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SOME CONDITIONS UNDER WHICH
TWO RANDOM VARIABLES ARE EQUAL ALMOST SURELY
AND A SIMPLE PROOF OF A THEOREM OF CHUNG AND FUCHS!

By DAVID GILAT?
University of California, Berkeley and Columbia University

Let (X, Y) be an ordered pair of real-valued random variables. Say
that (X, Y)isfairif E(Y| X) = Xa.s.

1t is shown, for example, that if X has a finite mean and the pair
(X, Y) is fair, then X and Y cannot be stochastically ordered unless
X = Ya.s. The conclusion is in general false, if X does not have a mean.
On the other hand, if X is independent of the increment Y— X, the pre-
ceding statement remains in force without any moment restrictions on X.

The last assertion, combined with a gambling idea of Dubins and
Savage, yields a simple proof of a theorem of Chung and Fuchs on the
upper limit of a random walk with mean zero.

0. Introduction and summary. Let (X, ¥Y) be an ordered pair of real-valued
random variables. We define (X, Y) to be subfair if E(Y [ X) £ X almost surely,
superfair if E(Y [ X) = X almost surely, and fair if it is both subfair and superfair.
Here and in the sequel, E(Y | X), denotes the mean of (a regular version of) the
conditional distribution of Y given X which, as well known, may exist even if Y
has no mean.

The following result is proved on page 314 of Doob’s book (1953): If both
(X, Y) and (Y, X) are fair then X = Y almost surely, provided E|X| < oo.
Theorem 1 shows that the same conclusion holds under the weaker hypothesis
that the pairs (X, Y)and (Y, X) are both superfair with EX* < oo or subfair with
EX™ < o0.

If P[X > u] = P[Y > u] for all real numbers u, we say that X is stochastically
larger than Y and denote this relation by X > Y. If either X > Y or Y > X, the
pair (X, Y) is said to be stochastically ordered. Theorem 1 also provides that
X = Y almost surely, if the pair (X, Y) is superfair (subfair) with EX* < oo and
X > Y(EX~ < ooand Y > X).When EX* = oo = EX ", neither of the assertions
of Theorem 1 is valid, even if X and Y have the same distribution and (Y, X) as
well as (X, Y) is fair (Example 3). Thus, in general, the conclusion of Theorem 1
is false when X does not have a mean (at least an infinite one). On the other hand,
as shown in Section 2, the integrability condition in Theorem 1 can be replaced by
the independence of X and the increment Y— X. Thus, for example, if X and
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Y — X are independent, the fair pair (X, Y) cannot be stochastically ordered unless
X = Y almost surely (Theorem 2). The treatment of this case is partly based on a
theorem of P. Lévy about concentration functions (Théoréme 29 on page 91 of
Lévy (1954)). There seems to be a gap in Lévy’s proof and Lemma 2 was designed to
make up for it. Corollary 3 is a slightly stronger version of Lévy’s theorem.

Lemma 6, which is another tool in the proof of Theorem 2, is due to L. J.
Savage (1970) and is reproduced here with his kind permission. Theorem 2, when
coupled with a gambling idea I learned from L. E. Dubins and L. J. Savage, yields
a simple proof of a well-known theorem of Chung and Fuchs (1951) concerning
the upper limit of a random walk with mean zero. This is presented in Section 3.

Finally, in Section 4, we study the situation when conditional means are replaced
by conditional percentiles. This was motivated by Lemma 1.4 of Bickel and
Blackwell (1967) which, when vaguely stated, asserts that X = Y, provided the
conditional median of Y given X equals X, and the conditional median of X given
Y equals Y. Theorem 4 makes a similar assertion for all percentiles.

Throughout this paper, with the possible exception of Section 3, P is a proba-
bility measure on the Borel sets of the plane; X and Y are the projection maps
defined by X(x, y) = xand Y(x, y) = y for every point (x, y) in the plane. P is then
the joint distribution of X and Y, while PX ™' and PY ™! are their respective
marginal distributions. E stands for expectation with respect to P, and E(Y l X)
as well as similar conditional expressions are as explained in the beginning of this
introduction. As usual, for any real number x, x* = max (0, x) and x~ = (—x)™.

Equalities and inequalities between random variables are meant in the almost
sure sense; thus, for example, we write X = Y for P[X = Y] = 1.

