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ASYMPTOTIC THEORY FOR SUCCESSIVE SAMPLING WITH
VARYING PROBABILITIES WITHOUT REPLACEMENT, 1

By BENGT ROSEN
Royal Institute of Technology, Stockholm

To each of the items 1,2,---, N in a finite population there is
associated a variate value. The population is sampled by successive
drawings without replacement in the following way. Ateach draw the
probability of drawing item s is proportional to a number p, > 0 if item
s remains in the population and is 0 otherwise. Let A(s; n) be the prob-
ability that item s is obtained in the first » draws and let Z, be the sum
of the variate values obtained in the first n draws. Asymptotic formulas,
valid under general conditions when # and N both are ‘large”, are
derived for A(s; n), EZ, and CoV (Zy,, Zn,). Furthermore it is shown
that, still under general conditions, the joint distribution of Zy, Zn,,
-++, Zny is asymptotically normal. The general results are then applied
to obtain asymptotic results for a ““quasi’’-Horvitz-Thompson estimator
of the population total.

1. Introduction, summary and notation. In recent years considerable interest
has been paid to sampling with varying probabilities, a term which covers a
diversity of sampling procedures. For general expositions of this subject we
suggest the book [7] by Sukhatme and Sukhatme and the paper [2] by Hajek.
In this paper we shall be concerned with the sampling procedure which, in
accordance with the terminology in [2], is called successive sampling without
replacement. With this sampling procedure items are sampled one after the
other and without replacement from a finite collection, in such a way that at
each draw, the probability of drawing item s is proportional to the number
p, if item s remains in the collection. Some quantities of particular interest
are the following inclusion probabilities,

(1.1) A(s, n) = probability that item s is included in a sample of size n.

We shall assume that a variate value a, is associated with each item s. Let
m = (ay, a, - - -, a,) be the population of variate values. The sample sum Z,
is the sum of the variate values in a sample of size n.

Our main concern in this paper is the asymptotic behaviour of the inclusion
probabilities and of the sample sum as zand N tend to infinity simultaneously.
We derive approximation formulas for the mean and variance of Z,, which
are valid under general conditions when » and N both are large. Moreover
we show that, still under general conditions, Z, is approximately standard
normally distributed if “standardized” with the approximations of its mean
and variance.
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374 BENGT ROSEN

From a statistical point of view the “most interesting” linear statistic of the
sample variates is not the sample sum, but other linear statistics which yield
unbiased estimates of the population total, or equivalently of the population
mean. However, once one has general results about the asymptotic behaviour
of the sample sum, these results can be transformed quite easily to yield
asymptotic results for other linear statistics. We illustrate this point by
deriving asymptotic results for the so called Horvitz-Thompson estimator,
which is defined as follows,

1.2 HT), =YV W . %
( ) ( )n s=1 s A(S, n)
where
(1.3) W, =1 if item s is included in the sample
=0 otherwise

and A(s, n) is the inclusion probability in (1.1).

This paper can be characterized as the probabilistic part of the large-sample
theory for successive sampling. Problems still remain to be solved in order to
“convert” the results into statistical procedures. We hope to pursue the matter
in this direction later.

The key tool in the following analysis is the technique which was worked
out by the author in [4]. This technique was applied in [5] to a coupon
collection problem. On the basis of the results in [5] the author derived further
results concerning coupon collection in [6]. Some of the results in [6] will be
crucial in this paper. The course of the paper is as follows. In the next section
we make precise some concepts and notation concerning successive sampling.
In Section 3 we formulate the main results about the asymptotic behaviour of
the inclusion probabilities and the sample sum. These results are then proved
in Sections 4—13. The last section is devoted to the asymptotic behaviour of
the Horvitz-Thompson estimator.

Two papers of relevance here are the earlier mentioned paper [2] by Hajek
and the paper [1] also by Hajek. In [2] Hajek solves the same problems as
we shall consider here for a sampling procedure which is called rejective
sampling. In[1]Hajek showed, under the assumption that the sampling fraction
keeps away from 0 and 1, that a necessary and sufficient condition for the
validity of the central limit theorem for simple random sampling without
replacement is the so-called Noether’s condition (see (3.5) in[1]). Successive
sampling without replacement includes as a particular case simple random
sampling. When specializing our results in this paper to simple random
sampling we do not obtain the central limit theorem under Noether’s condition
but only under the stronger assumptions (3.21) and (3.23). However, we
believe that this is only a technical fallacy and we conjecture that Theorem
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3.3 in this paper is true even if the assumptions (3.21) and (3.23) are replaced
by Noether’s condition. However, we have not been able to obtain the neces-
sary estimates in this more general case.

