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A NOTE ON ASYMPTOTIC JOINT NORMALITY

By C. L. MaALLOWS
Bell Telephone Laboratories, Incorporated

The concept of asymptotic normality takes on some new aspects
when the dimensionality of the vector random variable under consider-
ation is allowed to increase indefinitely. A necessary and sufficient
condition for joint asymptotic normality in a new (strong) sense, in the
case of independence, is given.

1. Introduction. When confronted with an intractable problem concerning
the joint distribution of some set of k random variables, it is standard practice
to embed this set in a sequence of sets of the same dimensionality, and to
prove a theorem concerning the asymptotic distribution. Formally, one con-
sidersanarray {X,,,j=1, .-, k,n=1,2, ..} and proves that (X, - - -,
X,,) — F as n —oo where F is some k-dimensional distribution, and we refer
(throughout) to the usual weak-* convergence, which is equivalent to conver-
gence in the Lévy metric. Such a theorem is of practical value only if the
limiting result provides a good approximation to the original problem. How-
ever the theoretician has unlimited flexibility in choosing the sequence in which
to embed his problem; qualitative and quantitative differences may ensue from
different choices.

Our purpose here is to suggest that in some cases it may be appropriate to
consider a different kind of sequence, in which the dimensionality changes
(increases) as the sequence evolves. Formally, now consider an array {X,,
j=1,---,k,;n=1,2,...} where {k,} is some increasing sequence of integers.
One situation in which this framework seems appropriate is the following.
Consider a 2" factorial experiment, in which k + 1 = 2" observations are
taken, one at each of the possible settings of n two-level design variables.
Display the observations in a vector Y = (Y,, ¥,, ---, ¥,)’. Then the mean
and (multiples of) the k contrasts (main effects and interactions) are given by
elements of a vector X = (X,, - - -, X,)’ where X = 27#"HY, and where H is a
2" x 2 Hadamard matrix (so that all its elements are +1, and H'H = 2"L,).
IfY,, ---, Y,arei.i.d. (independent and identically distributed) and Normal,
then the contrasts X, - - -, X, will also be i.i.d. and Normal; this provides an
appropriate reference distribution for the technique of half-normal plotting
[3], in which the ordered values of |X,|, - -, |X,| are compared with their
expected values (or approximations to these), Normality being assumed.
However if Y, - - -, Y, arei.i.d. but nonnormal, then the contrasts X;, - - -, X,
will still have identical marginal distributions, but these will not be normal,
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and the contrasts will not be independent. It is of interest to know whether
in this situation the half-normal plotting technique retains validity. Here we
are interested in a subtle aspect of the joint distribution of all the contrasts,
and it seems natural to embed the problem in a sequence obtained by letting
n increase indefinitely; so that the dimensionality of the problem increases
also. We return to this problem briefly in the last section of this paper.

Another problem where this approach is natural is in the study of the ap-
proximate joint normality of the “pseudo-values” that arise in application of
the jackknife technique (for which see e.g. [7], [1]). Let 6 be a parameter to
be estimated, and suppose we have a set of N = kn independent, identically
distributed observations divided into » groups of k observations each. If 6,
is an estimate of # based on all N observations, and 8, is the estimate obtained
when the ith group is discarded, the k pseudo-values are defined as

éiznéN_(n_l)é(i) i=1,.k

and are clearly identically distributed, in fact interchangeable. However, they
are sometimes asserted to be also approximately independent, and if n is large
they can be expected to be approximately normal. One is thus tempted to
examine the set of pseudo-values for conformity with the hypothesis of inde-
pendent normality, in the hope that any departures may be indicative of some
important phenomena in the data. For this procedure to be valid, one needs
assurance that approximate normality will obtain when k and n are both large.

2. Finite-dimensional asymptotic normality. With this as background, we
propose to discuss the concept of asymptotic joint normality of a triangular
array of variables 27 ={X,,j=1,-.-,k,;n=1,2, ...} where k, — co.
We denote the standard d-dimensional normal distribution by @,.

