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IDENTIFYING PROBABILITY LIMITS'

By GORDON SIMONS
University of North Carolina

1. Introduction and summary. The literature of mathematical statistics is filled
with theorems on (weakly) consistent estimators.? Even though most statisticians
want stronger evidence of an estimator’s worth, these theorems have provided
some comfort for the applied statistician. In this paper, we begin an investigation
into the concept of consistency and, more specifically, investigate the extent to
which a consistent sequence of estimators identifies the parameter they estimate.

It will be recalled that for any sequence of random variables which converge in
probability to a limit, there is a subsequence which converges almost surely to that
limit. This would seem to suggest that if one is given a consistent sequence of
estimators ¢, §,, --- converging to ¢(0) (0 € ®), say, then one can find a sub-
sequence which converges almost surely. That is, whenever there exists a weakly
consistent sequence of estimators there exists a strongly consistent sequence as well.
Unfortunately, the specific subsequence may depend upon the unknown parameter
value 6. Still, an applied statistician might be able to choose sequentially which
observed estimators to include in a (random) subsequence. This is easily seen to be
equivalent to postulating the existence of functions g,(x, -+, x,) (» = 1) such that
g,,(q?l, ey ¢3,,) converges to ¢(0) with probability one (0 € ®). In Section 2, we will
show that such functions do not always exist.

It seems appropriate, therefore, to question whether the values of the entire
sequence ¢, @, --- (always) allow one to determine the value of ¢(6) with proba-
bility one. We prefer the following mathematical reformulation of this question:
Let (Q, ¢, P) be a probability space and & denote the set of infinite dimensional
random vectors & = (X, X, ---) defined on this space whose coordinates converge
in probability to a random variable (which we shall continue to denote as) pZ.
The question becomes: Does there always exist a function f which maps R®
(infinite-dimensional Euclidean space) into R (the reals) such that for every & € &,
the set

) [f(Z) # pZ] is contained in a null set of o/ ?
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2 We contrast weak consistency (or simply consistency) with strong consistency. The former
requires a sequence of estimators to converge in probability; the latter requires them to converge
almost surely. This is common terminology.

3 The notation & is being used in two distinct ways. pZ is a function on the random vectors
Z € &. f(Z)is a function on the values of &, the values being points in R®. Our choice of notation
is shorter than the possibly more appropriate notation p(Z'(*)) and f(Z (w)).
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We shall refer to any function f which satisfies (1) for all Z e & < & as a
probability limit identification function (PLIF) on . We partially justify the refor-
mulation as follows: In Section 3, we will show that the vector of estimators
(4, ¢,, ---) can be interpreted as defined on the same probability space for every
0 e ®. As such, consistent estimators are equivalent to a family of vectors
F = {Zy, 0 € O} c &. Identifying ¢(0) becomes equivalent to showing that there
existsa PLIF on &

In Section 4, we show that there exists a PLIF on & if there exists a PLIF on &*,
the set of 4 € & whose coordinates are Bernoulli variables and whose probability
limit- pZ is almost surely a constant (necessarily zero or one). With values of 6
corresponding to vectors 2 € &* and ¢(0) corresponding to pZ, the reformulation
becomes complete.

We do not know whether a PLIF always exists on &* except for certain elemen-
tary probability spaces. It is hoped that the current paper will stimulate further
research into this question. If they do not always exist, this will cast further
doubt on the importance of consistency.

Breiman, LeCam and Schwartz [2] have discussed an interesting problem whose
formulation is closely related to the current one. They assume that they have a
family of probability measures {Py(-), 6 € ®} each defined on the same measurable
space (Q, &) (with points w € Q). They assume that ¢(6) is measurable with respect
to a o-field defined on ® and find necessary and sufficient conditions for the
existence of an .«Z-measurable estimator ¢(w) for which

Py{d(w) = ¢p(0)} = 1 forall0e ®

(and also for a closely related condition). The question of the existence of a
measurable PLIF on &* translates into the question of the existence of a certain
“zero-one set” in their context. Skibinski [3] has connected their work on zero-one
sets with some work of Bahadur [1].

2. Weak and strong consistency. In this section, we demonstrate an estimation
problem in which weakly consistent estimators exist but strongly consistent
estimators do not. Let Y,, Y,, --- be independent Bernoulli variables with arbitrary
means p,, p,, .-+ and {n,, k = 1} be an arbitrary sequence of increasing positive
integers. Set n, = Oand

2 X,=Y, for m_,<m=<n, k=1

Finally, let # denote the set of random vectors Z = (X, X5, ---) which arise from
(2) and the condition

3) P~ 0 or 1 as k - .

Let 0 = (p1, P2 s ny, ny,++) and ¢(0) = lim,, p,. Then ¢(0) = pZ and the
sequence of estimators ¢, = X, (n = 1) is consistent for ¢(0). Now assume that a
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strongly consistent estimating sequence exists. Then, there exists a sequence of
functions g,(x,, ---, x,) taking values zero or one such that

(4) limn—*oo gn(Xla ) Xn) = limk—*oo Dk
almost surely for all ' € €.

Consider the situation p, = 0 for all £ > j = 1. (4) requires that there exists a
positive integer m; such that for m = m; and any partial sequence x,, -+, x; of
zeros and ones, g;, .(xy, -, x;,0,0,--,0) = 0. That is, independent of past
history, a sufficiently long string of zeros will force the current g function to be zero.
A similar thing is true for long strings of ones. Next consider a situation in which
Y X=1p = oo and ) 2 (1 —p,) = co. It follows from the Borel-Cantelli lemma that
the sequence Y,, Y,, .-+ has infinitely many zeros and infinitely many ones.
Clearly, by allowing the sequence {n,} to grow rapidly enough, we can insure that
the sequence X, X,, --- will have sufficiently large strings of zeros and large strings
of ones to bring about the nonexistence of the first limit in (4). This is a
contradiction.