1. The semi-martingale case.

LEMMA 1. Let X be a random variable with EX* < co. Then the distribution of X
is completely determined by the values of E(X —u)*, u ranging over all real numbers.

PRrOOF. Let F be the distribution function of X. Using integration by parts it is
not hard to show that
EX—u)* = [? (1-F(x))dx.

Differentiation with respect to u recovers F.

THEOREM 1. Suppose EX* < oo (EX™ < 00). Then the following conditions are
equivalent:

(a) Both (X, Y) and (Y, X) are superfair (subfair).

(b) (X, Y) is superfair (subfair) and X > Y(Y > X).

) X=17Y.
In particular, a fair pair (X, Y) with E|X| < oo cannot be stochastically ordered
unless X = Y.

ProoF. For each real number u the function x — (x—u)"* is convex and non-
decreasing. Hence Jensen’s inequality (Doob (1953)) applies to conclude from (a)
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that EY* < oo (since EXt < ), and that for each real u the pairs (X—u)",
(Y—=w)*)and (Y—u)*, (X—u)™) are both superfair. Consequently,

Q) EX—u)* = E(Y—u)* < for all u,

and by Lemma 1, X and Y have the same distribution, so (b) follows from (a). On
the other hand, assuming (b), one has for each u, E(X—u)* < E(Y—u)" by
superfairness of (X, Y), and the reverse inequality by X > Y. Thus (b) implies
(1). The pairs (X—u)*, (Y—u)™) being all superfair, (1) is possible only if they are
in fact all fair. Using the defining property of conditional expectations one gets:

fixga(Y—=w)tdP = [(x<u(X—u)*dP = 0
which implies
) PIX<u,(Y-w)' >0 =P X<Zu Y>ul=0.
Since (2) holds for all u, one concludes that ¥ < X, which implies
3) (Y= £ (X-uw)* for all u.

In view of (1) (since EX* < o0), (3) is possible only as an equality. Finally, equality
in (3) for every u yields Y = X. So (b) implies (c). That (c) implies (a) is self-
evident. To prove the dual assertion where EX~ < oo, simply apply the proven part
of the theorem to the pair (— X,— Y).

Recall that the definition of semi-martingale entails the appropriate one-sided
integrability. The following corollaries of Theorem 1 are thus straightforward.

COROLLARY 1. If X, X,, --- is both a sub (super)-martingale and a reverse sub

(super)-martingale, then X, = X, = --- with probability one.

COROLLARY 2. If X, X,, -+ is a sub (super)-martingale with X; > X, > -
(X, < X, < -), then X\ = X, = --- with probability one. In particular, if
X,, X,, -+ is either a stationary semi-martingale, or a martingale such that for each
n, the pair (X,, X,.,) is stochastically ordered, then X, = X, = --- with proba-
bility one.

The examples below are designed to show that the existence of the mean of X
is essential for the validity of Theorem 1. In factif EX* = + o0 = EX™, we can
have (b) but not (a) (Example 1); (a) but not (b) (Example 2); and both (a) and
(b) but not (c) (Example 3).

ExaMPLE 1. Let a be the discrete probability measure on the real line R defined
by:
a{0} = §; af2"} = 27"/3 = a{-2"} forn=1,2, .

Notice that « does not have a mean. For each x # 0 let Q, be the two-point
measure Q.{0} =1 = Q,{2x}. Define Q, by Qo{2} = 3 = Qp{—2}. Put a on
the X-axis in the plane and let Q = {Q,: x € R} be the conditional distribution
of Y given X. This determines a (discrete) probability measure P on the plane.
Observe that x is the mean of Q, for every x € R, and therefore the projections
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X, Y (in this order) form a fair pair. Moreover, as is easy to check, this P has equal
marginals, i.e. PY ! = PX~ ' = a. Nevertheless P[Y = X] = 0. Notice that for

this P the pair (Y, X) is neither sufair nor superfair.

