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UPPER BOUNDS FOR THE ASYMPTOTIC MAXIMA OF
CONTINUOUS GAUSSIAN PROCESSES

By M. B. MARcus

Northwestern University

Upper bounds are obtained for | X(¢)|/Q(t) as t — co, where X(¢) is a
continuous Gaussian process with EX2(f) < Q%) Q(¢) non-decreasing.
- Our results are extensions of some work of Pickands (1967), Nisio (1967)
and Orey (1971) to larger classes of Gaussian processes, i.e. fewer re-
strictions are imposed on the covariance functions. The results follow
from Fernique’s lemma (1964) and a recent lemma on the maximum of
Gaussian sequences due to Landau, Shepp, Fernique and the author (see
Marcus, Shepp (1971) for further references to this lemma).

0. Introduction. Let X(¢) be a continuous Gaussian process, EX(f) =0
EX(t)’ < 0%t), O(t) non-decreasing. A considerable amount of attention has
been given to studying the behavior of X(¢)/Q(¢) as t — co. We refer the reader
to the work of Berman (1971), Orey (1971), Pickands (1967, 1969) and Wata-
nabe (1970). A common characteristic of these papers is the class of Gaussian
processes that they study. Roughly speaking, when dealing with stationary
processes the requirement is imposed that E(X(f) — X(s))* < O(|t — s|%),
and when studying processes for which Q(f) 1 co as t — oo that Q(s)/Q(t) =
0(s%). As more stringent conditions are imposed on Q(¢) (and on the covariance
of the process in the stationary case) more detailed results are obtained; re-
sults that are much more precise than those that we obtain. However, our
concern is different. What we want to do is to get an idea of the asymptotic
maxima for as wide a class of continuous Gaussian processes as possible.
Therefore our direction is to weaken conditions on the covariance of the pro-
cesses. Many standard results are extended to larger classes of processes and
we exhibit processes with upper bounds between (log log 7)* and (log 1)}

Our results are the following:

In Section 1 we consider stationary processes X(¢), E(X(t + h) — X(1))* = o*(h),
EX*(t) = 1. Theorem 1.1 states that

(0.1) lim sup,_., (| X(1)] — (2log#)}) <0 a.s.

when ¢*(h) = O(1/|log|h||*), for h —0, a > 1. This extends a result of Pickands
(1967) in which the condition is ¢*h) = O(h*), @« > 0. In Theorem 1.4 we
show that with no conditions other than stationarity and continuity
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X0l 1 as.

lim sup,_,., m <

This extends Nishio’s result (1967) in which it is assumed that g(h) satisfies
Fernique’s integral condition (see (1.1) below).

In Section 2 we consider processes X(f) with stationary increments. We
first show that it is possible to construct such processes with a large variety
of functions Q(¢), ranging from Q(¢) bounded to Q(f) ~ (Const.) t. Corollary
2.4 states that

| X(2)]
[2(2%(1) + 0*(1)) log 1]t

no conditions other than stationary increments and continuity are imposed.
In Theorem 2.6 conditions are obtained on Q(¢) so that

lim sup, ..,

IA

a.s.,

0.2) lim sup, ., (M — (21oglog t)%> <0 as.

(1)
The conditions are similar to Orey’s (1971) for ¢ large but we show that the
behavior of Q(#) for ¢ near zero is immaterial. We also obtain examples of
processes with Q(f) == 0(¢*), a > 0 for which (0.2) continues to hold. In
Theorem 2.8 we sacrifice some precision to get a general picture of how the
asymptotic maxima behaves,

X0 - ! <_L :

P[ ou) 23+ azioglog 4 13( s

the assumptions are that the process is continuous and has stationary incre-

ments. It is possible to find values of Q(¢) for which the last term is (log £)*—7'/
0=sr<lL

Actually stationarity conditions are not required for many of the results
given in Sections 1 and 2. In Section 3 we discuss how these results can be
applied to continuous Gaussian processes in general. Also, examples are given
that suggest that it is impossible to obtain general results about the asymptotic
behavior of continuous Gaussian processes without additional conditions being
imposed.

