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HAUSDORFF DIMENSION IN A PROCESS WITH STABLE
COMPONENTS—AN INTERESTING COUNTEREXAMPLE!

By W. J. HENDRICKS

Case Western Reserve University

Let Xa,(#) and Xu(t) be independent stable processes in R; of stable
index a1 and az respectively, where 1 <as<a;<2. Let X(O=(Xay(), Xay())
be a process in R, formed by allowing X,, to run on the horizontal axis
and X, on the vertical axis; X(¢) is called a process with stable compo-
nents. The Blumenthal-Getoor indices of X(¢) satisfy az = B/ < B/ =
I + a2 — az/ar < B = a1. Denote by dim E the Hausdorff dimension of
E. It is shown that if E = [0, 1] and F is any fixed Borel set for which
dim F < 1/a; then (with probability 1) we have dim X(E) = g’ dim E
and dim X(F) = fdim X(F). This shows that the results of Blumenthal
and Getoor (1961) for the bounds on dim X(E) for arbitrary processes X
and fixed Borel sets E are the best possible, and that their conjecture
that dim X(E) = dim X|[0, 1] - dim E is incorrect.

1. Introduction. In [2], Blumenthal and Getoor studied sample path
properties of stochastic processes X(f) in R, with stationary independent
increments. They defined various indices (3", 8’ and ) which are uniquely
determined by a given process and which can be used to characterize many
aspects of the sample function behavior. We will not repeat the definition of
the indices here but point out that the authors showed that they satisfy the
inequalities:

0=pr=p =6

and that for some processes the indices are distinct. On the other hand, for
stable processes of index a we have 8 = 8" = a.

We use the notation dim E to denote the Hausdorff-Besicovitch dimension
of Borel sets E — R,. With this understanding, Blumenthal and Getoor [2]
(Theorem 8.1) showed that for an arbitrary process X(¢) in R, and fixed Borel
subset E C [0, 1] the following relations hold (with probability 1) between
dim E and dim X(E), where X(E) is the range of the process on the set E:

(1) dim X(E) < SdimE  if B < 1
) dim X(E) > g/dimE  if g <d.

Recently Millar [9] (Theorem 5.1) removed the restriction of 8 < 1 in (1).
For stable processes of index a < d we thus have dim X(E) = adim E. In
the final section of [2], Blumenthal and Getoor suggest that possibly a relation
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of the following type holds (with probability 1) for arbitrary processes X(r)
and fixed Borel subsets E C [0, 1]:

3) dim X(E) = dim X[0, 1] - dim E .

In the stable case of index a < d, (3) is seen to be true. The purpose of this
paper is to provide an example of a process which shows that the bounds in
(1) and (2) are the best possible and for which the conjecture (3) fails. Spe-
cifically, we shall show that for a certain process X(f) we have 0 < 8" <
B’ < B < d and that there are fixed subsets E and F of [0, 1] for which

4) dim X(E) = §/dim E and dim X(F) = fdim F

hold with probability 1. Moreover, we shall choose E = [0, 1].

The process we consider will be a type of process with stable components
(see [6] and [11]) and will be defined in Section 2. In Section 2 we also give
the indices for our process and state the pertinent properties of the character-
istic function and probability density of our process. Section 3 is devoted to
a verification of the claims made concerning our example. We conclude, in
Section 4, with several further observations about our process. In order to
keep the paper of modest length we shall refer frequently to other papers for
definitions, previously stated results, or straightforward calculations. To this
end, see Blumenthal and Getoor [1] or [2] for the now familiar definition of
Hausdorff dimension.

2. Preliminaries. We suppose (see [7]) that the characteristic function of a
one-dimensional stable process X,(¢) of index a # 1 has the form exp[t¢(y)],
where (for any real y)

$(y) = —1YI[1 + i3 sgn(y) tan za/2]
and 8 is a parameter such that —1 < 8 <1and 0 < a < 2. We assume that
X,(?) is a standard Markov process and that the strong Markov property holds.
Now let 1 < a, < a; < 2 and suppose that two independent one-dimensional
stable processes X, (¢, ) and X, (¢, ») are defined on some probability space.
If the two one-dimensional spaces in which the X, (¢) take their values are
orthogonal, the process X() defined by

2.1) X(t, 0) = (X, (1, 0), X, (1, ®))

is called a process in R, with stable components. Any stable process in R, of
index @ > 1 has a density p,(¢, x) which satisfies the scaling property:

(2.2) Pa(t, X) = r* 7 p(rt, rx) forall r > 0.

Moreover, p,(t, x) is positive, continuous, and bounded in x for each fixed ¢.
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The density of X{(#) will be denoted by p(t, y) and is of course computed by:

Pt y) = po(t, X1)pa(t, %) 5
where y = (x,, x,) € R,.
According to [6] and [11], the various indices for the above process satisfy:
ﬂ,,=a2<ﬂ,: 1 +a2_az/a1<ﬂ:a1'
In [11], Pruitt and Taylor determined the Hausdorff measure function of X{()
and thereby found that dim X([0, 1]) = 1 + @, — a,/a;. The reason for choos-
ing the stable indices both greater than 1 is that, as Pruitt and Taylor find,

if0 < a,<a <1wehave f/ = 8 = a, and if @, < 1 the measure function
of X(¢) leads to a Hausdorff dimension of the range of X(¢) of a;,.

