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BAHADUR EFFICIENCIES OF SOME TESTS FOR
UNIFORMITY ON THE CIRCLE!

By J. S. Rao
Indiana University

1. Introduction and summary. In this paper we compare the asymptotic
efficiencies of several tests that are available for testing uniformity on the
circle. Since the problem of testing goodness of fit on the circle can be reduced
to testing uniformity by a simple probability transformation, these comparisons
are applicable also to the goodness of fit situation. The alternatives to uni-
formity considered here are the familiar circular normal distributions (CND’s)

with density

(1.1) 9(a) = [2nl(k)] ' explecosa], —m<a<nm.

0 < £ < oo is a parameter of concentration, larger values of « corresponding
to more concentration towards the mean direction zero, and /y(«) is the Bessel
function of purely imaginary argument.

When ¢ = 0 (1.1) is the uniform density, so the null hypothesis is H,: £ = 0.
The tests compared here are

(i) Ajne’stest A

(ii) Watson’s test W
(iii) Rayleigh’s test R
(iv) Ajne’stest N

(v) Kuiper’s test V

(vi) Spacings test U.

In subsequent sections each of these tests is briefly described and its Bahadur
efficiency [4], [5] is computed, using large deviation results.

We compare the local slopes of the test statistics, i.e. the slopes in the
neighborhood of the hypothesis. On the basis of these comparisons, we find
that limiting efficiencies of the first three tests viz., Ajne’s test A, Watson’s
W and Rayleigh’s test based on R, are identical, while the other tests have
lower asymptotic efficiencies. Further conclusions are given in Section 7.
Finally in Section 8 a simple inequality between the Ajne’s N and Kuiper’s
V, whose asymptotic performances are identical, is noted.

2. Some preliminaries. The concept of Bahadur efficiency by now is well

Received April 6, 1970; revised August 18, 1971.

1 Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under
Grant No. AFOSR 71-2009. The United States Government is authorized to reproduce and
distribute reprints for government purposes notwithstanding any copyright notation hereon.

468

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. IMNGJRY ®

www.jstor.org



BAHADUR EFFICIENCIES OF TESTS FOR UNIFORMITY ON THE CIRCLE 469

known (see for example Bahadur [4], [5] and Gleser [7]). Throughout this
paper we employ the notations of Bahadur [5]. The following three lemmas
will be useful in the computation of the local slopes.

LeMMA 2.1 (Sethuraman). Let &2°° be a separable Banach space and 527,*, the
space of all continuous linear functionals x* on 2° with norm unity. Let X,(w),
X,(®), - - - be a sequence of random variables, defined on a probability space
(Q, S, P) with values in 27, which are independently and identically distributed
with a common distribution P(+). Let

(2.1) § x*(X(w))P(dw) = 0 for all x* ¢ Z,*
and let

(2.2) § exp (1] X()||)P(dw) < oo forall ¢t.
Then for e > 0,

(2.3) n'log P {w: 'Xl(w) + n t X"(w)” > e} — log p(Z7*, ¢)

where

(2.4) o(Z3*, €) = SUpec o p(X, €)

and

(2.5) p(x*, ¢) = max{p,(x*, ¢) = min,,, e “E (exp[tx*(X())]) ,

Px(X*, €) = min,, e“E (exp[tx*(X(w))])} -
The following lemma deals with the behavior of p(27*, ¢) defined in (2.4),
for sufficiently small . Notice that it is only the behavior of o(2,*, ¢) for ¢

small that counts in the computation of the local slopes, since b(x) (see (30)
of [5]) approaches zero as £ — 0.

LEMMA 2.2. For ¢ > 0 sufficiently small

(2.6) log o(Z7%, ¢) = — €[22 + o(e?)
where
(2.7 T = SUP,.c .« Var x*(X(w)) .