One object in initiating this study' was to see how much information
Fernique’s lemma (1964), (see also Marcus (1970)), would give about the
asymptotic maxima of continuous Gaussian processes. It turns out that the
lemma is quite sharp, as we show in Corollaries 1.3 and 2.7 in which the
results in (0.1) and (0.2) are sharpened. Nevertheless, Watanabe’s results
(1970) are sharper still; the reason for this in terms of the limits of appli-
cability of Fernique’s lemma is interesting; it is discussed following Corollary
1.3.

szu) du>* i.o.] -0,
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We do not answer the question of whether our bounds are best possible,
some results along this line can be found in Berman (1971), Orey (1971),
Pickands III (1967, 1969) and Watanabe (1970).

Finally, we are concerned only with separable, real valued, continuous,
zero mean Gaussian processes which we will generally refer to simply as con-
tinuous Gaussian processes.

The author thanks the referee for pointing out a serious error in the original
manuscript.

1. Stationary processes.

THEOREM 1.1. Let X(t) be a stationary Gaussian process EX(1)* = 1, E(X(t) —
X(s5))* = o*(|t — s|) where a*(h) = O(1/|log|h||*), a > 1; then

limsup,_., (|X,] — (2log#)}) <0 a.s.

Proor. For [t — s| sufficiently small o(|t — s]) < k/|log|t — ||, for some
a > 1 hence {~o(e**)dx < co. Therefore we can use Fernique’s lemma
stated below in a form similar to the one that appears in Marcus (1970).

LEmMMA 1.2. Let X(t) be a Gaussian process on [0, 1]. Suppose E(X(t)— X(s))*<
G|t — s]), ¢(t) T o0 as t — oo and

(1.1) {= ¢(e™*")dx < oo .
Let c(p) = n* for n a fixed integer, n > 3; then
P{||X]| =z al' + 257 (@ + log e(p + 1))*¢(c(p)™)}
S (yedx + 2 €(P) Viay 2108 cprnnise e dx
where EX(t)* < I and || X||.., = sup,(.q |X(?)|. In our proof T' = 1.
Define Y, () = X(k + t); the lemma will be applied to Y,(#). Substitute

_ 2logn 4 (1/2 4 ¢) loglog k
2 — (2 log k) & ,
(1.2) a=(2logk)t + Slesi

(1.3) a = (1 4 ¢)(2log k),
and note that the result holds for all ¢(h) < k/(log 1/h)* if we substitute this
value for ¢(h). Therefore,

(14 P[SUp.ciuson IX()| 2 @ + Const. T3, (o, + log (p+ Dt L]
(log n)=27=

1 1 - 1
= Kiog by 1w L7 2o -
The right side of (1.4) is a term of a convergent series independent of n; we
can obtain our result by means of the Borel-Cantelli lemma if we can find an
n as a function of k so that
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(1.5) 2logn + (3 + ¢)loglogk o ¢ k1o,
(2 log k)t
1
(1.6) Z;’,°=l(al+logc(p+1))5W—>0 as kloo.

(Throughout this paper we shall write r as a function of k£ without bothering
to assure that n is an integer. Since we are concerned with asymptotic results
it does not matter to us whether n = f(k) or n = [ f(k)].) Refer to (1.6); the
term (@, + logc(p + 1))} < a;! + (loge(p + 1)):. The expression

1 2! 1

= (] | )} 2
Zp—l ( og C(p + )) (lOg n)a2pa Z" L s Na—t (log n)a-— 211(01—&)

This term approaches zero as long as n — co. The critical term is

1 _ 3(log k)}

(1.7) Lyt g = (log m)= '

(10g n)“
Clearly we can satisfy (1.5) and (1.7) for any a > 1 if we set log n = (logk)?~
for ¢ sufficiently small.
Finally the lemma follows by observing that the asymptotic limits are the
same when log ¢, t € [k, k 4 1] is substituted for log k.
This method of proof leads to sharper results than those given in Theorem
1 if additional conditions are imposed on the covariance. In particular we get

CoroLLARY 1.3. Let o*(h) = O(h*), 0 < @ < 2. Then

B [2/a + (12 + o)]loglogt,  T_ o
P[|X(t)| (2 log 1)t = Ciog ot 1.0.:| 0

Proor. In this case

L (e + log e(p + 1)i(e(p)™)

(1.8) < D@+ loge(p + ) o a,z)z,,
é C,‘1 (log k)é + C2 (lOg n)é
n n*
for some constants C, and C,. Take n = (log k)"/**<1, then
(1.8a) a = (2log k) + [2/a + (1/2 + 3¢)] log logk

