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SOME FLEXIBLE ESTIMATES OF LOCATION!

By Louis A. JAECKEL
University of California, Berkeley*

This paper considers two procedures for estimating the center of a
symmetric distribution, which use the observations themselves to choose
the form of the estimator. Both procedures begin with a family of possible
estimators. We use the observations to estimate the asymptotic variance
of each member of the family of estimators. We then choose the estimator
in the family with smallest estimated asymptotic variance and use the value
given by that estimator as the location estimate. These procedures are
shown to be asymptotically as good as knowing beforehand which estimator
in the family is best for the given distribution, and using that estimator.

1. Introduction and summary. In this paper we consider two procedures for
estimating the center of a symmetric distribution, which use the observations
themselves to choose the form of the estimator. Both procedures begin with a
family of possible estimators. In the first case we take a family of trimmed means
with different trimming proportions, and in the second case a family of linear
combinations of a finite number of given L-estimators. (An L-estimator is a linear
combination of order statistics with fixed coefficients. See Jaeckel (1971).) We use
the observations to estimate the asymptotic variance of each member of the
family of estimators. We then choose the estimator in the family with smallest
estimated asymptotic variance and use the value given by that estimator as the
location estimate. We shall show that in each case the estimator chosen in this way
converges to the true best estimator in the family (that is, the one with smallest
asymptotic variance) in such a way that the two estimates have the same limiting
distribution and therefore the same asymptotic variance. Thus the procedure here
is asymptotically as good as knowing beforehand which estimator in the family
is best for the given distribution, and using that estimator. (Note that by “asymp-
totic variance” we mean the variance of the limiting distribution. We make no
assertions about the actual variance of an estimator for a given sample size, or even
about the limit of such variances.) <

It may be inferred from the asymptotic variance formulas that if an estimator is
close, in some sense, to the best estimator for a given F, it will have high asymptotic
efficiency relative to the best estimator for that F. Thus, by providing a variety
of estimators from which to choose, these procedures will have high relative
efficiency for a wide class of distributions. Stein (1956), Hajek (1962), and van
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Eeden (1970) have constructed testing and estimation procedures which are
asymptotically optimal for all densities, but these procedures are not useful in
practice for moderate sample sizes. Since the procedures described in this paper
involve estimating one or a small number of intermediate parameters, it is hoped
that they will approach their asymptotic behavior rapidly enough so that they will
be useful for moderate sample sizes. Some Monte Carlo results, described at the
end of Section 2, suggest that this is the case. In addition, the procedures here are
not difficult computationally.

2. The optimal trimmed mean. Let X, < --- < X, be the order statistics of a
random sample of size n with distribution F(x—6), where F is symmetric, that is,
F(x)+ F(—x) = 1, and has a density /. We want to estimate the unknown para-
meter 0. Since we shall be dealing with translation-invariant statistics, we may
assume that 6 = 0.

We define the a-trimmed mean as

1 n—[an]
e e AP

Under very general regularity conditions, n*m(a) is asymptotically normal with
asymptotic variance

() =—(1_—1206)5{J::_ax2f(x) dx+2ocxa2},

where x, = F~'(a) and x,_, = F~!(1—a). See Bickel (1965).
We construct the following estimator of ¢2(«) by replacing the terms in the
formula above by their estimates. Let

) 1 1 n—_[an] )
)= (1-20) {;i=[§]+ 1 (X =m()]

+ o[ X famy+ 1)~ m(“)]z + o[ X 4 fany — m(“)]z}-

We point out that s(«) is intended to estimate the variance of m(c), rather than to
estimate a scale parameter. When many differently shaped distributions and
different values of « are allowed, the two problems are quite distinct. Tukey and
McLaughlin (1963) considered the problem of finding an estimate of the variance
of the trimmed mean which will be valid for a wide class of distributions and
proposed an estimate which is almost the same as ours. They also proposed choosing
the trimming proportion to minimize the estimated variance, as we do below.

We now define the optimal trimmed mean. We assume a range of permissible
values of a, say ag £ o < «, is fixed in advance. We compute s(«) for all « in this
range such that an is an integer. Let & be the value of o« which minimizes s?(c).
We assume this « is unique.

