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ON THE CONSTRUCTION OF CERTAIN TRANSITION FUNCTIONS!

By CHARLES W. LAMB
Stanford University

0. Summary. We consider a probabilistic method for constructing certain
transition functions which have a given conservative matrix as their initial deriva-
tive matrix. The technique originated in a conjecture of Reuter (see [9]). Kingman
(see [5]) has considered similar problems but no proof of the original conjecture
has appeared. The methods used are intended to confirm a remark made by
Chung (see [1] page 158) to the effect that it should be possible to view sticky
(regular) boundary points as a suitable limiting case of non-sticky (non-regular)
boundary points. The probabilistic construction in Reuter’s conjecture can be used
to motivate some general analytical constructions of transition functions. These
constructions and the connection with modern boundary theory are discussed in
the last two sections.

1. Preliminaries. Let 7 be a denumerable set of indices. A transition function p
is a nonnegative function on [0, c0) X I x I such that

(L.1) it i, )=,
Y (s, i, K)p(t, k, j) = p(s+1, i, j),
lim, o p(t, i, j) = p(0, i, j) = d;;.

We shall write p(¢, i, I) for the sum in (1.1). The function p will be called a stochastic
transition function if p(¢,4, ) = 1 for ie I and ¢t = 0, and will be called strictly
substochastic otherwise. The reader is referred to [2] for the basic properties of
transition functions.

If p is a transition function, then f'is a p-entrance law if fis a nonnegative function
on (0, 00) x I such that

VS (s, K)p(t, k, ) =f(s+1, j).
We shall write (7, I) for ) ; f(,/). A p-entrance law f is said to be bounded if
6 F(s, I)ds < oo for every t > 0 and is said to be normalized if
lim,,, f(, 1) = 1.

If fis a normalized p-entrance law and 7 is a strictly positive (possibly infinite)
random variable, then a family of random variables {x(z), 0 < ¢t < t} is called a
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continuous parameter, open Markov chain with state space 7, transition function p,
absolute distribution function fand lifetime 7 if

1.2) P{x(t,) =iy, =, x(,) =iy t, <7}
=-f(t1’ il)p(tZ—tl’ il’ 12) ’ .p(tn_tn—la in—la ln)

for iy, --,i,eland 0 < t; < --- < t,. If p is stochastic, then (since f'is assumed
normalized) T = oo almost everywhere.

If p is a transition function, then g is a p-exit law if g is a nonnegative function
on (0, co0) X I such that ‘

Yo p(s, i, k)g(t, k) = g(s+1, i).

A p-exit law is said to bounded if sup; _f{) g(s, i) ds < oo for every ¢t > 0. For every
transition function p, there is a unique bounded p-exit law g such that

(1.3) 59(s, i)ds =1—p(t, i, I)

(see [6] page 360). The reader is referred to [6] and [10] for a complete discussion of
entrance and exit laws.

We shall be dealing with the Laplace transforms of transition functions, entrance
laws and exit laws in what follows. For simplicity of notation, 4 and u are reserved
for the (strictly positive) arguments of transformed functions. For example,
(A, i,7), p(A, i, D), f (4, ), f (4, I) and g(2, i) will represent the Laplace transforms
(evaluated at A) of the functions p(-, i, j), p(-, i, 1), f(-,j), f(-, 1) and g(-,i).
Note that, if f and g are bounded, the last three transformed quantities above are
finite.

For a p-entrance law f and a p-exit law g, define a nonnegative function [ f; g]
on (0, c0) by the equation

Lf 9(s+1) = Xk f (s, K)g(t, k).
The function [ f, g] is easily shown to be well defined (possibly infinite).