DEFINITION. £ is coordinatewise asympotically standard normal (c.a.s.n.)
if for every sequence {m,} (1 <m, < k,,n=1,2,...)wehave ZA(X, ,, ) — D,.

DEFINITION. 227 is d-dimensionally coordinatewise asymptotically standard

normal (d-c.a.s.n.) if for every sequence of d-vectors {(m,,, ---,m,;); 1 <
m,, <k, m,+m,  for i=j whenever kK, >d; n=1,2, ...} we have
Xy > Xymna) — @ao We observe the trivial

THEOREM 1. [If 227 is row-wise independent (i.e. for each n, {X,,,j=1 ...k}
are mutually independent) then 52° is c.a.s.n. if and only if (iff) it is d-c.a.s.n.
for every d.

Proor. Foreveryd, &7 is d-c.a.s.n. iff the sequence ((X,;, j=1, ---, k,),
n=1,2,...)is asymptotically normal in the usual sense.

In what follows, any sequence that is indexed by (n, j) without qualification
is to be read in lexicographical order, as in the above proof.
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3. Some examples. Our first example is of a triangular array -2~ which
is row-wise independent and d-c.a.s.n. for every d and yet for which the se-
quence of standardized row means is not asymptotically normal.

ExampLE 1. Let k, = nand let the elements {X,,, ---, X} be i.i.d. with
distribution F,, where F, — ®, and yet &£~ fails to satisfy the well-known
necessary and sufficient conditions for the central limit theorem to hold. (See
e.g. page 316 of [4].) For example, let F, = p, B(a,) + (1 — p,)®, where
B(a) is the two-point binomial distribution, assigning probability } to each of
the points +a. To make F, — @, we need only p, —0; but if n7'a >~ 0 and
np, 0 then F(n~H(X,, + --- + X,,)) » ©,.

ExampLE 2. Inthe 2”-factorial experimentsituation outlined above, we have
ky=2"—1,X = (X, -+, X, ) = 27H(Y,, ¥,,, -+, ¥,, ) where H,
is a k, X k, + 1 matrix obtained by deleting the row (1,1, ..., 1) from a
suitable Hadamard matrix. If Y, ---,Y,, are i.i.d. with o (Y,) =F,,
then &27 is d-c.a.s.n. for all d as soon as the 2/ array satisfies the Lindeberg
conditions. However since

27H/X, =Y, — Y, ---, Y, —7T,) where Y, =237, .,

clearly we should hesitate to call £~ approximately multinormal unless also
F —®,.

ExampLE 3. For comparison we also exhibit an array that is d-c.a.s.n. for
every d (but not row-wise independent) with < (n~¥X,, + --- + X,,)) —» G
where G is an arbitrary distribution. Take k, = n, and let y = {Y,;} be an
array of the same shape as =27, all its members being i.i.d. standard normal.
Let Z be distributed according to G, and set

an: Ynj_n_l(Ynl+ ce + Ynn)_*_n_iz'

Then &7 is d-c.a.s.n. for every d, and yet n %X, + --- + X,,) = Z.
Confidence in appropriateness of a multinormal approximation to the distri-
bution of some k,-dimensional vector variable X will be shaken if some natural
array &2~ in which X is embedded exhibits behavior of the type just described,
even if it does manage to be d-c.a.s.n., either for d = k, only or even for all d.

ExaMmPLE 4. A final example is presented to show one way in which intui-
tion may be misleading. Let (X,,, -- -, X,, ) be i.i.d. with distribution F, =
(I = p,)®, + p,G where G'(x) ~ |x|~* for |x| large, where a« > 1. Then if
k, = n, we have Z(n"¥X,, + --- + X,,)) — @, provided n*®-“p, — 0, for
example if « = 3, p, = n~!. However in this case if k, = n* then

P Xy + -+ X)) o D,

since n*~p, -+ 0. Thus it is possible that the n-fold convolution of a df F,
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can approach normality while a further stage of n-fold convolving destroys
this limiting behavior.

4. Joint asymptotic normality. One way of defining a concept of joint asymp-
totic normality, stronger than that of “d-c.a.s.n. for all d,” is as follows.