Proor. For any fixed x* ¢ 227,*, we have from Lemma 2.1

p(x*, <) = max{o,(x*, ), pulx*, ¢)}
where po,(x*, ¢) and p,(x*, ¢) are as given in (2.5). Now let p,(x*, ¢) attain the
minimum at the point # = #,. Then for sufficiently small ¢, in view of (2.1)

L, = ¢/d® + o(e)

where ¢ = Var x*(X{(w)) (see for instance Bahadur [3]) and o(-) consists of
terms in ¢* and higher powers of ¢, the coefficients of which involve the
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moments of x*(X(w)). But since the moments of x*(X(w)) are bounded by the
corresponding moments of |[X(w)|| which are all finite by (2.2), this o(.)
holds uniformly for all x* in 227*. Now for ¢ small, if ¢(¢) denotes the
moment generating function of x*(X(w)),

log p,(x*, &) = — et, + log é(t,)
(2.8) = — & + /207 + o(¢?)
= — &/20% 4 o(¢?)
where again o(+) is uniform in x* e 22", * because of the reason given earlier.

An expression similar to (2.8) is valid for the other term, namely p,(x*, ¢),
and hence for their maximum p(x*, ¢). Thus for ¢ sufficiently small

2.9) log p(x*, ¢) = — €%/20? + o(e?) .
Now, since o(+) is uniform in x* € 227,*, by taking the supremum over x* ¢ 227 *
on both sides of (2.9) we have the required result.

Three of the test statistics discussed in Section 3 viz., Ajne’s A, Watson’s
and Rayleigh’s tests are of the form

(2.10) T, = Qzn)™ 7 [ 21 (fla + ;) — 1)f'da

where (27)~'f € L,(0, 27) is a density on unit circle, not uniform, and a;, - - -, a,
are n independent random observations on the circumference. Let {c,} denote
the Fourier coefficients of f relative to the basis {eme,m =0, +1, +2, ...}.

Then we have
LEMMA 2.3. Under the hypothesis of uniformity, <* of (2.7) is given by
(2.11) t? = max,,|c,|*.

Further, if {d,} denote the Fourier coefficients of the alternative (1.1), then the
local slope of T, under the alternative, is given by

(212) C(/C) = Zm#o Icmlz|dm|2/ma‘xmlcm|2 °
PrROOF. Write
(2.13) yi(@) = fla + a;) — 1

and these will be treated as random variables in L0, 27) - {T,}} forms a
standard test sequence. In order to obtain the slope function we need (P with
subscript ‘o’ indicates probabilities under H, of uniformity)

P(T} 2 ni2) = Pf(2n)™ {5, Y(a)de = 7)
= P{[7,()I = 2}
Fu@) = Sy yde) and [[h()|[F = (22)7 §¥ K(a)da

is the usual norm in L,(0, 2x). This approach allows us to use Lemmas 2.1

where
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and 2.2 with 227 as L,(0, 2z) and 227*, the space of all continuous linear
functionals on L0, 2x) with norm unity. Corresponding to any element
h e L,(0, 2r) define the real-valued rv.

(2.14) Z = (y(+), h(+)) = (2)7 37 p(a)h(a)da .
To obtain
(2.15) 7% = SUP, ,.» VAr X*(y) = sup, -, Var(Z)

under uniformity, we use the standard Fourier expansion methods. From the
definition (2.13) the stochastic process {y(a), 0 < @ < 2z} has mean function
zero and covariance kernel Cov (y(a), y(8)) = K(a, B) say, under uniformity.
Write

(2.16) ya) = 3, X, em
with
X, = 27)7! (¥ p(a)e""™da .
Clearly X,, has mean zero and variance
(4n*)~t §2 2 K(a, B)e~im*emidadB = (27)7'2,,

where {4,} are the eigen values corresponding to K(a, 8). The eigenvalues of
K(a, 8) under the hypothesis are in fact given by 1, = |c,|* (see Beran [6]).
Further if {a,} denote the Fourier coeffiicients of # with respect to the same
basis

2.17)  Var(Z) = Var(£,a, X,) = Sulanltn = S lanllcal

Maximization of (2.17) subject to [|h||* = ], |a,|* = 1 occurs clearly when
a, = 1 corresponding to max, |c,|* and hence

(2.18) = MaXg, 2o D |@al’lCH]” = max, [c,[".
Now for the standard sequence {7,}}, from Lemma 2.2 and (2.11)
n~tlog P{T,t = nt2} = n'log P||7,.(+)||* = 23}
(2.19) — log p(Z71%, 2) = — 22[22% + o(2?)
= — A*/2max,|c,|* + o(2?) .