DEerFINITION. We take m(&), the &-trimmed mean, as our location estimate, and
call it the optimal trimmed mean.
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In order to compute m(&), we must compute m(x) and s*(«) for each of the
approximately (x; —oqy)n allowable values of «. This may be done systematically
by considering successive values of o, beginning with the largest, since for that
value the number of terms in the sums is the smallest. Then, for each «, s*(«) and
m(c)) may be easily computed by making use of the results of the computations for
the preceding a.

THEOREM 1. Suppose 0 < ay < oy < 4. Suppose F satisfies the conditions of
Lemma 1 below, with this same a,. Suppose also that a*(«) has a unique minimum in
the interval ay < o < a4, attained at o = A. Then

n*m(8)—n*m(A) - pO0.

It follows that both have the same limiting distribution and therefore the same
asymptotic variance.

Thus, when the best « is unknown, but is known to lie between a, and o, the
optimal trimmed mean is asymptotically as good as knowing and using the best a.

The optimal trimmed mean is closely related to Huber’s Proposal 3, Huber
(1964), page 97, which chooses a maximum likelihood type estimator to minimize
the estimated asymptotic variance among the family of such estimators which
correspond to the family of trimmed means. See Jaeckel (1971), Section 3. It
follows from Theorem 1 above and Theorem 3 of Jaeckel (1971) that, subject to
the conditions of those theorems, the optimal trimmed mean has an optimality
property which Huber conjectured for his Proposal 3: The optimal trimmed mean
is, simultaneously for each permissible ¢ and scale parameter ¢, an asymptotic
minimax solution to Huber’s problem, Huber (1964), Section 5, with these para-
meters and with G the normal distribution.

The difference between the optimal trimmed mean and the procedures for
rejecting outliers which have been proposed by several authors is that the optimal
trimmed mean is not designed to be a method for recognizing and casting out
spurious observations; instead, it is intended to make use of the data as well as
possible, under the conditions of the theorem. The approach of Anscombe (1960)
is similar to ours in this respect.

We make a few remarks about the conditions of the theorem before proceeding
with the proof. The important case where the best value of « is zero is not considered.
The conditions imposed on F seem more restrictive than they need be. The con-
dition that 6%(«) have a unique minimum could be removed if the procedure were
modified slightly. A possible modification is described following Lemma 3 below.
Under the conditions of the theorem, ¢2(«) is a continuous function of «, so the
minimum of ¢%(x) for oy £ o £ «, is attained.

We restate a definition and a lemma from Jaeckel (1971).

DEFINITION. Let i* = i/(n+1).

LEMMA 1. Suppose F is symmetric, has a density f, and there are numbers ag > 0,
g0 > 0, and foy > 0 such that f(x) 2 f, for all x such that «y—ey < F(x) <
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1—(0g—&o). Then X;—F~'(i*) is O(n™%) in probability uniformly in i =
[egn]+ 1, -+, n—[oon]. That is, for all & > O there exist D and N such that for alln = N:

D
P{|X(,~)—F'1(i < n%ffori = [ocon]+1,---,n—[oc0n]} >1-96.
0

LEMMA 2. Under the conditions of Lemma 1, s*(c) converges to a*(«) in probability
uniformly in o such that oy < oo < oy ; that is, given ¢ > 0 and 6 > 0, there exists N
such that for alln = N:

P{|s*(x)— ()| < & for all ag S 0 < oy} 2 1—6.
PRrOOF. By the symmetry of F,
Z:';[[::]]‘F 1 F~ 1(l*) = 0’

so that
_1 .
m(x) = n_ Z[MZ 2[an]Z[X(') (i)
For a given 6 > 0, we apply Lemma [. If we let
c D
L,

and
Cz = 2C1[2F_ 1(1 —O(0+£0)+2C1],

where D, f,, and g, are as given in Lemma 1, we have
|Xo—F~'(i*| = C; for i =[aon]+1, -, n—[aon]

with probability = 1—6 for all sufficiently large n. Note that C, and C, depend
on n, so that we can fix n later on in the proof.