We close this section by listing some notation that will be used throughout
this paper. P denotes probability, E expectation, ¢*(+) variance and Cov(-, )
covariance. The superscript © indicates centering at mean, i.e. Y* =Y — EY.
Z(X) denotes the distribution of the random element X and X = . Y means
that (X)) = <A(Y). <& (X, X,, ---) is the g-algebra of events which is
generated by the random variables X, X,, - - .. E“ denotes conditional expec-
tation given the g-algebra <%. Instead of E“* we often write E¥. Weak
(mass-preserving) convergence of measures is denoted by =—. N(u, 4) stands for
the normal distribution with mean vector ¢ and covariance matrix (operator)
A. Matrices will usually be written as follows, [a,,;v, g = 1,2, ---,d]. ¥
denotes number. We use the convention that when we put a non-integer 2
in a place where there would naturally be an integer, then 1 is interpreted as
its integral part [1]. Absolute constants will be denoted by C. If the value
of a constant depends on parameter u, we write it C,. We shall repeatedly be
concerned with bounding functions C(x, y) with the following properties.

(1.4) C(x,y) isdefined for 1 < x< 00,0 <y < oo, iscontinuous
in (x,y) and is non-decreasing in each of its arguments.

Because of continuity, C(x, y) is bounded on every compact part of its domain
of definition.

2. On the sampling procedure. In this section we shall introduce some basic
concepts, terminology and notation concerning successive sampling. Let

(2.1) P = (v Po -5 Py)

where

(2.2) p.>0, s=1,2,---,N
and

(23) ptpt o dpy=1.

We shall consider two different procedures to produce successive samples.

DRrRAWING PROCEDURE 1. Numbers are drawn one after the other without
replacement from the collection (1, 2, ---, N). At each draw we have

(2.49) Probability that s is drawn

= proportional to p, if s remains in the collection
=0 otherwise.

This drawing procedure will deliver the numbers 1,2, --., N in a random



376 BENGT ROSEN

order, I, 1, ---,I,. The random vector I,1I, ---,1, will be called a
p-permutation of 1,2, ... N.

More formally we define the random vector I,, I, - - -, I,, as follows. Let
(2.5) Q= {(iy b, -+, iy)}

be the set of all permutations of 1,2, -.., N. We introduce the probability
measure P on Q by the following elementary probabilities.

(26) P((ip Iyy + 00y lN))

:g_il‘ Pi? . pi3 e P":N .
O Pi; 1 — (Pil + pi,) 1 — (Pil + .- +Pi1v_1)
Now define the random variables I, I,, - - -, I, on (Q, P) by
(2.7) Iy=(i1’i27"',iN):iu’ ”:1,2,"',1\,.

REMARK. In (2.3) we made the normalizing assumption that the “draw
probability proportionates” p,, p,, - - -, p, are probabilities, i.e. that they sum
up to 1 (see (2.3)). This assumption could have been dispensed with if we
instead had written formula (2.6) in the following way.

(2‘8) P((il’ iza Tt iN))

P, Pi, o Piy )

o1 Py w1 Ps — P o1 Py — (Pil + o)
We shall refer to this case as the case with genenal draw probability proportionates.
However, it will usually be convenient to have the normalizing assumption
(2.3), and we adopt the following convention. Unless we explicitly state that
we are dealing with general draw probability proportionates we assume that
(2.3) is fulfilled.

We now regard 1, 2, ---, N as labels on the items in a finite collection and
we assume that a variate value (i.e. a real number) is associated with each
item. Let a, be the number associated with item 1, @, the number associated
with item 2, etc. The set of numbers

(2'9) T = (al’ (Y aN)

will be called a (finite) population,and a,, a,, - - -, a, the elements in the population.
DeriNiTION 2.1. Let I, I,, ---, I, be a p-permutation of 1,2, ..., N and

let = = (ay, a,, - - -, a,) be a finite population. Put

(2.10) Y1=a,1, Y2=a12,~~-,YN:a,N.

The random vector Y, Y,, - - -, Y, will be called a p-permutation of the elements

in =, and the random vector ¥,, Y,, ---,Y,, 1 < n < N, a p-sample of size n
Sfrom r.
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The characteristics of a sampling situation of this type are thus p =
(p1> P2 -+ +» py) and © = (a,, @y, - - -, ay). We will refer to the pair (p, 7) as
the sampling situation.