ExAMPLE 2. For each p > 0 let ¢, be the map
(x,y)—’(x,x'i‘/’(x_)’)) lfoéyéx
(6 ») = +p(y—x),) if0 < x <y

Let py, py, P2, -+ be any sequence of strictly positive numbers, such that Zp, = 1.
Put p, = p,_ (/s Let wy = (1,0) and 0, = 0, (0,-) for n = 1. If o = (x, y)
let — w = (—x, —y). Define a (discrete) probability measure P on the plane by:
P{w,} = p, = P{—w,} for n = 0. It is now easy to verify that P enjoys the follow-
ing property: )

(*) For every vertical or horizontal line L in the plane: If P(L) > 0 then L
contains exactly two points of positive P-mass—one on each side of the diagonal
D = {(x, y): x = y}—whose distances from D are inversely proportional to their
probabilities.

Conclude from (*) that the pairs (X, Y) and (Y, X) are both fair. Nevertheless
P(D) = 0, so that X # Y with probability one.

ExaMmPpLE 3. Note that the P of the previous example does not have equal marginals
(e.g. P{Y =0} = 2p, > 0 while P{X = 0} = 0). We could of course reflect P
with respect to the diagonal to obtain P = Prn~! where = is the flip (x, y) = (3, x),
and then consider (3)(P+ P) which does have equal marginals. However, in general
we may lose the fairness property in the process. We now show that fairness is
preserved provided the sequence {p,}, used in the above construction of P, is
properly selected. To this end, take p, = po,”" for n = 0(p > 0, pyZp™" = %),
so that p, = p for n > 1. In this case

w, = (0,,0,_1) if n is even
= (0,-1,0,) if n is odd
forn =2 0, where 6_; =0and o, = 1+p+ -+ +p", n = 1. So, the sets
{X(w,):n =0} = {o,:n = 0even}
{Y(w,):n=0}={o,:n = —1o0dd}

are disjoint. Thus if P and P are as above, then P(L) > 0= P(L) = 0 and
P(L)> 0= P(L) = 0 for all vertical and horizontal lines L. The measure ()(P+P)
thus satisfies (*). Consequently it makes both (X, Y) and (Y, X) fair, in addition
to having equal marginals.

2. The independent case. If, for u > 0, Cy(u) = sup, P[x £ X £ x+u], Cy is
the concentration function of the random variable X introduced by Lévy (1954).
Here are some well-known and easily verified properties of concentration functions:
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(41) if X and Y-X are independent, then Cy < Cy;

(4i1) C, is nondecreasing and right-continuous;

(4iii) For each u = 0 Cy(u) is attained.

Say that Cy is uniquely attained at u, or simply that Cx(u) is uniquely attained, if
Cy(w) = Plx £ X £ x+u] = P[y £ X £ y+u] implies x = y.

LEMMA 2. For any random variable X there is at least one u = 0 at which Cy is
uniquely attained. (There may be only one such u, as for example when X has a
symmetric U-shaped density on a bounded interval.)

PrOOF. Let u = 0. If Cy(u) is not uniquely attained, then there are a and b
with b—a = d > 0, such that

' Cy(u) = Pla £ X £a+u]l =Plb < X £ b+u]
Under these circumstances P. Lévy (1954) shows (page 91) that
Cx(u+d) =z 2Cx(u)— Cx(u—d)

(Note: If Cyx(u) = % then u—d = 0; when v < 0 put Cy(v) = 0.)
Thus every u for which Cy(u) is not uniquely attained satisfies

®) 2Cx(u) £ Cy(u—d)+ Cx(u+d).

The geometric meaning of (5) (when u—d = 0) is that the point (4, Cx(v)) on the
graph of Cy lies on or below the midpoint of some chord. We now construct a u
with Cx(u) = 4 (which implies u—d = 0) for which (5) is violated. If Cx(0) = 1
then Cy = 1 (i.e. X is degenerate) and u = 0 violates (5). If Cx(0) < 1 then, since
Cy is right-continuous (4ii), it is bounded away from one in some neighborhood
of zero. Since in addition Cy is bounded, there is a line L(u) = au+f, with o > 0
and £ < f < 1, such that Cy(u) < L(u) for all u = 0. Consider such a line L and
rotate it clockwise until it hits the graph of Cy for the first time. Denote by L,
the final position of L. Then L, = Cy. Furthermore, by boundedness and right-
continuity of Cy, there exists a u* such that: Cyx(u) = Lo(u*) and Cx(u) < Lo(u)
forallu > u*. It is now easy to argue that u* cannot satisfy (5). Thus Cy is uniquely
attained at u*.