(2 log k)t

and the second term in (1.8a) dominates (1.8). This completes the proof.
Corollary 1.3 is not as sharp as Watanabe’s result (1970) wherein 2/a is

replaced by 1/a, but the method that we use can be pushed no further. The

reason for this is rather interesting. In Fernique’s lemma we dominate the
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probability of the union of sets by the sums of the probabilities of the sets
(i.e. we make statements like P[max; (X; > a)] < 3}, P(X; > a) for random
variables X;). These estimates do not exploit the covariance structure of the
random variables. In Watanabe’s proof, which is similar to the derivation
of Fernique’s lemma up to a point, he achieves the result of Corollary 1.3 by
first using the same crude estimates, but the final improvement necessitates a
sharpening of this estimate in which he utilizes specific restrictions on the
covariances of processes that he is studying. Perhaps the most interesting
aspect of Fernique’s lemma is that it can give such sharp results using such a
crude method of estimating the maximum. This, of course, depends strongly
on the fact that the random variables are Gaussian.

The condition ¢*(h) = O(1/|log|h||)*, @ > 1 in Theorem 1.1 does not include
all processes for which (1.1) is satisfied; the following result is true for all
continuous, stationary Gaussian processes. (Condition (1.1) is a sufficient
but not necessary condition for continuity; see Marcus, Shepp (1970)).

THEOREM 1.4. Let X(t) be a continuous stationary Gaussian process, EX*(t)=1,
then

limsup |_X(fL<l a.s
T (2log )t T -

Proor. This result is a trivial consequence of the following lemma due to
Fernique, Landau, Shepp and the author; see Marcus, Shepp (1971) for further
reference.

LemMA 1.5. Let {X,} be a sequence of bounded Gaussian random variables, i.e.
P(Supn |Xn| < OO) =L
Let sup, EX,> = a® then

. 1
lim,_,, = log P(sup, | X,| > t) = —(2a*)*.
By separability, Lemma 1.5 implies

(1.9) P[sup,cron [X()] > 7] = eXP<— 5(1—1_2;7)

for  sufficiently large. However, by stationarity, (1.9) holds in every interval.

Therefore

1
k1+£ :

[ X()|
(2 log k)t
The theorem follows from the Borel-Cantelli lemma.

Finally, we remark that (1.4) can be used to obtain results that lie between
Theorems 1.1 and 1.4 in sharpness in those cases when (1.1) is satisfied but
the hypothesis of Theorem (1.1) is not.

> 14 2] <

P[Supte[k,k+1]
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2. Processes with stationary increments. Let X(¢) be a continuous Gaussian
process with stationary increments, X(0) = 0. For such a process E(X(t) —
X(s))> = EX(t — 5s)* Let Q be a non-decreasing function such that EX(t — s)* <
0|t — s|). We will investigate upper bounds for the asymptotic growth of
| X(£)|/Q(?). Before proceeding we show that it is possible to construct Gaussian
processes with stationary increments with a variety of corresponding Q func-
tions. We call two functions f and g comparable if C, < f(x)/g9(x) < C,,
0 < C, £ C, < oo for x sufficiently large.

Lemma 2.1. Let H(t) be a monotonically decreasing regularly varying function,
H(t) < 1, #H(t) = 1 for t > 1. We can find continuous Gaussian processes with
stationary increments for which Q%(t) is comparable to *H(t).

ProoF. Let Y(¢) be a continuous stationary Gaussian process. Let r(r) =
§&> cos ur dF(u) be its covariance function. Define X(¢) = {} Y(u) du; this is a
continuous Gaussian process with stationary increments.

1 — cosut

(2.1) EX(1) = \¢ dF(u) .

Breaking up the integral in (2.1) into two parts over the intervals [0, 1/¢] and
[1/t, o) we get
1 PRt < EX(tp < 3 PF(1[t) + 2 gl,tdF (W)

If the measure F(u) is regularly varying near zero

dF(u)
u?

25z, ~ Const. £2F(1/1) .

We choose H(t) = F(1/1).

Note that it is only the values of the spectrum of Y(¢) near the origin that
determines the rate of increase of EX(¢)* for ¢ large when EX(z)* is unbounded.
We next show that the asymptotic growth of | X(#)|/Q(¢) is not influenced by
the values of Q(¢) for ¢ small.