As an over-all-term for p-sampling we use the term successive sampling
(without replacement).

DEeFINITION 2.2, The inclusion probability for item s in a sample of size n is
(211) A(s,n):P(se(Il,Iz,~--,In)), S,n=1,2,°~~,N.
Next we consider an alternative way to obtain a p-permutation.

DRAWING PROCEDURE 2. Numbers are drawn one after the other with

replacement from the collection (1, 2, ---, N). At each draw we have
(2.12) p, = the probability that number s is drawn.
A number drawn is “included in the permutation” if it was not obtained
previously. Letl, I, -- -, I, be the numbers 1, 2, ..., N in the random order
in which they are included in the permutation.

More formally we define the random vector I, I,, - - -, I, as follows. Let
J, J,, - - - be independent random variables, all having the distribution
(2.13) P(J:S):ps, S=l,2,~~~,N.
Let
(2.14) M, = the number of different elements among (J,, J,, - -+, J,),

n = l, 2,

and
(2.15) T, =inf{n: M, =}, v=12,...,N
i.e. T, is the waiting time to obtain v different numbers. Now put
(2.16) L'=1J,, v=12,...,N.

The following lemma which states the equivalence of the two drawing proce-
dures is intuitively clear. We omit a formal proof.

LemMma 2.1.
(2'17) (]1,’ Iz,’ ' "’IN,) :y(Iv Iz, ""IN) .

Because of the equivalence (2.17) we will omit the primes in (2.16) in the
sequel.

We end this section by introducing some notation that will be used throughout
the paper. Let p and = be according to (2.1) and (2.9). Put

2.18 L = max_Np,_,
( . Np,
(2.19) ! = min, Np, ,
2.20 =L/l.

0
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The mean, 1, and the variance, ¢ 2, of the population © are
HPr x popu

(2.21) pe=— Tha,

(2.22) 0= s T, — )
Furthermore, we put

(2.23) M = max, |a .

Sometimes we want to emphasize that M depends on the population. We then
use the notation

(2.24) M(r) = the maximal absolute value of the elements in 7.

3. Formulation of the main results. In this section we shall formulate the
main results of this paper, which give asymptotic formulas for the inclusion
probabilities and for the distribution of the sample sum. We first write some
of these formulas with a remainder term and then give conditions for the
remainder term to be asymptotically negligible.

Letasusual Y}, Y,, ..., Y bea(p,p, -, py)-permutation of the elements
inr = (a, a, ---, ay) and let
(31) Zn:Y1+Y2-|—'--+Yn, n=12,.-..,N.

The following function will be crucial.

DeriNiTION 3.1. The function #(y) (depending on p) is defined implicitly by
the relation

3.2) N—y= ¥ ertn 0<y<N.
The above definition is always meaningful since the function
(3.3) i, e x=0

decreases strictly from N to 0 as x increases from 0 to oo (cf. (2.2)).
Our approximation formula for the inclusion probability A(s, n) (see (2.11))
is

(3.4) A(s,n) = 1 — e ?t™ 4 ry(s,n) - N7t
Put
3.5) ry(n) = max,|ry(s, n)| .

We shall show that r(r) is “small” under general conditions.
The sample sum Z, can be expressed in the following form, where W, is
defined in (1.3),

(3.6) Z, = Y% W,a,.
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We have

3.7 EW = A(s, n).

By taking expectation in (3.6) and by using (3.7) we get the well-known formula
(3.8) EZ, = %Y, aA(s, n).

From (3.8), (3.4)and (3.5) we get the following approximation formula for EZ,.
(3.9) EZ = 3V, a(l —et™) 4 ry(n) - Nt

where

(3.10) Ir(n)| < max, |a,| - ry(n).

We introduce the following notation

(3.11) um) = 1V a(l — erstm) n=12...,N.
Then we can write (3.9) as follows

(3.12) EZ, = p(n) + ry(n) - N*.

To formulate approximation formulas for second moments of sample sums we
need some more notation. Put

(3.13) &) = DX, pe
(3.14) n(n) = 3., p,a,e Pt
019 rtmm = 52 (5= 1) T ey,
m &(n
l<m<n<N
= a(n, m), l<sn<m<N.