DerINITION. The array 227 is “jointly asymptotically normal” (j.a.n.) if for
every constant array .97, (of the same shape as &27) satisfying >}%», a2, = 1,
we have (3 4, a,. X, ;) — ©,.

It is clear that j.a.n. implies d-c.a.s.n. for all 4; each of the first three exam-
ples given above demonstrates that the converse is false. In Example 2 above,
& is j.a.n. iff 27 is also. Notice that it is not more restrictive to require
that < (2a,;,X,;, m =1, ---,d) — @, where for each n, (a,,,) isan k, x d
matrix with standardized orthogonal columns.

5. A sufficient condition for joint asymptotic normality. We now study condi-
tions that ensure j.a.n. in the case of row-wise independence. Our first theorem
is due to P. J. Bickel, who give an entirely different proof [2].

THEOREM 2. If &7 is row-wise independent and c.a.s.n., with E(X,;) =0,
E(X};) — 1, then 2" is j.a.n.

Before giving our proof of this theorem, it is convenient to introduce a
metric on the class &, of distributions with zero mean and finite variance
Fo=1{F:{xdF =0, { ¥*dF < co}. Define p: &, X .#,— R, by

P*(F, G) = §o (f(w) — g(w))* dw
where f(w) is the essentially unique) monotone function satisfying f(F(x)) =
xa.e. (F). To verify that p is a metric we observe that p > 0 with equality
iff F = G, and that (using Schwarz) p satisfies the triangle inequality.

LeEmMmA 1.

o(F,, G) — O iff {F, — G (in the weak-* topology) and § x*dF, — § x*dG} .

ProoF. Suppose p — 0. Then for each interval (p, g) we have

2 (fu(w) — g(w))dw — 0,
so F, — G. Also '
O*(F, G) 2 ((§ /2 dw)t — (§ ¢* dw)?}?
= ((§ x*dF,)* — (§ x*dG)})*
so that { x*dF, — { x*dG. Conversely, take ¢ > 0, and choose p so that
2+ 5, 00dw < c.
Then for n sufficiently large we shall have (since F, — G)
G (f—grdw<e
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and

557 (f* = g aw| <e,
and (since { x*dF, — { x*dG)

156 (f* — g dw| <.
Thus

188 + i, fPdw] < 3,
and

G (f— 9y dw < e+ (¢t + (3e)) < 9e.
Another representation of p is very convenient.

LeEmMMA 2.
P*(Fy, Fy) = min,e s p py § (¥ — p)* dA(x, p)
where A(F,, F,) is the class of bivariate distribution functions 2 on R X R such that
A(x, 00) = Fy(X), A(o0, y) = Fy(y)-
Proor. First suppose that F,, F, have bounded support, so that Fi(a;) = 0,
F(B,) = 1, Fy(a,) = 0, F(B,) = 1 with «,, 8,, a,, B, finite. We have to show
that max §{ xy di(x, y) = C,, where C,, = § fi(p) fo(p) dp.

Integrating by parts, we have

Sxydl(x,y) = ﬁlSdez"’ 182SxdFl - 131‘32+ §§2(x,y)dxdy.

However A(x, y) < 4y(x, y) where 2(x, y) = min (Fy(x), Fy(»)), and since i, ¢
A(F,, F;) we have immediately that

max § xydi(x, y) = § xyda(x,y) = Cy, .
Now we remove the boundedness condition. First, notice that in all cases
A, € A(F,, F,)) so that C,, is a possible value of § xy di. We show that for all

AeANande >0, { xydi < C, + ¢. Choosee. Since § xdF; = 0 and { x*dF; <
oo for i = 1, 2, we can choose ¢ so small that

0<e, W+ hsfipdp<e, [f)=a;<0, [f(1—-0=82>0,
i=1,2. Replace f; by fi((p) = a, for0 < p < 0, = fy(p)ford < p <1 -4, =
B;for1 —d < p < 1, and replace F; by the induced df’s. F,, i = 1,2. Then
F,(x) = Fy(x) for a; < x < ;. Using Schwarz, wefind |§ f, f,dp — § f, foo dp| <
2¢. Also, given any e A(F,, F,) we can construct 2 € A(F,,, Fy) by setting
2x,y) =0 for x < a, and for y < a,, = A(x,p) for o, T x < B, a0, <y <
Ba = Fy(x) fora, < x < B, B, =y, = F(y) for g, < x, a, =y < B =1for
B, < x, B, < y. Then (again using Schwarz)