PROPOSITION 1.1. If f is a bounded p-entrance law and if g is the unique p-exit law
defined by (1.3), then [§ (1—e™ ") f, gl(t) dt < oo for 2 > 0 and

(1.4) lim, ... £ (2, 1)+ 3 (1—e™)[ £, g1(0)dt = AF(L, ).
In particular, if f is normalized, then
(1.5) lim,,,, f(t, )+ {5 [/, g1(t)dt =1

and the function [f, g] is the probability density function of the life-time t of a
continuous parameter, open Markov chain with absolute distribution function f and
transition function p.
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ProOF. Observe that
Jolfs g1(s+0)dt =3, /(s k) fog( , k)dt
(1.6) =Y f(s, k)1 —p(u, k, I))
=f(s, )—f(s+u,I).

Letting ¥ — o0, we obtain

(1.7) lim,..., £(t, D+ [ [f; g)(s+)dt = (s, I),
Taking the Laplace transform of both sides of (1.7), we obtain
(1.8) lim, o f(t, )+ AT (& e[/, g)(s+1)dsdt = Af(4, I).

Therefore, the double integral on the left side of (1.8) is finite. Making a change of
integration variables s = (u—v)/2* and ¢ = (u+v)/2* in this double integral, we
obtain (1.4). Equation (1.5) follows from (1.4) by letting A — co. The last statement
of the proposition follows by letting s — 0 in (1.6). The proof is complete.

The initial derivative matrix of a transition function p is defined by Q =
(q(i,j)) = (p'(0, i,j)). Any matrix Q which satisfies

0=q(i,)<o (i#j) 0=—q@i)<oo,  },;q(ij)=0,

is called a conservative matrix. For any conservative matrix, Q, there is a unique
minimal transition function p which has Q as its initial derivative matrix (see [2]).

2. Reuter’s Conjecture. Throughout this section, Q will denote a given con-
servative matrix and p will denow the minimal transition function corresponding
to Q.

Let (Q, &, P) be a complete probability space on which the processes of this
section are defined. For m > 1, let N,, = {N,(t), t = 0} be a Poisson process
with parameter 1,, > 0. Let 0,,, denote the time of the nth jump of the mth Poisson
process N,. For m,n = 1, let x,, = {x.(),0 < ¢ < 1,,} be a continuous
parameter, open Markov chain with state space 7, transition function p, absolute
distribution function f,, and lifetime t,,. The processes

(21) {Nl’ X115 X125, "% NZ’ X215 X225 """ Nm’ Xm1s Xm2s * }

are assumed to be mutually independent.
For each m,n = 1, let T,,, denote the sum of all the lifetimes t;; such that
0;j < Op,. For t > 0, define a random variable x*() on the set

(2.2) {Tyy <t < Tuu+t,, forsome m,n=1}
by
(2.3) XP(t) = Xt — Topp) I T <t < T+ T

The random intervals [T,,,, T+ Tms), Which may be of the form [o0, 00) = &,
are disjoint as m and n vary (for a fixed w € Q) and therefore, for each ¢t > 0, x*(¢)
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is uniquely defined on the set in (2.2). We leave x®(¢) undefined on the complement
of the set in (2.2). Since p is the minimal transition function corresponding to a
conservative matrix @, we may assume that each sample function x,,,(-) maps
(0, 1,,,) into I and is right continuous with left limits in Z, if  is given the discrete
topology. It follows that x*(¢) € I whenever x*(¢) is defined. Let x* = {x*(¢),
0<t< o0}

Reuter’s conjecture is contained in the following theorem.

THEOREM 1. If the p-entrance law [ =Y, A,.f, is not bounded, then P{x*(t) is
defined} = 0 for all t > 0. If f is bounded, then there is a stochastic transition
Sfunction p® defined on [0, o) %X I % I with initial derivative matrix Q and a normalized
p®-entrance law f* defined on (0, 00) X I such that x* is a continuous parameter,
open Markov chain with state space I, transition function p® and absolute distribution
Sfunction f°. More precisely, for each t > 0, x*(t) is defined almost everywhere
(the exceptional set depends on t) and the collection of random variables {x*(t),
0 < t < oo} satisfies (1.2) with f and p replaced by f* and p* respectively and t
identically equal to oco. The Laplace transforms of p® and f © are given by

(24) P4 1, 7) = p(4, i, j)+g( DIAS (4, DI £(4, )),
(2'5) fw(/l’ ]) = [Af()“’ I)]_lf(l, ]),

where g is the unique p-entrance law defined by (1.3).