As a particular case of (3.15) we put

—Dpt(n)
(3.16) o*n) = a(n,n) = 3.V, (as _ L peaetr >2(1 — ePstm)gpstin) |

?1Y=1 Pr e—p,.t('n)
n=12,...,N.
Our approximation formulas for variance and covariance of sample sums are
as follows

(3.17) Cov(Z,, Z,) = a(m, n) + r,(m, n) - a(m) - a(n) .
In particular we have
(3.18) o(Z,) = a*(m)(1 + r,(n, n)).

We shall show that r,(m, ) is “small” under general conditions.

The precise formulation of the approximation results will be given in the guise
of limit theorems. The appropriate limit procedure will be obtained by con-
sidering a sequence {(p,, 7,)};~, of sampling situations, where

(3.19) Pi = (Pivs Piss ** 5 Paw,)
(3.20) T = (s Aoy ** * Ay, -
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We adopt the following convention throughout the paper. Whenever the index
k is attached to a quantity, we mean that this quantity relates to the sampling
situation (p,, 7).

Next we list some conditions on the sequence {(p,, )};;-

(3.21) lim,_ N, = o,

(3.22) lim sup, ., MaX, Pre < oo,
min, p,,

(3.23) lim sup,_,, max |a,, — ¢, | < oo

Tk

where ¢, and 4, are defined in (2.21) and (2.22).

THEOREM 3.1. If the sequence (p,, m,), k = 1,2, ..., satisfies (3.21) and
(3.22), then the corresponding sequence r,'*\(n), k = 1,2, - .., (see (3.5)) satisfies
(3.24) lim,_, MaX, v, <nscon, r,®(n) =0
for every
(3.25) 0<y <, < 1.

REMARK. According to (3.4), (3.5), (3.9) and (3.10) this theorem yields
information about the asymptotic behaviour of the inclusion probabilities and
the expectation of the sample sum.

THEOREM 3.2. If the sequence (p,, w,), k = 1,2, - - -, satisfies (3.21), (3.22)
and (3.23), then the corresponding sequence r,’*'(m, n), k = 1, 2, - . -, (see (3.17))
satisfies

(3.26) lim,_,, max |r,*)(m, n)] =0

T NpSm,nStgNy

for every t, and t, which satisfy (3.25).

Next we shall formulate results concerning asymptotic normality of sample
sums. To avoid confusion we first state what we put into the term asymptotic
normality.

Let U, = (U\"®, U,®, ..., U,*), k= 1,2, ..., be d-dimensional random
vectors and let g, = (i, p,'®, - -+, p,¥)and 4,, k = 1, 2, - - ., be d-dimen-
sional vectors and d X d nonnegative symmetric matrices. By the statement
that U, is asymptotically N(p,, A,)-distributed as k — oo, we mean that

(3.27) A4 HU® — p®, e USP — 5, ®Y) = N(O, T) as k— oo
where ' denotes transposition and 7 is the identity matrix.

THEOREM 3.3. Let the sequence (p,, 7,), k = 1,2, - - -, satisfy (3.21), (3.22)
and (3.23). Let d be a ( fixed but arbitrary) natural number and let n,V, n,®,
-+, n,'Y be integers such that

(3.28) 1<nP<n?< - <Y <N, k=1,2,...
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Furthermore we assume that

(1) (d)
n, . n,

(3.29) 0 < liminf,__ < limsup,_., <1
Nk k
and
(u+1) ()
3.30 liminfw<n’°‘—n’° ) 0, u=1,2,---.d—_1.
(3.30) K N, N, >

Z,"® is defined according to (3.1). Then (Z¥ 0, Z% gy, e Z'¥) ) is asymptotically

(3.31) (a) N(EZ¥w, -, EZ" ), [Cov(ZE,.), ZY ) vs e =1,2, ..., d])-
distributed as k — oo .

(3.32) (b) N((e(m™)s - -5 (m'?)), A(m, @, - -, n,D))-distributed as
k— oo

where y1,(n) is defined in (3.11) and

(3.33) A(n®, n®, e 1Y) = [o(n, n®); v, p = 1,2, ..., d]

with a(m, n) according to (3.15).

The following result is only a particular case of (b) in the theorem above.

CoROLLARY. If the sequence (p,, m,), k = 1,2, - .., satisfies (3.21), (3.22)
and (3.23) and ifn,, k =1,2, ..., satisfies

3.34 0 < liminf, ™ < limsup, . ™ <1,
(3.34) < N, = Pe Nk<

then Z'¥) is asymptotically N(p(n,), o,(n,))-distributed as k — co, where ()
and ¢,X(n) are defined in (3.11) and (3.16).