[§ xpdd — §xyd2| = 2(§2, + §7) §20 + 2§20 (§2, + §5)Ixy| dA(x, y) < 4e

where
A =23 pdF(y)) + 2§ 2 dF,(x) .
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However we have already shown that § xy d2* < § f, f;, dp, so the result follows.
The metric p is introduced because it has one very useful property, as
follows.

LemMma 3. If
H= A3k, a,X)
where X, X,, - - - are independent with - (X,) = F,e &, and Za? = 1, then
He &, and
o(H, @) < It a0%(F;, D).

Proor. Using the representation of Lemma 2 we have (for k = 2)
P*(H, ®,) = min; 0, § (x — u)*dA(x, u)
inf(l,mGA(FP@I))(A(FTQ,I) Y a,y + ayz — a,v — aw) dA(y, v) du(z, w)
= infc 5 pp 0 e niry 0 § @Y — 0)2dA(y, v) + § @' (z — w)' dp(z,w)
= a12|02(F1’ (I)l) + a22|02(F2’ (DI)

IA

where in the second step we have used 'the fact that to every pair (4, ¢) in
A(F,, ®,) X A(F,, ©,) there corresponds a unique 4 e A(H, @,) induced by the
projection X = a, Y + a,Z, U = a,V + a,W, and where in the third step we
have used the facts that § xdF, = { xdF, = { xd®, = 0. The general result
follows by induction on k.

PROOF oF THEOREM 2. Putp,. = p(F,;, ?,), p, = max; p,;. Thensince 2~
is c.a.s.n. and EX?, — 1, p, —»0. From Lemma 3 it follows that for any array
of constants {a,;} (with }} a2, = 1) we have o(£(}; a,; X,;), ©;) < p,, sO
that <(}; a,,X,,) — @,; i.e. &7 is j.a.n.

REeMARK 1. Clearly the conditions of Theorem 2 are not necessary; £~ can
be j.a.n. even if a bounded number of elements of each row of 22~ fail to satisfy
E(X%)— 1.

REMARK 2. It is impossible to define a metric d on the class of all distribu-
tion functions with zero mean such that ¢ induces the weak-* topology and
such that a* + b* = 1 implies

B(F(aX + bY), @) < max (A(L(X), @), (L), §,)) .

Such a metric, if it existed, could be used to prove thatindependence+c.a.s.n.—
j-a.n., which is false by Example 1.

6. Necessary and sufficient conditions. We now present an » and s condition
for j.a.n. in the case row-wise independence. It turns out that there is a sequ-
ence of “worst case” linear combinations; once these are under control all the
others follow. We need a technical result.

LEMMA 4. Suppose v, v,, - - -, V, are non-increasing right-continuous functions
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of y for y = 0, where v(0) = co is allowed, and for z > 0 set v(z) = inf max; v,(y;)
where the infimum is taken over nonnegative y,, - - -, y, summing to z. Then for
each z the infimum is attained at some point (1,, - - -, 1,), ¥(2) is non-increasing and
right-continuous, and for all z, j either (i) 7; = 0 and v,(0) < v(2), or (ii) v,(;) =
v(2) or (iii) v;(n;) < v(2), v;(n; — 0) > v(2).

The proof by induction on k is straightforward.