The idea of the proof is to obtain a sequence of processes x* which approximate
x® and a corresponding sequence of transition functions p* which approximate
p®, and then to pass to the limit as k — co. Before proceeding to the proof, we
define these approximations and state some lemmas.

Fix k2 1. For 1 £ m £ k and n = 1, define T¥, to be the sum of all the
lifetimes t;; such that o¢;; < 7,, and 1 <7 < k. For ¢t > 0, define a random
variable x*(t) on the set where T%, <t < Tk +1,, for some 1 < m < k and
n=1by

xk(t) = xmn(t_ Tn':n) lf Trﬁn <t< Tr:n'*'rmn'

As before, x*(¢) is well defined and x*(z) € I whenever x*(¢) is defined. We emphasize
that the definition of x*(¢) is entirely analogous to the definition of x*(¢) except
that only the processes N,, and x,,, for 1 < m < k are involved in the definition
of x*(¢). As before, let x* = {x*(¢),0 < t < 0}.

LEMMA 2.1. Let k 2 1. Theorem 1 holds with Y A, [, replaced by Y % _, A,f
(which is automatically bounded) and with x® replaced by x*. Under these replace-
ments we will write p* for p® and f* and f *.'

ProoF. We leave it to the reader to verify that the processes x* fall into a class
of continuous parameter, open Markov chains first considered by Doob [3] and
later by Chung [2] page 267. According to the latter reference, if we set F, =

Ok et )™ Y% | Am S, then
(2.6) F¥ 7)) = Fullt, )+ Y1 o Fi(t—s, [ Fr, 917 (s) ds,
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where [F,, g]" denotes the n-fold convolution of [F, g] with itself. Taking the
Laplace transform in (2.6), we obtain

M J) = Fi(d, )1 = [Fi g1(4)]
= Fi(4, NIAF(4, D],

where the last equality follows from Proposition 1.1. This proves (2.5); (2.4) follows
from

Pt i, ) = p(t, i, )+ [6 g(s, D) (t—s, j)ds.

this completes the proof.

LEMMA 2.2, If the p-entrance law f of Theorem 1 is bounded, then

(a) the number of pairs (m, n) such that o,,, <t and 1, = o is finite for all
t>0;

(b) the sum of all the lifetimes t,, with ¢,, < t and t,, < oo is finite for all
t>0. '

If the p-entrance law f is not bounded, then P{T,, = o} =1 for all m,n = 1.

PrOOF. For m = 1 and ¢t > 0, let S(m, 1) denote the sum of all the lifetimes 7,,;
such that ¢,,; < ¢. It follows from the zero-one law that

(2.7) P{limp ., Y oy S(m, 1) <0} =1 or 0.
If 2 > 0, then this probability equals 1 or 0, depending on whether
limy ., , E{exp[ =AY -y S(m, 1)]} =1 or O.

Noting that, as m varies, the random variables S(m, t) are mutually independent
and also, that [ f,,, g] is the probability density of 7, for n = 1, we can show that
the quantity on the left side of (2.7) equals

(28) liInM—'czo exp {_tzsf;M'lm(l __j‘(o)o e—m [fm’ g](t) dt)}
= 1iInM—'oo exp{_tlz;:lo=MAmfm('1’ ])}

where we have used Proposition 1.1. in the last equality. Since /= Y w_; A, /i
is a bounded entrance law if and only if £ (4, I) < o0, and since Y m— Ay fou(A, 1) <
oo for all M = 1, we can conclude that the quantity in (2.8) is equal to 1 or 0,
depending on whether f is bounded or not. Therefore, the same is true for the
probability in (2.7). The lemma follows easily from the last statement.

