repeated use of the fact that the sample covariance matrix is positive definite with
probability one if the sample size N is larger than the dimension of the random
vectors. A direct proof of this fact which does not depend upon other results is
unknown to me; and I would here like to suggest such a proof.

THEOREM. Suppose X, -+, Xy is-a random sample from a p-variate normal
distribution whose covariance matrix Y P*? is of full rank. Then the sample covariance
matrix A =Y, (X;—X)(X;—X)' is positive definite with probability one if and only
if N> p. '

ProOF. By a suitable linear transformation, we may represent A?*? as
AP*P = BB’ where BP*N~1 = (Z,, -+, Zy_,) and the Z; are mutually independent
N(0, Y'7*?) variables. By [1] (Theorem 7, page 399) it will suffice to show B?*¥~!
has rank p with probability one if and only if N > p. It is clear that adding more
columns cannot diminish the rank of B. Equally clear is the fact that rank B < p if
N £ p. Thus it will suffice to show that B has rank p with probability one when
N=p+1.

For any set {a,, -, a,_,} of vectors in R?, let S{a;;i=1,---,p—1} be the
subspace spanned by a,,--,a,_,. Note that P(Z,eS{a;;i=1,---,p—1})=0
for any given set of p-dimensional vectors a,, **+,a,_, by the fact that ) ?*? is
nonsingular. Let F denote the joint distribution function of Z,, - -+, Z,.

Now,

P (rank B < p)
= P[Z,, - ,Z, are linearly dependent]
= 25’:1 P[Z,eS{Z,," ", Zi_,Z;\y, - ’Zp}]
=p-P[Z,eS{Z,,--,Z,}]
= p E(P[Z,€5{Zs, . Z,}| Zy,+*, Z,)
=p froo-0 P[Z,€S{2y," ", 2,} | Zy = 25, " ,2, = 2,] dF(2,," )
=p [row-v P(Z;€S{z,, " ,2,})dF
=P [roco-0dF |
=0.
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It can be shown that questions of measurability present no problem.
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initial proof of this theorem.
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