Further it can be checked that (c.f. Beran [6])
(2:20) Ton = ZinsolCalldn|’

where {c,} and {d,} are respectively the Fourier coefficients of y(a) and g(«).
Thus from (2.19) and (2.20) the local slope of the test sequence {T,}} is given
by (2.12).

3. Ajne’s A, Watson’s and Rayleigh’s tests. Lemma 2.3 can now be applied
to the following three special cases.
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(i) Ajne’s test A. Given n independent observations on the circumference
of a unit circle, let N(a) denote the number of observations in the half circle
[a, @ + 7) taking say, the clockwise direction as positive. Then Ajne [2]
proposed the statistic

(3.1) A, = 2rn)™ {3 [N(a) — n/2)]da
for testing uniformity on the circle. Here corresponding to the ith observation
«,, if we define

19

32 Y((a)=flata)—1=

if afsa,<a+nr
if a+r<a,<a+ 2r,

[T T

A, becomes a special case of T, defined in (2.10). Y,(a) given in (3.2) have
Fourier coefficients
¢, = l/zim if m odd

m

=0 otherwise
while the Fourier coefficients of (1.1) are given by

(3.3) d, = L,(k)/I(x) , m=+1,+2,....
Therefore the local slope (see (2.12)) of T,V = At is given by
(3.4) (k) = 2 Xino Lima(8)/(2m + 1)’I%(x)

(i) Watson’s test. Watson [16] proposed the statistic
(3:5)  W.=nr{F(a) — a/2z — §"[F,(B) — B[2x]dp[2r}da2n
which can be used for testing uniformity on the circle since its value remains
independent of the choice of the arbitrary point from which we begin cumu-

lating the probability density or the masses corresponding to the sample points.
This is a special case of T,, with

Yi(a) = I(a) — af2r — §i* [F,(B) — B/2x]dp/2x
where I(a) = 1 if a; < a and =0 otherwise. The Fourier coefficients corre-
sponding to this satisfy (c.f. Watson [16]) |c,|* = @m’z’)" ', m = =1, £2, ...
while {d,,} are again as given in (3.3). Thus the local slope of 7,” = W,} is
given by (see equation (2.12))

(3.6) ey(r) = 2 Znoy L' (e) [ I (k) -

(iii) Rayleigh’s test. Let us look at each observation a; on the circumference
as a unit vector with components (cos a;, sin «;). Then the classical Rayleigh’s
test for uniformity is based on the length of the vector resultant
(3.7) R, = (X7 cos a;)" + (X7 sin ;)" .

The hypothesis of uniformity is rejected when R, is too large. The exact null
distribution of R, is given by the pdf
(3.8) fr) = r§@ I (0) T (rt)edt for0<r<n.
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Further discussion and critical points for testing can be found in Greenwood
and Durand [8]. This is again a special case of T, if we set

Y(a) = 2t cos(a — a)) .
The Fourier coefficients corresponding to this are
¢, =27} if m=+1
=0 otherwise

so that from (2.12), the local slope of 7, = n~*R, is given by

(3.9) ey(k) = 20(k)/ I (x)
4. Ajne’s test N. If N(«)isas defined in Section 3 then Ajne [2] also proposes
4.1) N = supy, <z N(@)

which is the maximum number of points in any semicircle, for testing uni-
formity. We consider here the standard sequence

(4.2) T, = (N — n/2)/nt = n{[N/n — 4] = N, *, say
Then we require the probability
(4.3) P(T, " z ) = P(Njn — 4) 2 4} .

