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A NOTE ON THE WEAK CONVERGENCE OF STOCHASTIC PROCESSES'

By M. J. WICHURA
University of Chicago

A simple method giving quick access to some important general weak
convergence theorems is described and illustrated.

1. Introduction. We point out in this note a quick and easy method for establish-
ing some general weak convergence theorems for probability distributions on a
metric space. The only prerequisite needed is the so-called “portmanteau’ theorem
of Billingsley (1968), which gives various equivalent descriptions of weak conver-
gence. More powerful methods are available and frequently yield more information.
For instance, the method of Prohorov (1956), based on a characterization of the
relative compactness of a family of probability distributions, enables one to deduce
the existence of (as well as the weak convergence to) the limit distribution in the
applications given below. The method of Skorohod (1956), which, roughly speaking,
replaces a given sequence of processes having weakly convergent finite-dimensional
distributions by a new sequence of processes having the same laws as the old
processes but with sample paths converging almost surely at each time point,
enables one to apply standard analytic arguments concerning pointwise convergent
functions. But both these methods require a fair bit of effort for their development
and application. A simple procedure that allows one to get into the thick of things
quickly is therefore of some interest. Such a procedure is described and illustrated

in what follows.

2. The method. Let (S, d) be a metric space, and let & be its Borel o-algebra.
Let X and X, (k = 1) be S-valued random variables (measurable with respect to %),
each defined on some probability space. One says that the X;’s converge in distri-
bution to X, and writes X = dlim, X}, if Ef(X}) — Ef(X) for each continuous
bounded real-valued function f on S. The following result states that X = d lim, X,
provided one has convergence in distribution for sufficiently small perturbations

of the original variables.

ProposITION 1. Let S, d, X, and X, be as described above. For eachn = 1, let
A,:S > S be S-measurable. Suppose that

1) dlim,4,X, = A,X for each n
2 plim, lim, d(X,, 4,X;) =0
(3) plim,d(X,4,X) =0.

Then X = dlim; X.
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Conditions (2) and (3) make precise the sense in which 4,x should approximate
x(x € §); written out, the second condition says that d(X,, 4,X,) converges to
zero in probability as first £ — oo and then n — 0, i.e.

lim, lim sup, P({d(X,, 4,X,) 2 &}) =0
foralle > 0.

PROOF OF THE PRrOPOSITION. By Theorem 2.1 of Billingeley (1968), it suffices to
show that

(4) lim, Ef(X,) = Ef(X)

for each uniformly-continuous bounded real-valued function f on S. For such f,
one has, for each ¢ > 0, :

|Ef (Xi)— Ef(X))]
< [ECf(X) =/ (4.X))| + | EA(4.X,) - Ef (4,X) | + [Ef (4,X) — f(X))]
< 2] £ P({d(X AnX,) = &})+0,(e)]+ | Ef (4,X1) — Ef (4,X)|
+[2|7|P({d(X, 4,X) 2 £})+3,(e)],
where ||f| = sup,.s|/(s)| and 6,(e) = sup {|f(t)—f(s)|:d(s,t) < &}. Combining

this with (1), (2), and (3) gives (4). []
From the proof, it is clear that one can replace sequences by nets throughout the

above discussion.

3. Applications. We shall show how the method can be applied to establish
three of the most useful general weak convergence theorems. Throughout X and

the X,’s are S-valued random variables.
(a) S = C[0, 1]. Let S be the space of continuous real-valued functions on the

unit interval, and let d be the usual sup-norm metric. Let w;:S — [0, o0) be the
modulus of uniform continuity functional:

w5(x) = sup {|x(£)—x(s)|: |t —s| < 6}
(x € .5). Proposition 1 gives
COROLLARY 1. If
) Alim (X)) = (X(O))rer
for each finite subset T of [0, 1]
(6) plim; o lim, w,(X,) =0,
then X = dlim; X,.