Suppose the inequalities of Lemma 1 hold. Then, for oy < a < oy and i =
fogn] +1, -+, n—[ogn],

1> -_— . -_— .
|m(@)] én—'_‘mﬂx(i)—l’ (i%)| £ Cu | Xy —m(@)—F ()| = 2€,

and
[X &y —m(e)]* = F (")
= [Xy—m(o) = F~1(i%)] - | X5y — m(e) + F =" (i*)]
S 2C, - [2F71(i*)+ X ) —m(o)— F~1(i%)|
<2C,-[2|F7'(i%)]+2C,] £ C,.
Let

t(oc) @ 120()2{1 n_z 'l(i*)2+ocF_1[([ocn]+1)*]2+ocF'1[(n—[om])*]2}.

i=[an]+1
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We shall show that s?(«) is near #?() and ¢%() is near o 2(a).

n Land 2 Lomllend e
LS e Y R
i=[an]+1 i=[an]+1

1

< ~Y|[Xw—m()]* = F ' (i*)’]

<c,.

| [X a1y — m(@) 1> = F'[([an] + 1)*]?| £ aCy.

[ X o= fanpy — ()] = F ' [(n— [an]) *]?| £ oC,.
Therefore
i 20,
|s*(0) = 12()] < m: -2C, ém .

Letting t = F(x) in the formula for ¢2(«), we have
Ji-ex?f(x)dx = [y *F~'(1)*dt
and 20x,2 = aF ()% +aF (1 —a)?, so that

1-a

GZ(a)=(1—_12a7{L F-l(t)Zdt+aF—l(a)2+aF-1(1~a)2}.

The three terms in ¢2(«) converge to the corresponding terms in ¢%(«) at the rate of
O(n™ 1), the first one because it is a sum which approximates the integral. Since the
derivative of F~1(¥)? is bounded for the range of ¢ under consideration, this
convergence is uniform in o« = a,. Since & < «, implies (1—200)"2 < (1 —20a,)" 2,
we conclude that t2(a) = o%(«) uniformly in oy < a < «,.

For a given ¢ > 0, we can choose an N such that for alln 2 N, |s*(0)—o*(a)| <
|s*() — £2()]| + |t2(@) — o *(@)| < & for all oy £ o £ @y, since C, depends on n.
Since these inequalities hold with probability = 1—4, the lemma is proved.

LEMMA 3. Under the conditions of Lemma 1,8 —p A asn — 0.

ProoF. We must show that for all § > 0 and E > 0, P{|¢—A4| < E} = 14 for
all sufficiently large n. For a given E > 0, let J = {o: o € [0g, ;] but ¢ (4 —E,
A+E)}. We assume J is not empty. Let T = inf {o%(2): « €J}. Since o2(x) is
continuous for « € [«g, «;] and has a unique minimum at « = 4, we must have
T > o%(A). Choose D such that 0 < D < L[T—a?*(A4)].

Suppose |s*(a) —*(2)| < D forall a € [0, a;]. For a given & > 0, this inequality
holds, by Lemma 2, with probability = 1—4 for sufficiently large n. Then, for
all o e J,

s*(«) > o*(«)—D 2 T—D,

and s2(4) < 6*(A)+ D. Therefore, for o € J,
s*(a)—s*(4) > T—2D—c?*(A).
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Since D < {[T—0%(4)], T—0*(4)—2D > 0, so s*(@)—s*(4) > 0, or s*(a) >
s%(A) for all « € J. Therefore, the minimum value of s?(«) for « € [xg, «,] is not
attained by any « €J. So the minimum must be attained at some a« e (4—E,
A+E); thatis, 8 e (A—E, A+E), or |4—A| < E.

Since this event occurs with probability = 1— ¢ for sufficiently large », the lemma
is proved.

If ¢2(x) is not assumed to have a unique minimum in « € [«g, ;], we could
modify the procedure as follows. Choose a sequence {z,} such that z, > 0 and
z, = 0, but n*z, > 0. Let A = inf {a € [0y, «;]: 6%(®) = minimum}. Let M? =
min {s?(x): « € [0, #;]}. Let & be the smallest a € [ag, a;] such that s*(x) <
M?(1+42z,). Then, since s2(¢) —o2(«) in Lemma 2 is O(rn~ %) in probability, it can be
shown by an argument similar to that in Lemma 3 that & —, A. The theorem
will then follow, by the proof below.