LemMmA 2.3. If the p-entrance law f of Theorem 1 is bounded, then the set
(2.9) {t>0:t¢(T Tpu+7Tp) forany m,nz=1}

has Lebesgue measure O almost everywhere on Q.
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ProoF. Choose a fixed w, € Q such that sup,, , T,.,(w,) = oo and which satisfies
(a) and (b) of Lemma 2.2. Since sup,,, T,,, = co almost everywhere on Q, it
suffices to show that for w,, the setin (2.9) has Lebesgue measure 0. If 7,,,,,(w,) < o0
for some pair (m, n), then the sum of all the lengths of all intervals (7;(w,),
T;j(wo) + 7 (wo)) with T;(wo) + 1;{(wo) < T,uu(wy) is equal to the sum of all the
lifetimes 7;;(w,) with o;/(wy) < 0,,(w,). This last sum is by definition 7,,,(w,).
The lemma now follows if we observe that, as a consequence of Lemma 2.2, either
T,.(wg) < oo for all m,n = 0 or there is exactly one pair (m, n) such that
T,.(w) < o0 and 7,,,(wg) = o0.

LEMMA 2.4. Let C be a countable, dense subset of (0, o0) and let p* be a stochastic
transition function on [0, 00)XIXI with no instantaneous states. Suppose x =
{x(t), t € C} is an open Markov chain with transition function p* in the sense that
(1.2) is satisfied whenever each t;e C. Then, for every s > 0 and almost every
w € Q (the exceptional set depends on s), there is an open interval (S;(w), S,(w))
containing s such that x(u, w) = x(v, ) € I for u, v € (S1(w), S,(wW))NC.

Proor. This result is well known. For a proof see [2] page 153.

ProoF oF THEOREM 1. The first statement of the theorem follows from Lemma 2.2.
Henceforth, we shall assume that fis a bounded p-entrance law.

Let xo = {xo(?), 0 < t < 15} be a continuous parameter, open Markov chain
with state space I, transition function p, absolute distribution function f, and
lifetime 7,. Assume x, is independent of all the processes appearing in (2.1). For
t > 0,let(xq, x*)(z) be defined as xo(7) if 0 < ¢ < 14, and x®(t—14)if 7, < t < ©
(and if x®*(t—1,) is defined). Leave (x,, x*)(¢) undefined if neither of the above
conditions is satisfied. The random variable (x,, x*)(¢) is defined analogously.
Notice that (x,, x¥) is a continuous parameter, open Markov chain with transition
function p* as given in Lemma 2.1. In what follows it will be convenient to take
different choices for f;, .

Consider the set I' = (0, 0)xQ consisting of all pairs (¢, w) such that
(xg, x*)(t, w) is defined. I € B(0, c0) x &, where B(0, o) denotes the Borel sub-
sets of (0, o0). Denote the sections of I at w and ¢ by I', and T', respectively.
Lemma 2.3 shows that (0, co)—I", has Lebesgue measure O for almost all w € Q.
By Fubini’s theorem on the interchange of integration order, it follows that
P{I',} =1 for almost all’(Lebesgue) ¢ > 0. In other words, the probability that
(x0, x*)(¢) is defined equals 1 for almost all (Lebesgue) ¢ > 0.

Choose i€l and set fo(+, -) = p(-, 1, -). It follows from the sample function
properties of the processes x,,, (see the discussion preceding Theorem 1) and from
the definition of the processes x® and x* that, whenever (x,, x®)(¢) is defined and
equal to j, the process (x,, x*)(¢) is also defined and equal to j for all sufficiently
large k. Let D; denote the subset of (0, c0) on which P{I',} = 1. For t € D; and
jel,

(210)  P{(xo, x*)0) = j} = limy..., P{(xo, (1) = j} = limy..., p"(t, i ).
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For te D; and je I, set p®(t,i,j) equal to the limit in (2.10). To see that the
definition of p*(t, i, j) can be extended to all ¢+ = 0, recall that (see [2] page 129)

(2.11) Yilp* s+t 0, )= p(s, 1, )] S 1= pM(t, i, ) S 1=p(t, i, 0)

fors,t = 0and iel For fixed i, je I, {p*(-, i,j), k = 1} is therefore a uniformly
equicontinuous family of functions which converge on a dense subset D; of
[0, o0). Hence, they converge uniformly on compact subsets of [0, c0). Denote the
limit by p*(t, 7, j). The function p®(-, 7, j) is continuous on [0, c0).