We do not know if a PLIF exists on %. (Note that ¥ = &*.) We suspect that the
class # would be a good class to work with in further research. There is a somewhat
contrived subset ¥* < % on which a PLIF exists but for which no strongly con-
sistent estimator exists (for the same reason as given above). Let € * be the set of
4 €% for which the sequence {#,} has finitely many even (odd) integers when
lim,_, ,p, equals zero (one). The details are left to the reader.

3. Interpreting estimators as subsets of &. Let X,’, X,’, --- be a sequence of
random variables defined on some probability space (Q', o', P') and suppose that
the probability space (Q, </, P) (referred to in Section 1) admits a uniformly
distributed variable U. One can show that (Q, o/. P) also admits a sequence of
random variables X, X, --- such that for each n = 1, the laws of X', ---, X, and
X,, -, X, agree. Briefly, one begins by showing that there exists a (one-to-one)
measurable mapping of U into a sequence U,, U,, --- of independent uniformly
distributed random variables (since there exists a one-to-one mapping between a
uniform variable and a sequence of i.i.d. Bernoulli variables with mean }). One
defines X, = inf {x: P'{X," £ x} = U,} and then defines X, (n > 1) recursively
using conditional distribution functions.

Now let X,’, X,', --- represent a sequence of consistent estimators of ¢(0),
0 € ©. Whereas the statistician often finds it convenient to view this sequence as
one sequence of random variables and prefers to think of the distributions of finite
sets of them as depending upon the parameter 6, the probabilist is inclined to say
that the sequence of estimators represents a different sequence of random
variables—one for each 6—since he views these random variable sequences as
defined on probability spaces which can depend on 6. Taking this latter view, we
can identify the sequence X,’, X,’,--- for each 6 € ® with a random vector
Zo = (X, X,, ---)€&. As such, a consistent sequence of estimators becomes
identified with a subset of & as 0 ranges over ©.
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4. Probability limit identification functions. The main result of this section is the
following:

THEOREM. There exists a PLIF on &, if, and only if, there exists a PLIF on &*.

PrOOF. Suppose that fis a PLIF on *. Let & = (X, X,, ---) € & be arbitrary.
Set
) X, = Iy, <y and 29 = (X, X,@, ..
For each real a*.
For fixed @ and ¢ > 0, set
(6) Y, = X, pgsa,q and ¥ = (Y, Y, ).
Then
P{Y, # 0} < P{|X,—pZ| > &} - 0 as n— oo
and hence, # € &* with p% = 0 almost surely. It follows that within the set
[pZ > a+el,
@) 9 =% and f(XP)=f@) =p¥% =0
except for a subset of a null set-
Letting ¢ | O along a (countable) sequence, we obtain (7) for the set [pZ > a].
Similarly, (7) holds with O replaced by 1 for the set [pZ < a]. Therefore, for
arbitrary x = (x,, x,, ---) € R® and x® defined analogously to Z“, the function
9(x) = inf {a: f(x¥) = 0},

with a ranging over some countably dense set of the reals, is a PLIF on &. The
converse is immediate.

We conclude this section with some elementary observations about PLIF’s.
Let #, be a non-decreasing sequence of subsets of 6 and f, bea PLIFon %, (n = 1).
Then

8) f(x) = limsup,_, ,, f,(x) if finite (x € R®)
=0 otherwise
isaPLIFon% = { ;2 %,.

Let 7 be a measurable transformation of R® into R*. We shall call T a limit
preserving transformation if TZ € & and pT% = pZ almost surely whenever
Z € &. Common examples include the simple shift transformation Tx = (x,, x5, ***)
and, more generally, the subsequence transformations Tx = (x,, X, , ---) for some
increasing subsequence of positive integers {n,} (x = (x;, X5, ***) € R®). Suppose
that & is closed under 7. That is, TZ € & for every & € #. Let f,(x) be a PLIF
on &. Then f,(x) = fo(T"x) is also a PLIF on & (n = 1) and the PLIF £, defined
by (8), is such that f(x) = f(Tx) (x € R®).

4ForAe o/, I. = 1o0r0as A occurs or fails to occur.
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(8) can be used to show that a PLIF exists on any countable set # < &. One
simply orders the elements in & and lets &, be the (finite) set composed of the first
n elements of & . (There exists a subsequence transformation 7, for which 7,% has
coordinates that converge almost surely for every & € &, (n = 1). Thus, it is easy
to define a PLIF on each #,.)

We shall say that a set & < & is closed under subsequencing if for every sub-
sequence transformation T, T4 € & for every & € #. Many times a PLIF fon a
subset & * < & naturally extends to become a PLIF on the smallest set % con-
taining & * which is closed under subsequencing. Typical examples of such sets %
are the set of & € & whose coordinates converge almost surely, and the set of
Z € &* whose coordinates are independent. In the latter case, the function
Sf(x) = limsup,_, ,n~ 'Y "_ x;is a PLIF on & because of (3) and the strong law of
large numbers.

One might conceivably be able to use (8) (to find upper bounds of linearly ordered
sets) in an effort to demonstrate the existence of a PLIF on &* (by using Zorn’s
lemma [4] page 39). One can show that any maximal element in the class
9D ={F < &*: ¥ has a PLIF and # is closed under subsequencing} must be
&*. (2 is partially ordered by set inclusion.) The only difficulty the author has
found in developing such an argument has been an inability to find upper bounds
for uncountable linearly ordered subsets of 2.

It seems reasonable to ask whether one should require a PLIF to be a measurable
mapping of R® into R. This does not seem necessary and adding such a restriction
might prevent their existence.
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