3. Dimension results for X(r) = (X, (1), X,,(#)). We now state the main result
of this paper and indicate how the proof can be obtained.

THEOREM 1. Let X(f) be defined as in (2.1). Suppose that E = [0, 1] and that
F is any fixed Borel subset of [0, 1] for which dim F < a,='. Then, with proba-
bility 1 the following relations are satisfied:

(3.1) dim X(E) = §' dim E
(3.2) dim X(F) = g dim F.

Proor. The proof of (3.1) follows from the work of Pruitt and Taylor [11]
who give the index 8’ as 1 4+ a, — a,/a; and find that this is the exponent
which occurs in their determination of the exact Hausdorff measure of the
sample paths. (3.2) is proved by first noting that Millar’s result states that
dim X(F) < gdim F for arbitrary F c [0, 1].

Finally, we show that (if dim F < a,™")
(3.3) dim X(F) = a,dim F with probability one.

Once this is done the proof is complete, since a; = 8. The proof of (3.3)
follows the same line of argument as Blumenthal and Getoor [1] (pages 371-
372) used to establish the lower bound of dim X{(E) in the stable case. They
point out in [2] (page 507) that the proof must be slightly modified because
of an incorrect assertion. Their proof uses a theorem by Davies [3], one by
Frostman [4] concerning B-capacity, and one by McKean [8]. Even under
the slight modification mentioned above, the details in the present case go
through in exactly the same fashion as established in [1]. We indicate only
the change that must be made.

Blumenthal and Getoor [1] (page 372) use the scaling property of the stable
processes X,(¢) of index a to establish that:

(3-4) E|X (1) = X ()70 = et — 70"
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holds for some finite positive constant ¢ (independent of s and f) whenever
0<s<t<ooandd>d>0. They use this to show that dim X, (F) = o
provided § < adim F (and a dim F < 1 if the process is one-dimensional).
From this they conclude that dim X,(F) = a dim F.

To take the place of (3.4) we establish the following lemma.

LeEmMA 1. Let X(t) be given as in the statement of Theorem 1. Then if 0 <
0 < 1, a positive constant c, (independent of s and t) can be found such that

(3.5) E|X(t) — X(5)|7° < ¢|t — s]7%=
whenever 0 < s < t < oo.

ProoF oF LEMMA 1. If welett — s = rand 0 < § < 1 we obtain:
5 _ -5 _ P(T,(X,X))

EIX0) = X = E|X(t = 97 = i §, P55 20 dx

r"(“1‘1+az‘1)pal(l , r"“l‘lxl)paz(l , T
{x12 + x22}5/2

Pal(l > “1)Pa2(1 ’ u2) dul du2
{Tzlalul2 + T2Ia2u22}6/2

“Z_Ix
= SRI SRI ) dx, dx,

= SRI SRI

< et g, Pl ) gy g ot
AR
by use of the scaling property for the p, , a change of variable, and the fact
that p, (1, ) is bounded and continuous. This proves the lemma.
Then dim X(F) = ¢ provided d < a, dim F, where we assume a, dim F < 1
in order to guarantee 0 < 1. Hence, dim X(F) > a, dim F whenever dim F <
a,~" and the proof of the theorem is complete.

4. Remarks. (i) The index y of Pruitt [10] is in this case 1 + a, — a,/a,,
since Pruitt established that dim X[0, 1] = y for arbitrary processes with
stationary and independent increments. Thus, a result of the type dim X(E) =
7 dim E cannot in general hold.

(i) As we indicated at the outset, for a fixed Borel set £ we have dim
X, (E) = a dim E (with probability 1) for stable processes X, in R, of index
a < d. In [5] Hawkes used an interesting method to show that

4.1) P[dim X,(E) = adim E for all Borel sets E] =1

for such processes. If X(f) = (X,,(¢), X,(¢)) as in the statement of our theorem
and we use the delayed hitting probabilities for small spheres as derived in
[6] (Lemmas 3.3 and 3.4) and the estimates of Pruitt and Taylor [11] (Lemma
5.1 and the Corollary to Lemma 6.1) we can apply Hawkes’ technique. In
Hawkes’ Lemma 3 we use [2'7"dt]*"~"?) in place of [2!~"d#]**~/» for I, and
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we choose k, as the smallest integer greater than p(1 4 p)/(2 — p), where p =
1 + a, — a,/a,, instead of the smallest integer greater than p(1 + a)/(2 — a).
His argument then leads to

(4.2) P[dim X(E) = a,dim E for all Borel sets E]=1"

It would be interesting to know if there are inequalities involving upper
bounds in (4.1) and (4.2), and what the best possible bounds are in results of
the above type.

(iii) In [6], we showed that for a process of the type considered in the
theorem that:

sup{a: |[X(#)|t7* — 4+ oo almost surely as ¢t — 0} = a,

is in this case distinct from the Hausdorff dimension of the sample paths.
Hence we need not have equality of these two numbers. The present paper
provides another instance of when (X, (), X, (?)) can serve as a useful counter-
example and suggests that this process might frequently serve such an end.
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