PROOF. Set 4, = i,n,, where 7,:S —> R"*! sends x into the vector (x(1/n)) g <m<n
and i,: R"*' - S sends the vector (&,) ,<m<, into the function which has the value
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¢natm/n (0 £ m = n) and which varies linearly between multiples of 1/n. Since i,
is continuous, (5) implies (1), and (2) and (3) follow from the inequality
d(A4,x,x) < wy(x),
holding for all x € S. []

(b) S =1,. Let S be a separable Hilbert space, with the norm metric. Without
loss of generality, we may take S =1, = {x = (x(n))p>1: Y n x(n)?> < o }. Define
J,:§ = [0, ) by

5(39) = Sy x(0)*
Here Proposition 1 gives
COROLLARY 2. If
@) dlim, (X(9))g<n = (X(9))s<n for each h 2 1
(8) plim, lim, J,(X;) =0,
then X = dlim, X,.

Proor. Let 4,(x) be the sequence whose first n coordinates are those of x, the
rest being zeroes. Then (7) implies (1), and (2) and (3) follow from the equality
d*(x, Ayx) = J(x). [

(c) S = DI[0, 1]. Let S be the space of real-valued functions on [0, 1] which are
right-continuous with left-limits everywhere, and let d be the Skorohod metric:

d(x,y) = inf {max (|x—ya|, |[A—1I]): A€ A},
where A consists of all continuous strictly-increasing maps of [0, 1] onto itself,
where |- | denotes the usual supremum norm, and where I is the identity function.

Define w;': S — [0, c0) by
w5/ (x) = infg ¢ g5 We(X),

where %; consists of all finite partitions of [0, 1) into left-closed right-open intervals
of length exceeding d, and

we(X) = maxg . g sup,, . g |x(£) — x(s)|
(confer (14.6) and (14.7) of Billingsley (1968)). Now Proposition 1 gives
COROLLARY 3. If
©) dtim, (Xy(O)er = (X(Drer

for all finite subsets
T of some dense subset U of [0, 1]

(10) plim; | 4 lim, w;'(X,) =0,
then X = dlimk Xk'
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Proor. The idea of the proof is clearest when U = [0, 1], so we will make this
simplifying assumption. Take 4, = j,x,, where =, is defined as in the proof of (a)
and j,: R"*! - S sends the vector (£,),<m<, into the function whose value at m/n
is &,, and which is constant on the left-closed right-open intervals separating the
multiples of 1/n. Then (9) and the continuity of j, imply (1). And (2) and (3) follow
(cf (14.8) of Billingsley (1968)) from (10) and the inequality

(11) d(A,x, x) < 1/n+ wf,(x),

which we shall now establish.
Fix xe Sand n =2 1. Let G € %, have division points

O=ty<t;<--<t, =1

Let A be that element of A which maps ¢, onto the smallest multiple of 1/n at least
as large as #,(0 < f < g) and which is linear on the intervals separating the #,’s.
Let A~! be the inverse of 4; it is easy to check that A~ € A with

J—3="] 5 1ym
and
[ Apx — X271 £ we(x).

Consequently (11) holds. []

Sometimes in applying the method it is convenient to first embed S in a larger
space. Suppose, for example, that we wish to generalize application (a) to the case
in which S = C(K, M) is the space of all continuous functions on some compact
metric space K with values in an arbitrary metric space M. Embed S isometrically
in F, the space of all bounded functions from K to M; in both spaces the metric is
given by d(x, y) = supycx du(x(k), y(k)). To construct A4, partition K into finitely
many subsets E; of diameter not exceeding 1/n, choose points ¢; € E; for each j,
and set A,(x) =) ; x(t)lg,. One has d(4,x, x) £ wy,(x), where now w,(x) is
defined to be sup {dy(x(k), x(])) :dg(k,]) < 6}. Under conditions corresponding
to (5) and (6), we get the X’s converging in distribution to X as F-valued variables,
and therefore also as S-valued variables (cf Lemma 3, page 39 of Billingsley
(1968)).

In all the above examples, the conditions stated are also necessary; this follows
easily from the continuity of the functionals involved. The real difficulty lies in
establishing that the necessary and sufficient conditions hold for specific processes,
and in getting the rate of convergence.
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