We now show that p® is a stochastic transition function. Positivity is immediate.
That lim,_, o p*(¢, i,j) = 6;; follows from the continuity of p®(-, 7, /) and from the
fact that p=(0, i, j) = §,;. Fatou’s Theorem applied to (2.11) yields

Yilp(s+1,1, )= p=(s, i, j)] < 1—p(t, i, i).

Hence, the function p®(-, i, I) is continuous on [0, ). For t € D;, p®(t,i,I) = 1
and, since D; is dense in [0, o0), it follows that p®(t, i, I) = 1 for ¢ = 0. Fatou’s
Theorem also implies that

(2.12) Y p>(s, i, K)p=(t, k, j) < p®(s+1, i, j).

Summing over j in (2.12) and observing that we must have equality, we see that
p* satisfies the Chapman-Kolmogorov equations. It follows that p® is a stochastic
transition function. Equation (2.4) follows by letting £ — co in the corresponding
equation for p*. Since

(1 =p>(t, i, i)/t = (1 =lim, p*(t, i, i)/t < (L —p(t, i, D))/t,

all the states of I are stable with respect to the transition function p®.
Let D denote the subset of (0, co) where x*(¢) is defined with probability 1. As
before, it follows that (0, co) — D has Lebesgue measure 0. Also,

P{x>(t;) =iy, -, x*(t,) = i,}
= ]imk P{xk(tl) = il’ R xk(t"‘) = 1"}
= 1irnkl){xk(tl) = il}pk(IZ_tl’ il’ 12) : ‘pk(tn_tn—ls in—19 ln)
= P{xw(tl) = il}pw(tZ_tl’ i19 i2)' ' .poo(tn_tn—h in—l, in, s

for iy, -, i,eland 0 < t; < --- < t, with each ¢, D. D contains a countable,
dense subset of (0, o) which we denote by C. The collection of random variables
{x®(t), t € C} satisfies the conditions of Lemma 2.4. Hence, for any s > 0,
x®(-, w) restricted to C is constant in some'set (S;(w), S,(w)NS which contains s.
Since Q is a conservative matrix, each sample function x,,(-) takes on an infinite
number of values in /. Combining the last two statements, we see that x®(s) is
defined almost everywhere on Q (the exceptional set will depend on s). Hence,
D = (0, ). Therefore, x* = {x®(t),¢t > 0} is a continuous parameter, open
Markov chain with transition function p*®. Equation (2.5) follows by letting
k — oo in the corresponding equation for f*,
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It remains only to show that p*® has the same initial derivative matrix as p,
namely Q. By the same reasoning used for the process x*®, it follows that the
process (x,, x*) is a continuous parameter, open Markov chain with transition
function p* (for any choice of f;). If we observe that (x,, x*)(¢) = x,(t) for
0 < 7 < 1, and use the probabilistic interpretation of the quantities ¢; and ¢;;/q;,
we obtain our result. This completes the proof of the theorem.

3. Some extensions. The expression on the right side of (2.9) makes sense for an
arbitrary transition function p and a bounded, nonzero p-entrance law f, if g is
defined by (1.3). The transition function p may even have instantaneous states.
We show in the next theorem that the analytic content of Theorem 1 remains valid
in this more general setting. In fact, even if p is the minimal transition function
corresponding to a conservative matrix Q, Theorem 2 is not implied by Theorem 1
since we are not assuming f can be written in the form /' = ), 4, f,,, where each
f.,is anormalized p-entrance law.

THEOREM 2. Let p be a transition function and let f be a bounded, non-zero p-
entrance law. The expression

(.1) p(4, i, j)+g(4, DIAf (A, DI f (2, )

is the Laplace transform of a unique stochastic transition function p*, where g is the
unique bounded p-exit law defined in (1.3). Furthermore, the quantity

[Af(4 DI (4, ))
is the Laplace transform of a unique normalized p*-entrance law f ° and the quantity
g(4, DIAS(A, D]

is the Laplace transform of a unique bounded p®-exit law g°.