COROLLARY 3. Suppose X and Y — X are independent. If Cy(u) = Cx(u) for some
u = 0 at which Cy is uniquely attained, then Y = X+k for some constant k. In
particular (Théoréme 29 of P. Lévy (1954): If Cy(u) = Cx(u) for all u = 0, then
Y— X is a constant.

Proor. Let u = 0 be such that Cy(u) is uniquely attained and equals Cy(u). By
(4iii) pick y = y(u) so that

(©) Cy(w) = Ply = Y = y+u]

which, by independence of X and Y—X, = [P[y—t £ X < y—t+ul0(d) =
Cx(u), where 0 is the distribution of ¥—X.
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Since the integrand in (6) is at most Cy(u), one concludes that the set
T={t:Ply—t £ X £y—t+u] = Cx(u)} has 0-measure one. But since Cy is
uniquely attained at u, T consists of a single point and hence 0 must be degenerate.

These facts, implicit in Lévy’s book (1954), are now straightforward from (4i)

and Corollary 3.

LemMMA 3. If X and Y are each independent of their difference Y— X, then Y —X
is a constant.

LemMA 4. If X and the increment Y — X are independent, then X and Y do not have

the same distribution unless they are equal.
Lemmas 3 and 4 have very short proofs using characteristic functions. It seems,

however, that the proof given here is more revealing.

LeEMMA 5. Suppose X and Y— X are independent. If Y—Xis symmetric (around
zero), then the pair (X, Y) is not stochastically ordered, unless X = Y.

Proor. Let F and H be the distribution functions of X and Y— X. The con-
volution F*H is then the distribution function of Y and the lemma amounts to
saying that if H is symmetric but not concentrated at zero, then the difference
A = F—F*H assumes both positive and negative values. If A = 0 or A < 0 then
sois A’ = A*F’, where F’ is the distribution function of — X. So, we may assume
without loss that not only H but also Fis symmetric, in which case A is the differ-
ence of two symmetric distribution functions. A is then easily verified to satisfy:
A(—x) = —A(x) for all x at which F is continuous. Thus, unless A is identically
zero it must change sign. Since, however, A = 0 is ruled out by Lemma 4, the

proof is complete.

Lemma 6. (L. J. Savage (1970). If G and H are distribution functions with finite
means g and h, then

(M J (G*F)(x)— (H*F)(x)ldx = h—g
whatever be the distribution function F.
PRrOOF. In the case in which G and F are concentrated at zero, (7) reduces to the

well-known formula

®) — [, Hx)dx+[§ (1—H(x))dx = h

(see for example page 149 of Feller (1966)).

Replacing H by G in (8) and differencing, yields

©) JI6(x)—H(x)ldx = h—g

which proves the case in which F, but not necessarily G, is concentrated at O.
The general case now follows by changing the order of integration in (7) and then
applying (9) to the inner integral.

REMARK. The preceding Lemma was discovered by Savage in connection with
the proof of the next theorem which was independently conjectured by the author.
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THEOREM 2. If (X, Y) is a fair pair with X and Y — X independent, then (X, Y)
is not stochastically ordered unless X = Y. (When E|X| < oo, Theorem 2 becomes
a special case of Theorem 1.)

Proor. Let F, H and A = F—F*H be as in the proof of Lemma 5. Theorem 2
amounts to saying that if A has mean zero (fairness) but is not concentrated at
zero, then A assumes both positive and negative values. Indeed, by (7) (with G
concentrated at zero) [ A(x)dx = 0, and since A = 0 is ruled out by Lemma 4,
A must change sign.

3. A simple proof of a theorem of Chung and Fuchs. Let X, X,, --- be a sequence
of independent random variables with the common distribution F, and let
S, =X+ - +X, for n 2 1. For each s < 0, define” U(s) as the probability
that s+, = 0 for some n = 1. Extend the definition of U by U(s) = 1 for all
s = 0. Then:

(10) [ U(s+x)dF(x) < U(s) for all s.

In fact, (10) can be regarded as a very special case of Theorem 2.14.1 (page 32) in
Dubins and Savage (1965). Being, however, such a narrow case of a very general
theorem, it merits a direct proof. For s = 0 there is nothing to prove, whereas
for s < 0, using Fubini’s theorem, the left-hand side of (10) can be interpreted
as the probability of the event {s+.5, = 0 for some » = 2}, which is obviously a
sub-event of {s+.S, = 0 for some n = 1} whose probability is U(s).