We shall obtain this by getting upper and lower bounds for this probability.
Since for any fixed a
(4.4 N = sup, N(a) = N(a),

ntlog P,{(Njn — ) = 2} = n~' log P{(N(a)jn — §) = 4} .
But N(a) under the hypothesis has a binomial distribution with parameter §.
Therefore,
(4.5) nlog PNjn — }) = 2} = log p*(3, 2)
where p*(}, 4) is as defined in (24) of Sethuraman [13]. In order to get an
upper bound for the probability in (4.3), for some ¢ > 0 (to be chosen suitably

later on), we divide the whole length of the circumference into N(0) =[27/0] 41
arcs of length 0 each and define

(4.6) N(a, 0) = number of observations in the arc [a, a + 7 + 0).
Then, clearly
4.7) N(a, 0) = N(a)

for all a. Further since any «a lies between [rd, r 4 1 0) for some r, the corre-
sponding N(a) < N(rd, d) so that

(4.8) N = sup, N(a) < max, N(rd, 9) .
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Thus
P{[Njn— 4] = 2} < P, {max,[N(d, d)jn — }] = 1)
4.9) = P{[N(rd, d)/n — ] = 2, for at least one r}
< Y9 PAN[(rd, )jn — 4] = 1) .
Now N(a, 0) has a binomial distribution with parameter (3 + 0) and all the
terms in the summation (4.9) are equal so that
(4.10)  P(Njn—4) = 2} < N@) - P,{N(rd, d)jn — } — 0 = 2 — 3}
= N@) - p*"(} + 9, A — 9)
where p*(p, 2) is again as defined in (24) of Sethuraman [13]. Choosing ¢ =
1/n the term on the RHS of (4.10) is 2zn. p*"(4 + 1/n, 2 — 1/n) so that
(4.11) limsup (1/n) log P{[N/n — }] = 4} < limsup log p*(} 4 1/n, A — 1/n)
— log p*(}. ) -
Thus from (4.5) and (4.11) we have
(4.12) ntlog P{(N/n — §) = 2} —> log p*(}, ) = — 22 4 o(#) .

In order to get the probability limit to which T,*/n? converges under the
CN alternatives, we observe that since N(«) is a binomial sum, for any fixed

(4.13) N(a)/n —,p(a) = Pla < 0 < a 4 =}

where 6 is a CN random variable with density (1.1). This convergence is
uniform in « since the random variables involved in the summation N(«) are
clearly uniformly bounded in #» and a (refer Parzen [11]). Thus

N/n = sup N(a)/rn —,sup_,.,. p(a) -
For the CN density defined in (1.1), this supremum is attained when a =
—m/2 so that
(4.14) N/n —,[2x1,(£)]7* §72), er e *da = A(x)
where A(x) is the probability that a CN rv lies within z/2 from its mean
direction. This can be expressed in the following series

(4.15) A(r) = [22L(r)]" ‘:;o:_;B(r'; L %)

Hence

T, Wt = (Njn — ) —, [A(r) — 4
and the local slope of the sequence {T,*'} is given by
(4.16) c(k) = [2A(x) — 1.

We remark in passing, that the statistic N is similar to the Hodges’ bivariate
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sign-test statistic [9], where for testing the equality of the bivariate df’s, he
proposes the maximum number of vector differences (differences between the
observed vectors in the two populations) with positive projections on some
line through the origin, as the direction of this line is varied.

5. Kuiper’s test. Kuiper [10] proposed a variant of the Kolmogorov-Smirnov
statistic for testing the hypothesis that the observations come from a popula-
tion with specified df F(x). If F,(x) denotes the empirical df, then Kuiper’s
statistic is

(.1 V., = nt{sup, [F,(x) — F(x)] — inf, [F,(x) — F(x)]}

which is specially suited for testing goodness of fit on the circle, as the statistic
V, is independent of the origin used for measurement of «. We take

(5.2) T, =V,

as the standard sequence. Abrahamson [1] computed the exact slope of this
test sequence. Under an alternative df G(a), it turns out that the local slope is

(5.3) ¢(G) = 4{sup, [G(a) — F(a)] — inf, [G(a) — Fa)]}*.