4. Some relations between successive sampling and coupon collection. Let
JisJy - -+, M, and T, be according to (2.13)—(2.15). For fixed s, s = 1, 2,
<o+, N, we let Ji(s), Jy(s), - - - be independent random variables, all having
the distribution.

(4‘1) P(J(S):r):pr(s):—lL’ r:1,2,"',S—1,S+1,"',N.

8

Let T,(s) be defined relative to Ji(s), Jy(s), - - - in the same way as 7, is defined
relative to J;, J,, ---. Our analysis of the inclusion probability A(s, n) (see
(2.11)) will be based on the following formula.

LemMmAa 4.1. Fors,n, = 1,2, ..., N we have
(4.2) AGs,m) =1 — E(1 — p)Tatv .

In the proof of (4.2) we shall use the following conditioning result, the proof
of which is straightforward and therefore omitted.
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LeEmMmA 4.2. Let fors=1,2, ..., N, t=1,2, ... A,(s) be the event
(4.3) A(s) ={s¢ (J, I ---, T} .
Then, the conditional distribution of J,, J,, - - -, J, given the event A,(s) is the same
as the distribution of J\(s), Jy(s), - - -, J,(s).
ProoF ofF LEMMA 4.1. According to Lemma 2.1 and the law of total
probability we have, with A4,(s) as in (4.3),
44 1—=Asnm=P(lse( L, ---, L)}) = P(lse (J, Joy -+, Jp)})
= L PAT, = 1} N A(9)
= L. P(Afs) - PAT, = 11| 4,(9)) -
From Lemma 4.2 we conclude that

(4.5) P(T, = t| A(s)) = P(T,(s) = 1) .
Furthermore, as is easily realized, we have
(4.6) P(4,(5)) = (1 — p,)*.

From (4.4)—(4.6) we get

4.7) L —A(s,n) = 32, (1 — p)P(T,(s) = 1) = E(1 — p,)T= .
Thus the lemma is proved.
We introduce some new random variables. With J,, J,, - - - asin (2.13) we put

(4.8) H =1 if Joeg(ydy -, Jd,00) v=1,2,.
=0 otherwise

Letn = (d,,d, - - -, dy) and put

(4.9) 0,=xr.Hd,, n=1,2, ...,

We note that the distribution of Q,, Q,, - - - is determined by the pair (p, x).

LemMa 4.3. Let, for the same pair (p, z), D,, D,, - - -, D, be p-permutation
of the elements inx = (d,, d,, ---,dy) and Q,, Q,, - - - be defined by (4.9). Then

(4.10) :L:lDV:.?QTn’ n=12.-..,N,
where T, is defined in (2.15).

Proor. Formula (4.10) follows from (2.14)—(2.17), (4.8) and (4.9). We
omit the details.

The papers [5] and [6] are concerned with the random variables Q and T.
We list some results about them which we shall need in the sequel. The follow-
ing two estimates are derived in Theorems 6 and 8 in [6].

(4.11) E[Q[* < m* . C, - (max,[d)*, u=0,n=12, ..
(4.12) E|T, — tn)|* < n** . C,(p, n/N) , u=0,1<n<N
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where #(n) and p are as in Definition 3.1 and (2.20) and where C,(-, .) is as
in (1.4).

The following estimate concerning the function #(p) in Definition 3.1 is a
special case of formula (3.11) in [6],

(4.13) =2 (1-2)", 0<y<nN,

where / is according to (2.19).

5. Proof of Theorem 3.1. Here we shall prove Theorem 3.1. The basic
formula in the proof will be (4.2).
Let #( y; s) be defined relative to p,(s), - - -, p,_i(8), Ps1(5), « - -, pu(s) (see (4.1))

in the same way as #(y) is defined relative to p,, ---, p, (see Definition 3.1),
i.e. #(y; s) is defined implicitly by the following relation
(3.1 N =1 —y=2"expl—pUy9], O0=y=N-1.

In (5.1), and in the sequel, the prime on the summation sign indicates that the
summation excludes r = s.