THEOREM 3 (Chung and Fuchs (1951)). If F has mean zero but is not concentrated
at zero, then lim sup,_, S, = +00 with probability one. (When F has a positive
mean the same conclusion follows trivially from the law of large numbers.)

Proor. It is not hard to argue, as for example on page 188 of Dubins and
Savage (1965), that the conclusion of Theorem 3 is equivalent to U being identi-
cally one. In any event, since U is nondecreasing, A = lim,_ _, U(s) exists. If
A > 0, then lim sup,_, S, = +0o0 with positive probability, and in view of the
Hewitt—Savage (1955) zero—one law, this probability must be one, so that U(s) = 1
for all 5. Thus, if for some s, U(s) < 1, then A = 0, in which case U is a distribution
function (except perhaps for necessary modifications at discontinuity points). But
then to say that U satisfies (10) contradicts Theorem 2 (with U as the distribution
of X and F as that of X—Y).

THEOREM 3. The same as Theorem 3 except that F is assumed to be symmetric
instead of having mean zero.

Proor. In the proof of Theorem 3, replace “Theorem 2” by “Lemma 5 to get
the final contradiction.

4. Conditional percentiles. Let R be the real line and 4 the sigma algebra of linear
Borel sets. Let Q be a regular conditional distribution of Y given X, i.e. Q maps
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Rx % into [0, 1] in such a way that for each x € R, Q, is a probability measure
on &; for each B € B, Qx(B) is a Borel function of x, and Q is related to P by the
requirement:

Ef(X, Y) = [ [[f(x, »)Qu(dy)]PX " (dx)

for every bounded Borel function f on the plane. Let 7 be the map (x, y) = (¥, x)
and let P = Pr~'. Let O be related to P as Q is to P, i.e. Q is a regular conditional
distribution of X given Y.

THEOREM 4. If for some p,0 < p = 1,
(l) Qx(—OO, x) é pr(x, OO) and

(i) Qy(—00,¥) = p0O,(y, )
hold for P-almost all (x, y); or if the reverse inequalities are almost surely satisfied
for some p = 1, then X = Y almost surely.

Proor. For each real number u consider the following four, pairwise disjoint,
subsets of the plane:

Ciw)={(x,»:x>uy<u}
W) = {(x,y):x>y>u}
Wi) = {(x,y):y > x > u}
C,(u) = {(x,y):x <u,y > u}
Condition (i) implies
(11) P{C,(w)}+P{W,(w)} = P{Ci(u) or W;iu)}
= f(uwy Ox(—00, X)PX ~"(dx)
< 0 Sy @xlx, 00)PX ™ 1(dx) = pP{W,(u)}

for all u.
Similarly, from Condition (ii) deduce
(12) P{C,(w)}+P{W,w)} < pP{W, (1)} for all u.

Adding (12) to (11) yields
P{C,()} +P{Cy(u)}+ P{W ()} + P{W,(u)} < p(P{W ()} +P{W,u)})
which, since p £ 1, is impossible, unless
P{C,(w)} = 0 = P{C,(u)} for all .

So, P[X > Y]=P[(X, Y)eC,(u) for some rational u] =0, and likewise
P[Y> X] = 0. The proof of the assertion for p = 1 issimilar and is hence omitted.

REMARKS. (a) The p-percentile (0 < p < 1) of a probability measure 6 on the
real line is customarily defined as any number x for which 6(—o0, x) < p and
0(x, 0) £ 1—p. Thus for example when 1—60{0} = 4 = 6{1}, the point x = 0
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qualifies as a median (p = %) of 0. If we exclude such irregularities (which can
occur only if 6 has atoms) and admit as a p-percentile of 6 only those x for which
(1-p)8(—o0, x) = pO(x. c0), then Theorem 3 can be stated in terms of the
p = p/(1+ p)—conditional percentiles. It is easy to give examples where Theorem 3
would fail, were it stated in terms of the customary wide sense definition of
percentiles.

(b) Example 1 in Section 1 shows that Condition (ii) (or (i)) cannot in general be
replaced by PX ! = PY ~'. However, in view of Theorem 1, we suspect but cannot
prove that when X is integrable, equality of marginals together with (i) (or(ii))
alone are enough to guarantee X = Y.
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