When G(«) is the CN alternative (1.1) and the null distribution F(«) is uniform,
it is easy to check that sup___,..[G(a) — F(a)] is attained at a« = 7/2 and the
inf___,..[G(a) — F(a)] at @ = — x/2. Thus from (5.3) the local slope of {T,*}
is given by

5.4 cs(r) = [2A(x) — 17

where A(x) is as defined in the preceding section. This slope is identical to
that of Ajne’s N.

6. The spacings test U,. Let {D,,i =1, ..., n} denote the lengths of the n
arcs between successive sample points on the circumference (usually referred
to as spacings). The author [12] has studied various tests based on these arc
lengths for testing uniformity on the circle. From among the class of such
spacings’ tests, let us consider the following test based on the statistic

(6.1) U, = Xr,max[D; — 2x/n, 0]
= {3, |D; — 2x/n|.
In this case we take the test sequence
(6.2) T,® = nt[U, — 2xn/e]/2n[2e* — Se*]t

as the standard sequence. It can be shown (see for example Rao [12] and
Sherman [15]) that this has an asymptotic normal distribution with mean zero
and unit variance, so that this sequence of test statistics satisfies (43) of [5]
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with a = 1. Further, from Rao [12] it may be seen that under the alternatives

(1.1

U, —, e *(a)da
_1),1 excoso J
6.3 = z” ol (__ < >
€ WER T e
= 27 Do (=1 L(R) L (x) -
Thus the approximate slope of this standard sequence {T,®} is given by

—1)¢ 1 2
64) o) = | D! ﬂ” f(—{; - e] 126t — 5e-7].

7. Comparison of the local efficiencies. In this section we compare the
limiting efficiencies of the six test statistics that have been considered in
Sections 3 to 6 on the basis of the slopes given in (3.4), (3.6), (3.9), (4.16),
(5.4) and (6.4) respectively.

The comparison of the limiting efficiencies is made easier by considering
approximations for the slopes when « is small, since in any case we let « tend
to zero for obtaining these efficiencies. Throughout this section the symbol
~ is used to denote that the ratio of the 2 sides approaches one as « tends to
zero. Since the Bessel function 7,(x) has the expansion

R A S PO 2 (x/2)" -},

" T T+ 1) Le(m+1) 12+ Hn+2)
ignoring terms involving Bessel functions of higher orders in (3.4),
(1.2) ey(k) ~ 2[L(x)/I(K)} ~ &2 .
Similarly
(7.3) e, (k) ~ K2
and
(1.4) ey(k) ~ k2.

For small &, the expression for A(x) given in (4.15) can be approximated by

A(k)y ~ % + &/z
so that .
c(k) = cy(k) = [2A(k) — 1] ~ 4&?[n*.

Finally the probability limit of U, given in (6.3) can be shown for small «, to be
2re™[1 + (£/2)"] + o(x?)
and therefore the approximate slope of U,
¢! (k) ~ [e7}(x/2)'T[(2e7" — 5e?)
= £*/16(2e — 5) .
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The following table gives the local efficiencies of the six test statistics studied
in this paper. Here L, , denotes the local efficiency of the test sequence {X}
relative to the test sequence {¥} when « goes to zero.

TABLE 1
Table of local efficiencies
Lyy % A W R v N U
A 1 1 1 7?%/8 7%/8 0
w 1 1 7?/8 7%/8 oo
R 1 728 728 o
v 1 1 )
N 1 o0
U 1