LemMMA 2.2. Let X(t) be a continuous Gaussian process with stationary incre-
ments. Then

1X(0) = XB)| _

PI:limN_.eo SUPtek,k+11, k=N, N +1,--- m— :I =1.

Proor. The proof is identical to the proof of Theorem 1.4 since the incre-
ments of the process are stationary. It should be obvious that the same result
holds for ¢ in any sequence of intervals of fixed length.

For future reference we mention the next lemma whose proof follows
immediately by the Borel-Cantelli lemma.
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LEmMMA 2.3. Let X(t) be a continuous Gaussian process with stationary incre-
ments. Then

PI:lim sup,, ... Jﬂ_ < 1] =1,
(2Q%(n) log n)t —
where the limit is taken along the integers.

Lemmas 2.2 and 2.3 yield the following asymptotic upper bound for
X(0]/0().
CoROLLARY 2.4. Let X(t) be a continuous Gaussian process with stationary
increments, EX*(t) < Q(t), Q(t) non-decreasing. Then
| X(0) -
[2(Q%n) + (1)) log 1]t —
The following lemma is our most general result on the growth rate; it will

be followed by some theorems and corollaries expressing specific results in
more comprehensible forms.

a.s.

lim sup, .,

LemMma 2.5. Let X(t) be a continuous Gaussian process with stationary incre-
ments EX(t)? < Q%t), O(t) non-decreasing. Then

X0l > a4 4 2% (a, + log e(p- 1) 2Z AP

(1) 0(2%)
4+ c 2K i.o.} —0,

(2.2) P[sup,e[mkﬂ]

0(2%)
where
_ 2logn 4 (3 + ¢)loglogk
) — (21 3 g 2
(2:3) a = (2logk)} + Glos by
(2.4) a= (1 + e)2log k) + (2logn)*

a, = (1 4+ ¢)(2logk),
and c(p) = n** for n an integer, n > 3 and p(k) the largest value of p for which
2ke(p)~t > 1.
Proor. We define the least monotone majorant of EX?(¢)
R¥(t) = su’pugt EX*(u) .

Let [|X(2)[|=(EX*(7))*. Then || X(z + h) — X(0)|| < || X( + h) — X(0)|| + || X(1)—
X(0)||. Therefore, since the process has stationary increments

1X(t + h) — X(O)]| = R(h) + R(1), h=0.
Since R is the least monotone majorant for || X(z 4+ h) — X(0)|| we have

(2.5) R(t + h) < R(h) + R() ,
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(2.5a) E(i@ — @)2: EXYr) | EXXs) _ (EXX1) + E¥(s) — EX¥t — 5))
R(t)  R(s) R(r) — R¥s) R(1)R(s)
_EX¥t—s) , (EXNs) EX*(t)\( 1 1
~ R(H)R(s) +< R(s) R(1) ><R(s) R(t))'

Without loss of generality assume s < ¢. By the triangle inequality || X(7) —

X©0)|| = [11X(s) — X(O)I] — [|X(2) — X(s)[||, therefore

EX*s) _ EX¥(1) < EX*(s) _ EX(s) _ EX*t — ) i (EX*(s))}(EX*(t — s))} )
R(s) R(#) — R(s) R(?) R(?) R(1)

By (2.5) R(f)— R(s)< R(t—s), 50 (2.52) < Rt — 8)/R()R(s) + 3(R¥(t — 5)| R¥(1)).
It follows that for s, t € [2%, 2¢+!]

(2.5b) E<& _ &)2 4R —9)
R(t) R/ = R

The following inequality is a version of Fernique’s lemma in which the in-
terval [2*, 2#+] is partitioned into increments of length 2*/c(p), p=1,2, - - -,
p(k), p(k) 4+ 1. The partitioning stops the first time the length of the sub-
partition is less than 1 and then Lemma 1.5 is used. We also use (2.5b)

(2.5¢) | sup,cgeat %\ > a+2 534 (@, + loge(p + 1)} “R(i:cz((f; -

(log e(p(k) + 1) + a)*R(1) .y 2 (2108 257)HR(1)
+2 R(2¥) + (1422 R(2%) J

N

2 (oo ,—2z2[2 oo 2 (oo —z2/2
< \re=ldx + Y5 c(p) VG stogeprmi/z € =S dx 4 o

s

where N is a constant.
The event being measured in (2.5¢) is

(2.5d) {|X(t)| > aR(t) + 2% B(p) %”—;D R(t) + C HR(% + D :((z?) ;

for some te[2f, 2"“]} .