Proor. If we define p*(4, i, j) to be the quantity in (3.1), it is easy to verify that
Ap2(A, i, 1) =1, lim,_,, Ap®(4, 1, j) = &;;.

The resolvent equation and the existence of f® and g* follow from a routine
calculation if we use Propositions 2.1.4 and 2.2.4 of [6] and the equality

wf(u, )= 2Af (3, 1) = [§ (e™*—e™*)[ £, g1(s) ds
(3.2) == 5[5 e e ™[ f, g1(s+1t)dsd:
= (u—2) 2 f (4 k)g(u, k),

where the first equality follows from Proposition 1.1 and the second equality
follows from a change of integration variables. The proof'is complete.

The proof of Theorem 1 involved an approximation of p® by p* where p*
can be constructed from (3.1) by using the p-entrance law Y %_, A, f, and
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lim, o Y%=y Anfu(t, I) < 0. The next proposition shows that a similar approxi-
mation is possible in our more general setting.

PROPOSITION 3.1. Let the p-entrance law f in Theorem 2 be such that
lim,,q f(t,I) = co.
Let f; be the p-entrance law defined by
f3(t, i) =f(t+9, i)

fort > 0 and i € I. Then lim,_ f5(¢t, I) < o0, and, if p; is the stochastic transition
function constructed from f; by means of Theorem 2, then

limg_ ¢ ps(t, i, j) = p=(t, i, J)
fort 2 0and i, jel

ProoF. It follows from (3.1) that
limé—'O p6(19 i’ J) = poo()" i) ])-

Since Py(t,i,j) = p(t, i,j) for t = 0 and i, j € I, the proposition follows from the
following lemma.

LEMMA 3.2. For 0 < n £ o, let p, be a transition function. Suppose p,(t, i,j) =
po(t, i, j)fort 20,1 £ n < oo andi,jel. Also, suppose that

(3'3) limn—’OO pn(j” i’ .]) = poo()" i’ ])
for A > 0andi,jel Then

lim,,_, o pu(t, i, ) = Po(t, i, ))
fort=0andi,jel

ProoF. The ideas of the proof are contained in [4]. We repeat them here in our
context. Since

(A, 1, j) = §o e d[[o puls, 1,7)ds],
we can conclude from (3.3) that
lim, o [5 pu(s, i, J) ds = [o pu(s, i,7)ds
for t 2 0. Let IL,(¢, i, 7) = {5 pu(s, i, J) d:v for 1 £ n < oo. We have
IL(s+t, i, j)—TL(t, i, j)
(34 = [ pau iy ) du = [ po(t, i, f)pau—t, j, ) du
= Pt 1, ) & ol J ) du
= palt, &, DIL(s, J, J)-
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Letting n —» oo in (3.4), we obtain
(3.5 o (s+1t, i, /)= (t, i, j) = (s, j, j)limsup,_, o, pu(t, i, j)-
Dividing both sides of (3.5) by s and then letting s — 0, we obtain
(3.6) Puo(ts i, j) Z limsup,,_. , po(t, i, j)-
ForO0<s <t
puls: i ) < palts b DIpa(t =55, )17
Therefore, if § < t
0T I(t, b, )= TI(t=0, 1, /)] = 67" fi—s po(u, i, /) du

(3.7) <07 fims Pty &, NPt —u, J, )] du

< pult, 1, j)supo<s<s [Pa(s, J, )17

< palt, 1, J)SUPo <s<s [P(s, Js )17
Letting n — oo and then § — 0 in (3.7), we obtain
(3.8) Po(t, i, j) < liminf, , , p.(t, i, j).
Using (3.6) and (3.8), we obtain the lemma.

4. Boundary theory. In this section we obtain some interpretation of our analytic
and probabilistic constructions in terms of boundary theory. The reader is referred
to [7] and [10] for background material.