Thus the three tests, Rayleigh’s R, Watson’s W and Ajne’s A turn out to
have the same limiting performance for testing uniformity against the CN
alternatives. Kuiper’s V and Ajne’s N have also asymptotically identical per-
formances but they do not fare as well as the first three. If the efficiency of
R, W or A is taken to be unity, then V and N have an efficiency of 819,.
That the asymptotic efficiency of the spacings test U is zero as compared with
the other tests against the CN alternatives, is not altogether surprising in view
of the results obtained in Sethuraman and Rao [14]. However one need not
abandon the symmetric spacings tests because of this, since these local asymp-
totic Bahadur efficiencies seldom throw sufficient light on the relative powers
of the tests in small samples with which most practical investigations are
concerned. A modest simulation study was undertaken to assess the small
sample performance of the spacings test U as compared to Rayleigh’s test R.
The Rayleigh’s test was chosen for comparison since it is the likelihood ratio
test for testing uniformity in circular normal populations and is by far the
best test for the situation. 550 samples of size 10 each were generated from
the circular normal distributions (CND’s) with concentration parameter £ = 1
and £ = 3. Rayleigh’s statistic R and the spacings statistic U were computed
for each sample and compared with the corresponding 59, and 19 critical
points, obtained from Greenwood and Durand [8] and Rao [12]. The pro-
portion of samples which these two tests reject at these two levels of signi-
ficance are shown in Table 2.

From these comparisons we find that the small sample power of the spacings
test U as compared to that of Rayleigh’s test, is not as bad as the limiting
efficiency seems to indicate, even for observations from the CND. Besides its
satisfactory small sample power, the spacings test U detects clustering of any
sort and is a valid test for a much wider class of alternatives than Rayleigh’s
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TABLE 2
Monte Carlo powers of the tests R and U
CND with « =1 (sample size n = 10) CND with « = 3 (sample size n = 10)
Level of significance Level of significance
Test statistics Test statistics
5% 1% 5% 1%
Rayleigh’s test, R 0.4073 0.1891 Rayleigh’s test, R 0.9854 0.9636

Spacings test, U 0.2636 0.0927 Spacings test, U 0.9636 0.8200

test. It may however be noted that Watson’s test for example, is also valid
for this wider class of alternatives and is likely to be preferable to the spacings
test.

8. A simple inequality between Kuiper’s V and Ajne’s N. As remarked in
Section 5, the local slopes of Kuiper’s V and Ajne’s N are identical. In this
section we note that Kuiper’s V, defined in (5.1) is larger than Ajne’s N *
defined in (4.2) for all samples. If F,(«) denotes the empirical df as measured
from some point, define F,*(a) and F*(«) on the interval [0, 37) as follows.

(8.1) F *(a) = F (a) for 0 < a< 2z
=1+ F (a — 27) for 2r < a< 3=

and

(8.2) F¥(a) = af2n for 0 < a < 3r.

Then

N(a) = number of observations in [a, a + =)
= n[F,*(a + ©) — F,*(a)], for 0 a<2rn
and therefore
N* = nt[N/n — {]

= m* {SUpyc,cs: [F,*(a + m) — F,*(a) — §]}

= n* {SUpyco - [F " (a + ) — F¥(a + @) + F¥(a) — F,*(a)]}

< nt{Supyc oo [F (@ + 7) — F*(a 4 )]

— infogpep, [F, (@) — F¥()]}

= n} {SUpyg. - [Fo(@) — F(a)] — infy_, o [F,(2) — F(@)]}

= V” .
Thus the value of Ajne’s N, * cannot exceed that of Kuiper’s statistic V, for
any sample. From a consideration of the limiting distributions and other
facts mentioned in Sections 4 and 5, the approximate slopes of V, and N *

are seen to be equal and the two statistics have asymptotic distributions which
are of the same exponential order in the tails. Butsince V, = N, *, the limiting
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distributions must be quite dissimilar in their main parts. Thus in view of
the fact that the tails and main parts of the sequence of distributions do not
necessarily have the same limiting properties, one might doubt the reliability
of the Bahadur comparison between V, and N, *. However, as Abrahamson
[1] puts it, the Bahadur efficiency concerns itself with how well the null
hypothesis explains the sequences of test statistics when in fact the hypothesis
is false and the statistics are growing roughly in proportion to »t. Thus the
fact that Kuiper’s V, exceeds Ajne’s N, * in value, assures us in view of the
equality of the slopes, that V, ‘“attains a smaller level of significance” than
does N, * and is preferable to N, *.
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