The abbreviations B(p), C, D are self evident.
Note. R(f)/R(2¥) < R(2**')/R(2¥) < 2 by (2.5). Therefore, the probability
of (2.5d) is greater than the probability of

(2.5¢)  {|X(1)] > aR(t) + 2 5 B(p)Q(2*e(p)™) + 2C + 2D;
for some 1e[2F, 2+*1])
since R(f) < Q(f). Divide both sides of this inequality by Q(¢) and replace

R(#)/Q(#) by 1 and 1/Q(z) on the right of the inequality by 1/Q(2*). The proba-
bility of this new event is less than the probability of (2.5d). The right side
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of (2.5¢) is a term of a convergent sequence. The Borel-Cantelli lemma
completes the proof.

THEOREM 2.6. Let X(t) be a Gaussian process with stationary increments,
EX(¢)* < Q%t), O(¢) non-decreasing. Then

(2.6) lim supm(% — (2log log t)*) <0 as.

if either of the following conditions is satisfied:

0 0@ (P)™) (o gyt _
(i) 02 = ()™, a>0
s _ log ¢ 1

(i) Q(f) = exp <m> for t>T, a<}.

ProoF. To prove the result under condition (i), substitute the value of a
given by (2.3) into Lemma 2.5. Replace the quotient Q(2*¢(p)~")/Q(2*) by
c(p)~«* in (2.2). The first two terms to the right of the inequality sign in
(2.2) are exactly the same as Corollary 1.3 except now log k ~ log log 2¥ can
be interpolated to give loglogz. Condition (i) implies that k*/Q(2%) — 0; thus
(i) implies (2.6).

To show that (ii) also implies (2.6) refer again to Lemma 2.5 with the value
of a given by (2.3). Clearly, for each k we must find a value of n so that

logn 0
(log k)*
oy Q(24/e(p))
(2'7) (10g k)% ZP:I —W -0,
p(k) 2p/2 Q(zk/(’(P))
(logn)t 3 202 0@ —0.
Let ¢ be a number for which a + ¢ < 4. Then choosing logn = (log k)**</*
all three conditions in (2.7) are satisfied for the values of Q(?) in ii).

Condition (i) is Orey’s (1971) condition of Q(¢) for ¢ > 1; actually we could
obtain the same result for ¢ greater than any constant. Our contribution here
is that we require no condition on Q(#) for ¢ near zero, since Lemma 2.2
enabled us to disregard Q(z) for ¢ small. (To be more precise we require that
k*/Q(2¥) — 0, but this is implied by condition (i)).

The purpose of condition (ii) is simply to show that there are other pro-
cesses for which the iterated logarithm law as given in (2.6) holds. Actually,
whenever the first two conditions of (2.7) are satisfied for some value of Q
(2.6) will be true.

In our proof of Theorem 2.6 when condition (i) applied we actually obtained
the stronger result, which we mention as a corollary.
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CoROLLARY 2.7. Let X(t) be a continuous Gaussian process with stationary
increments. Suppose that Q(2¢c(p)™)/0(2%) < (c(p)™)** 0 < a < 2. Then

P[M — (2log log 1)t = /@ + 1/2 + ¢) loglog logti.o} —0.
(1) 2(log log 7)*

Just as in the case of Corollary 1.3 this result is not as sharp as Watanabe’s
in which 2/a is replaced by 1/a. The reason is the same as the one given in
Section 1. The same discussion applies.

In the next Theorem, at the expense of maximum accuracy in those cases
when (2.6) holds or when Corollary (2.4) might be more informative, we give
an upper bound for the asymptotic maximum of |X(#)|/Q(¢) for a wide class
of processes characterized by the functions Q(¢).

THEOREM 2.8. Let X(t) be a continuous Gaussian process with stationary incre-
ments EX(t)? < O(t)’, Q(t) non-decreasing, then

X(0) ) o 0w) 4\ T
P[W > (3 + ¢)(2 log log 1)t + 13 <% 51 &0 du) l.o} ~0.