PrOOF OF THE THEOREM. Given ¢ > 0 and 6 > 0, we must show that for suffi-
ciently large n, P{n* |m(@) —m(4)| < e} = 1-6. By Lemma 1, there exists C such
that P{|X(,)——F Yi*)| £ n~*C for i = [en]+1, -+, n—[agn]} = 1—36 for suffi-
ciently large n. Let

_(1=2a)e
6C -
By Lemma 3, P{|é—A4| < E} = 1—16 for sufficiently large n. Therefore,
P{|XH—F '(i*| sn~*C for i=[aon]+1,-,
n—[aon] and |a—A|<E}21-6
for sufficiently large n.

Suppose these inequalities hold. We write
n—[an] n—[An]

(@) =mA4) = 3 - g KO T AR s gy N

1 1 o 1
= (n —2[4n] _n—Z[An]) ,-=[AZ,,]+ 1X“)+ n—2[6n] £

V=3t X+ 205 e 1 Xy if [an] < [4n]
=0 it [én] =[A4n]
= =Y e Xy =202 e 1 X if  [an] > [An].

Since [an]/n = a+0(n~"), and & < «;,
1 1

where

1 1 L
" \n=2[an] n—2[An] =‘1—2a’1—2A‘+0(" )
26— A) .
= |28z O )
2E

R 7N
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By the symmetry of F,
2l Xo| = [ [Xo—F (%]
<2 [Xo=F7(%)|
< (n-2[A4n])-n"%*C
=ni[(1-24)C+0(n"1)].

Therefore,
nt <n -—21[&n] T n— 21[An]) ) X“"
< (t?o%%_—a_) ‘(1-24)C+0n™")
= 5+0(n™).
Also,

V| =[EXo = [X[Xo—F ()]
< 2|[an]—[An]|-n"*C
=ni[2C[a—A|+0(n"")]
< n*[2CE+0(n" )],

where the range of the summation index is as indicated in the definition of V.

Therefore,
1 n

n%n—Z[&n] vl= n—2[4&n]

.n—%lyl

IIA

1
JE— -1
= 2CE+0(n™1)

Finally,

for sufficiently large n, and the proof is complete.

A small amount of Monte Carlo work was performed, with sample size 20 and
using the normal, logistic, and Cauchy distributions. The limits for « were ag = 0
and o; = 0.25, so that there were six possible choices for &. It was felt that at this
sample size, s%(c)) would be too unstable for larger values of «. For the logistic and
Cauchy distributions, the observed variance of the optimal trimmed mean compared
favorably with that of the trimmed mean with fixed o which did best for that
distribution. In the normal case the variance of the optimal trimmed mean was
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10 per cent greater than that of the mean. The observed values of & were, on the
average, greatest for the Cauchy and smallest for the normal. Thus, at this sample
size, the optimal trimmed mean is already able, to some degree, to adjust itself to
the shape of the distribution. The observed values of & varied wildly; Lemma 3
suggests that the convergence of & to 4 is very slow. But despite the behavior of &,
which should be thought of as an intermediate step in the calculations, the estimator
itself performed stably. At larger sample sizes the optimal trimmed mean should
perform even better, compared to other estimators.

3. Optimal linear combinations of L-estimators. An L-estimator, or linear
combination of order statistics, is defined as follows:
Let A(?) be defined on [0, 1] and such that

€} foh(f)dt =1 and h(1—t)= h(t)

Let Xy £ -+ £ X, be the order statistics of a random sample drawn from a
symmetric F. Define L as

1 n
L=2% h(i*)Xe.

Under some regularity conditions, n*L is asymptotically normal with asymptotic
variance

o*(F) = [§ U*(t)dt,

h(w)
vl = f T @™

See Chernoff, Gastwirth and Johns (1967), Huber (1968), and Jaeckel (1971).

Let hy(2), .-+, h(¢) be r functions satisfying (1). We assume they are linearly
independent in the sense that ) ¢4, () = 0 a.e. with respect to Lebesgue measure
implies ¢, =0,k =1, -, r

Let H be the family of L-estimators defined by all functions of the form

h(t) = Yi-1 cchil(?),
subject to Y ¢, = 1. Each such 4 satisfies (1). We remark that 4 need not be non-
negative.