PROPOSITION 4.1. If f® and g® are the entrance and exit laws constructed in
Theorem 2, then [ %, g®1(4) < oo for all A > 0 and

4.1) Lf =1 =1/ g°1w) = [AF (A, D] = [wf(u, DI7'
for A, u > 0.

PROOF. We have
(=2 [F[ee e [ f=, g°I(s+1)dsdt
(4.2) = (u=2) LS (% k)g*(u, k)
= [Af( Duf (u, D]~ M= 2) Yo f (3, k)g(u, k)
=[A/ (4 D] = [uf(w, D171,

where the last equality follows from (3.2). Since the first term (4.2) is finite, -

(4.3) [2e b=, g=](s)ds < oo
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forall A > 0 and v > 0. Also,
(4.4) [8Lf®, g°](s+1t)dt
= ij.oo(& k)jggoo(t’ k)dt é Supk_ﬂ)/goo(t’ k) dt < (D’

since g* is bounded and f ® is normalized. Letting s — 0 in (4.4), we obtain

(4.5) JoLf=, g=1(0)dt < co.

Combining (4.3) and (4.5), we see that [f*, g*](1) < o for 4 > 0. A routine
change of integration variables in the first term of (4.1) yields the proposition.
In case lim,_ f (¢, I) = oo, then, by letting u — oo in (4.1), we obtain

7, e"1 () = MO, D]
Substituting for [4 (4, )]~ ! in (3.1), we obtain
(4.6) p*(4, i, j) = p(4; i, ) +g°(%, )L, 9712~ (2, ))-

Equation (4.6) implies, in the terminology of [7] and [10], that £ ® is coupled to g*.

Following the notation of Doob [4], we let K = I be the compactified (metric)
state space with respect to the transition function p® of Theorem 2. It is shown in
[4] that, for each je [, the function p(-, -,j) on (0, )% has a continuous
extension to (0, ) X K,,, where K|, is a certain Borel subset of K containing I.
The set K, consists of all ¢ € K, such that the function p(-, &, -) is an extremal
element of the convex cone of normalized p®-entrance laws. Also, K, > I. Any
continuous parameter, open Markov chain x = {x(¢), ¢ > 0} with transition
function p*® has a separable modification £ = {£(¢), ¢ = 0} with values in K such
that (1) almost every sample function %(-) has values in K, and is right continuous
on [0, oo) with left limits (in K,) on (0, ), and (2) £ is a strong Markov process
with respect to the extended transition function p®.

According to the work of David Williams [10], equation (4.6) implies that
S2(t 1) = p(t, &, j) on (0, 00) x I where ¢ € K,—1 and ¢ is regular for {¢} (that is,
the probability that a separable process £ = {£(¢), t = 0} with P{£(0) = £} = 1
hits ¢ in every interval (0, ¢) is 1). In addition, [, g*(s, i) ds is the expected local
time (suitably normalized) that a process (with P{£(0) = i} = 1) spends in {¢}
before time ¢.

We are now in a position to describe the boundary theoretic interpretation of
the probabilistic construction of Theorem,1. If 3 >_; 4,, < oo, thenf = Y %_, 4. f.
satisfies lim,,, f(¢,I) < oo, and it is not hard to see that the process x* =
{x*(¢), t > 0} falls into the same class of processes mentioned in Lemma 2.1. In
this case, the probabilistic interpretation of the process x* (see [1]) shows that the
p~-entrance law f corresponds to an initial distribution concentrated on the
union of the non-regular points of K,—17 and the points of 1. If Y A = O,
then lim,, f(z, 1) = o and (¢, j) = p(t, &, j) where £ € K,—1I and ¢ is regular
for {£}. A separable modification £* (with values in K) of the process x® would
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satisfy X°(0) = ¢ almost everywhere and would have £*(¢) = £ infinitely often in
(0, ¢) for every ¢ > 0. This corresponds to the fact that, for every ¢ > 0, T,,, < ¢
for infinitely many pairs (m, n).
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