Proor. Refer to (2.5¢) and substitute the value of a given by (2.4). We
choose

log n = max <§f"~Q_(u—)du, log 4) .
u

We have
208 (a, + log e(p + 1))*Q(2Fe(p)) = (1+4-¢)(2 log k)IQ(2%/n?)
(2.8) + (1 + ¢)(2 log k) §1' Q(2%/c(p)) dp + (2 log n)* Q(2*/n?)
+ (2 log n)t §1 2°12Q(2%[c(p)) dp < (2 + ¢)(2 log k)*Q(2*)

+2(5t 2 au)

Therefore the probability that
[IX()] > aR(t) + @ + 910 kp02*) + 8( 51 2% au)

(2.9) + 20k + 2)20(1) + § 20k + 1)!Q(1);
for some te[2¢, 2’”1]} ,

is a term of a convergent sequence. The last two terms can be absorbed by
the integral. Dividing by Q(¢) and applying the Borel-Centelli lemma the
result follows.

We have shown that the upper bound for the asymptotic maxima of
processes with stationary increments lies between Const. (2 log log #)t and
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Const. (log #)t. It is also possible for intermediate values to occur since for
0(f) = exp[(log 1], 0 < 7 < 1
1 ., 0®) d >5 1 _
u) ~ — (log r)—n1iz,
(6w % 7 (80
3. Gaussian processes with no explicit stationarity requirements. Continuous

Gaussian processes can be constructed that will exhibit any kind of growth
rate, as the following examples indicate.

(1) Let b(f) be Brownian motion, g(f) a continuous increasing function.
Define Y(#) = b(g(?)), Q*(f) = EY(¢)*. Then |Y(¢)|/Q(¢) has (1 + ¢)(2 loglog g(r))}
as an upper limit for its asymptotic growth rate, and this limit is essentially
the best that can be obtained.

(2) In Mascus (1968) there are many examples of stationary Gaussian pro-
cesses and associated functions f{(4), f(h) | oo as & | 0, for which

i |X(h) — X(0)|
(3.1) C, < lim Suphqu <C,
where 0 < C,, C, < oo and o*(h) = E(X(t + h) — X(1)). Define
z(t) = z(1jpy = XB = XO -

a(h)

Then EZ(t)* = 1 and an upper bound for the asymptotic maximum of |Z(¢)|

is C,f(1/t), and we see by (3.1) that this cannot be appreciably improved.
(3) Let X{(#) be any continuous stationary process with covariance function

7(r) with the property that lim__ y(zr) = 0. Define Y(f) = Q(#)X(¢) for any

O(t) 1 oo as t — oo. Then by Pickands (1967) and Theorem 1.4

P[lirn SUP_e Yol _ 1] =1
(20%(¢) log 1)}
for any Q(#).

These examples show that we cannot make statements on the maxima of
Gaussian processes without imposing certain conditions on the processes. The
only general statement that we can make is that Lemma 2.3 gives an upper
bound for lim sup, ... | X(n)|/Q(n) if the limit is taken along the integers. But
example (1) gives processes which grow faster than (2 log n)}, therefore for
these processes, their local behavior is the main factor influencing their
growth rate.

Although it seems impossible to make general statements, most of the re-
sults of Sections 1 and 2 hold with only minor modifications if the stationarity
conditions are dropped. To be more specific, in Theorem 1.1 and Corollary
1.3 stationarity is not used at all. The result holds for any continuous
Gaussian process X(t), EX(t)* < V(¢)’, as long as



MAXIMA OF CONTINUOUS GAUSSIAN PROCESSES 533

2

X(0) _ X(s)
Vi V(s
n=20,1,2, ... and ¢(|t — s|) = O(1/|log|t — s||)*, @ > 1.

In proving Theorems 2.6 and 2.8 (and Corollary 2.7) the property of sta-

tionary increments was used to enable us to use Lemma 2.2 and to provide
an increasing function R so that

(3.2) E| < ¥t —s|) for t,se[mn+ 1],

(3.3) [ £(F2 - X0y ZRE=SD
R(t)  R(s)/ 1 = min (R(?), R(s))
2k <t s <28t — s > 1,k =k, k,+ 1, ... . Theseresults apply to any

continuous Gaussian process as long as a function R can be found satisfying
(3.3) and an equivalent to Lemma 2.2 can be obtained. The latter could be
accomplished, for example, if one could find an increasing function ¢, satis-
fying (1.1) such that

[E(z% B E){%ﬂz gt —sl), Jt—s 1.

The conditions required by Watanabe (1970) are similar to (3.2) and (3.3).
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