We shall show that the best (¢,, -+, ¢,) for a given F may be estimated from the
observations by solving a set of r linear equations, and that the procedure which
uses as the location estimate the value given by the estimated 4 is asymptotically
as good as using the estimator in H which is best for F.

A simple example would be the family generated by three trimmed means with
different trimming proportions. Since this family yields a variety of possible shapes
for A, the procedure will be reasonably efficient for a wide class of distributions.

We begin by considering the asymptotic variance of members of H. We assume
that F has a density fand is symmetric, and that the general asymptotic variance

where
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formula is valid over H. For each k, we have
sz = j(l) Ukz(t) dt,

k(“)
0 = | ey

where

Thus, for h = Y ¢k,

00 = [ e =Tt

and
o® =[5 [2 e U(1)]? dt ‘
=Yy fo UU () dt =30 Y crcivns

where v, = [ U D) U(t)dt. If we write V = (1)) and ¢ = (cy, -+, ¢,)’, we can
express o2 as a quadratic form:
o2 =cVe.

Since, by its definition, 62 = 0, ¥ must be. positive indefinite. If ¥ is nonsingular,
it is positive definite, and, as we shall see later, there is a unique ¢® which minimizes
o2 subject to Y ¢, = 1. There is thus a unique member of H at which the minimum
of o2 for Fis attained. We show now that this is the case.
LEMMA 4. V is nonsingular.
Proor. Suppose Ve = 0 for some vector c¢. Then
0=cVe=[[ cUt)]dr

Therefore ) ¢, U,(t) = 0 a.e. Since by definition U,(¢) is absolutely continuous and
therefore continuous, ZCkUk(t) =0forall 0 £t < 1. Hence,

chhk(“)
STF "]~

j{fUF“<u)l=oo}‘7l” = I(f(x)=oo)f(x) dx =0,

fIF ' ()] < o a.e. Therefore, Y ¢,/ (u) = 0 a.e. in 0 < u < 1. Since the #, are
linearly independent, ¢ = 0, and V is nonsingular.
We now define an estimator s2 of o2 for a given 4. We assume f(x) > 0 whenever

h[F(x)] # 0. For t = %, we write
h(u 21O pF(x
O RO L
FIF (] f()
=180, h[F(x)]dx.
We shall estimate F(x) by the sample distribution function F,(x), which we define as:

a.c.

Since

f(x)dx
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i
F,,(x)=; for X <x<Xisry, i=1,n-1,
=0 for x <X,
=1 for x> X,
=i*= : for x=X, i=1,-n
n+1 @ ’

Let ¢ take on the values i*, for i = [(n+1)/2]+1, -+, n. We shall estimate U(f)
for these values of t. We estimate F~'(i*) by F, '(i*) = X;, and F~'(1—i*) by
F,”'(1=i*) = X(,41-;. Our estimate of U(i*) is therefore

0G*) =1 [3®,,_, h[F(x)]dx

X(n+x -i)
_%‘ j n+1 lh(.]/n)[X(J+1) X(J)]
Since o = [§ U*(t)dt = 2 [} U?(t) dt, we estimate o> by
2 n
== Y [0
Ni=[m+1)21+1

If h(f) = ) ¢y (t), these expressions become
0(*) =32 YeahiIm)[X o1, = X 5]
= Zk C Uk(i*),

s? = (2/n) L [Xk e O(i*)1
=Y Yacer (2/n) ¥ 0,(i*)0,(i%)
= Zk Zl Ckclﬁk, = C, I’)C
where ,; = (2/n)ZUk(z*) U,i*) and V = ((b,)). We thus have a positive indefinite
quadratic form, since s> > 0. We shall show below that ¥ is nonsingular with
probability approachmg one.

Assummg ¥ is nonsingular, we shall now derive the unique ¢ which minimizes
s? subject to Y ¢, = 1. Let

T = Zk Zl ckclﬁkl —'2).(21‘ Ck - 1).

and

Then, fork =1, ---, r,

oT
dcy

Thus, to minimize s2, we must solve the system of equations
(2) Zlélﬁkl=}'9 k=1a”'ar,

Zkék =1.

= 2ckﬁkk+2zl#k c,ﬁk,—Zl = 221 C,ﬁk,—2l.
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We do this by solving
(3) Y by =1, k=1,---,r
and setting ¢, = b,/ b;.