For each n, we apply this result to the functions

an(anj) — S le([anjx[<l) an;(x) _] == l’ D) kn

with the constraint Z;a;; = 1, obtaining a minimax V, attained at a,,,, - - -, @, -
We can thus define an array 2" by setting P{X,[; = X,; or 0} = 1, with
PX; =X, }=1if a,;, =0 or if a,; >0, |a,; X,;| < 1; = p,; if |a,; X,;| =
1; =0 if |a,; X,;| > 1, where p,; is so chosen that E(X;)’ = V, for all n, j
for which a,; > 0. Now define x.[; = E(X)}), B,; = a,;sgn(sl; + 0), so that
lﬁngl = Uy, ﬁng#:] = anjlllfj|~

THEOREM 3. [If 227 is row-wise independent, then 2~ is j.a.n. iff (i) &£~ is
(ii) ZAZ;B,,;X,;) — Oy, and (iii) Z(pi;)? — 0, where {8,;} and {p};} are as
c.a.s.n., defined above.

ProOF. Suppose (i) and (ii) hold, and define the array 22" as above. Since
&7 is c.a.s.an. V,(a) > § X, <, dP(x) uniformly in each a-interval not
including the origin; it follows that max; |«,;| — 0. Thus for all ¢ >0
max; P{|8,; X,;| = ¢} — 0, and since .~ (%,8,;X,;) — @, it follows from [4]
page 316 that X P{|8,;X,;| = 1} - 0. Thus X P{X,; = X[;} - I, so that
P{X,, = X', 1 <j<k,)— 1 and hence «(Z,8,;X];) — ®,. Appealing to
[4]againwehave X 8,10, — 0, X, 82,(V,, — (.;)") — 1. Thus Za,,;|p);| — 0,
so that X g2.(p)l)*—0, and hence V, = 2.6, V,— 1. However, since
A(XL) — @y, liminf Var (X;) = 1 and so Var (X,;) — 1. Now define 2277¢,
a centered version of =277, by X% = X, — pl;. Theorem 2 applies, and we
deduce that 2£77¢ is j.a.n.

Thus for any standard array {a,;} we have /" (Z,a,; X!) — ®,; thus

J J
AL, X,; — Za,;p10) — O

Assumption (iii) now ensures that .~ (2;a,; X, ;) — @, i.e., &£ is j.a.n.

Conversely, if 22 is j.a.n. then (i) and (ii) are trivially necessary; the above
argument then shows that 2277¢ is also j.a.n. Takinga,; = pl . /(Z,(¢5;)*)* (or
arbitrarily, if X,(xf;)* = 0) we deduce that (iii) must hold.

7. Two special structures. Clearly it would be desirable to have conditions
for j.a.n. when row-wise independence was not present, but we have no results
in this direction. We have examined to some extent two special structures.
Let F be a distribution function that is nonnormal, but is absolutely continuous
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with the zero mean, unit variance, and finite third moment. Then ([6]) in the
situation of Example 2 above, if F, = F for all n, each sub-array of &7 of
size {k,} is j.a.n. provided 2"k, — 0.

Thus in this case, only a vanishingly small fraction of the contrasts can be
j-a.n. Of course, it is possible for the order-statistics of the contrasts to exhibit
approximate normal-theory behavior without full approximate joint normality
obtaining; some results in this direction were obtained in [6]. For example,
if F, = F for all n, it is easily shown that the moment-ratio statistics g, =
kAZX(2X*)E and g, = k, ZX*/(ZX?)* computed from the contrasts will con-
verge in mean square to their normal-theory values provided § x®dF < oo;
under certain other assumptions of F it is possible to derive the asymptotic
covariance function of the process k,}(G,(x) — F,(x)) where F, = <~ (k, *3Y,),
and G, is the empiric distribution function of the contrasts. This covariance
function differs from the normal-theory one if § x*dF + 3(§{ x* dF).

For another example, consider a sequence of linear processes Z, = {Z,,,
t=...,—-1,0,1,...}, n=1,2, ... where Z,, = X,a,,Y, , with ..., Y_,
Y, Y, - - - being independent with <(Y,) = F for all u, and where Za?, = 1,
max, |a,,[ — 0. Construct an array %/~ by setting W, = Z,,, where the
array {z,;} is so chosen that the eigenvalues of the covariance matrix X, of
W,=W,, -, W..,) are uniformly bounded away from zero, and finally
construct &£~ by setting (X, - - -, Xor,) = X, = W,Z,}. Then 227 is j.a.n.
(compare [5]).
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