Letb = (by, -, b,) ande = (1, ---, 1)’. We write (3)as Vb = e. Thenb = ¥ ~le
is the unique solution to (3). Since b # 0, Y b, = b'e = b'Vb # 0; hence we can
divide b, by Y b, to obtain ¢. So we have at least one solution of (2). Since Vis
nonsingular, there can be no solution of (2) with A = 0. But any solution of (2)
with A # O gives rise to a solution of (3), which must be the same as that given
above. It follows that the solution é = (é,, :-+, é,) of (2) is unique.

The same argument applies to the matrix ¥, which we showed was nonsingular.
So there is a unique ¢® which minimizes 6% subject to Yo = 1.

We now show that under some restrictions on F and the %, the estimates defined
above converge to the quantities they estimate.

LEMMA 5. Suppose that the h, are bounded; that for some t, > 0, h(t) = 0 for
t < toandt > 1—1ty; and that for some finite set of values of t, the hy are uniformly
continuous on the intervals between those values. Suppose that for some f, > 0,
JS(x) = fo for all x such that ty—eq < F(x) £ 1—t,+¢g for some ¢y > 0. Then:

(i) For all k, U,(i*)— U,(i*) converges to zero in probability, uniformly in i.

(ii) For all k and I, b, — p vy.

(iii) P{V is nonsingular} — 1.

(iv) é = p °.

PROOF. By (i) we mean that for all ¢ > 0 and 6 > 0, P{|U,(i*) — U,(i*)| < & for
all i = [(m+1)/2]+1, .-, n} = 1—=6 for sufficiently large n, for all k. We write
U, (i*) = % [ i [F(x))dx and U.G% = % | h[F,(x)ldx. Comparing these integrals,
we see that there are three sources of error in U,(i*): the estimates of the limits
of integration F~'(1—i*) and F~'(i*) by X(,+,-; and X,;; the estimates of F(x)
by F,(x) when both fall in the same continuity interval of 4, ; and the estimates
of the end points of these intervals by the appropriate order statistics.

By the assumptions of the lemma, we may apply Lemma 1, which implies, for
to £ i* £ 1~to, X—F~'(i*) » 0 in probability uniformly in i, in the sense
stated above. Since A,(f) = O for ¢ < t, and ¢t > 1—1¢, and is bounded everywhere,
the first and third kinds of error converge to zero in probability. Since sup |F,,(x)
—F(x)| — 0 in probability and 4, is uniformly continuous on each continuity
interval, sup | [F,(x)] — i [F(x)]| - 0 in probability, where the supremum is over
all x such that F,(x) and F(x) are in the same continuity interval. Therefore, since
these intervals have finite length, the second kind of error converges to zero in
probability. We conclude that (i) holds.

Due to the assumptions of the lemma, the U,(i*) are uniformly bounded. There-
fore, by (i), for all k and I, U,(i*) U,(i*) — U,(i*)U,(i*) — 0 in probability uniformly
in {. Therefore,

5; U,‘(i*)U,(i*)—%zi UL(i*)U(i*) > p0.
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Since the first sum is 6,; and the second converges to | U (1)U (t)dt = v, we have
(ii):
Bx1 = p Via-
Since a determinant is a continuous function of its entries,
[P[-2|V]#0,

and we have (iii).
Since the entries in the inverse of a nonsingular matrix are continuous functions
of the entries in the matrix, we have

Prlos,vl
If we write
. Vle
t=—7 =—==7
eb eV 'e
and
o Vle
P S P

we see that (iv) holds.
We conclude by showing that the estimator

L) = ;T ()Xo
using the estimated coefficients is asymptotically as good as
L) = ;T ()X o
the best estimator in the family for F.
THEOREM 2. Under the assumptions of Lemma 5,
n*[L(¢)—L(c°)] - »0.

The two estimators therefore have the same limiting distribution and the same
asymptotic variance.

PROOF.
n*[L(2)—L(c%)]
=n"HY b 2 (i) X o — 2a e’ Lahi(i*)X o}
= Yu(@e—e) nTE Y (%)X ).
Since fork = 1, -+, r, &, —¢,° — 0 in probability and n~*) i, (i*) X ;) is bounded in
probability, the theorem follows.
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guidance and encouragement throughout the course of this research.
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