LemMa 5.1. With A(s, n) and t(n) according to (2.11) and (3.2) we have for
s,n=12,---, N,

(5-2) |A(s, n) — (1 — en!™)| < CIN* 331, r(s, n)
where C is an absolute constant and
2

(5.3) ris,n) = Nt _Ps_yn;s),

1 —p,
(5.4) ro(s, n) = N%TL |ET(s) — t(n; 5)|
(5-5) r®(s,n) = N* - p? - E(T,(s) — t(n; s))",
(5.6) r(s, n) = Nt - p - |t(n; 5) — t(n)| .

Proor. From formula (4.2) we get

(57) 8@, m) — (1 — em)| < [E(L — p)rsie — Eenitate)

+ lEe—psTnm — e—p3t<n;s>l + |e—pst(n;8) _ e—pst(n)l .

Next we list without proof some elementary inequalities which we shall use
to estimate the terms to the right in (5.7).

(5.8) e — e™®2| < |x; — Xy , X, X, =0
(5-9) [(e71 — e7%2) 4 e7"2(x; — X,)| = C(x; — x,)°, X, % =0

(5.10) 0<e” — (1 —x) < Caxle /(1 — x), 0x<1l, a>0.
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From (5.10) we get
(5.11) |[E(1 — p,)7nt) — Ee?sTals)|
=C l—p‘?— ET,(s) = C 1_1’82_ (H(m; s) + |ET,(s) — t(n; 5)]) .

From (5.9) we get after some computation
(5.12) | BensTa®) — emvatnin| < |e2stiwp (T, (s) — t(n; 5))
+ CpE(T,(s) — t(n; 5))*.
Finally we get from (5.8)
(5.13) jePetnin  =nit)| < plt(ms 5) — 1(m)] .
The lemma now follows from (5.7), (5.11)—(5.13).
Proor oF THEOREM 3.1. Let r, (s, n),‘i =1, 2, 3, 4, be defined by (5.3)—

(5.6) relative to the sampling situation (p,, z,), k = 1,2, .. .. The assertion
in Theorem 3.1 follows from Lemma 5.1 if we show that

(5.14) lim, ., max_y, ,<.v, max, r,(s,n) =0, i=1,2,3,4.

Let I’ = min, (N — l)p,(s) and L' = max,(N — 1)p,(s). Note that condition
(3-22) can be written in the following way, with /and L as in (2.18) and (2.19).

(5.15) 0 < liminf, I, <limsup, L, < oo.
It is easily checked, that if (5.15) holds, then we also have
(5.16) 0 < liminf,__ I’ < limsup, L,/ < co.
From (5.3), (2.18) and (4.13) we get

L2 1 n n \!
5.17 r, (s, n SN%._k.__._<1___> )
(-17) e = N, N2 1—LJN, I’ N, — 1

Now (5.14) for i = 1 follows from (5.17), (3.21), (5.15) and (5.16). Further-
more we have

(5.18) r(s,m) = N} - Phe [ET,0(5) — 1,00 5)]

ks

LN} |
< Tk |ET ®(s) — t(m; )] .
S P BT (0) — b )

k

(5.14) for i = 2 now follows from (5.18), (5.15), (3.21) and Theorem 5 in [6].
Next, according to (5.5) and (4.12) we have

(5.19) (s, m) < N2 - pi, - B(T(s) — t(m; s))

<Nt . L, (L ,,,’?,,,,,,)
= N, lk’,Nk_ '
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Now (5.19), (5.15) and (5.16) yield that (5.14) is true for i = 3. To treat
ri'"'(s, n) we shall need the following auxiliary result, the proof of which is
quite elementary and therefore omitted.

LEMMA 5.2, Let ¢,(x) and ¢(x), 0 < x < oo, be functions which satisfy,
(1) ¢i(x) and @,(x) are both strictly increasing, x = 0.
(ii) @/(x) and ¢,'(x) are both non-increasing, x = 0.
(iii) [ga(x) — ¢,(x)| < 4, x = 0.
Let t,(y) and t,(y) be the inverse functions of ¢,(x) and ¢,(x). Put (for y’s such
that t,(y) and t,(y) both are defined)

t*(y) = max(t(y), t(y)) -
Then,

(5.20) 0(y) — t(y)| < A

min (¢, ((y)), /() -
To estimate r'“(s, n) we apply Lemma 5.2 with

(5.21) (X)) = N — IV, epre x>0

and

(5.22) @ (x) = (N — 1) — 'yzlexp<_iﬁ_x>, x>0.
_ps

The corresponding inverses are then #(y) and #(y; s) (see (3.2) and (5.1)). It
is easily checked that ¢,(x) and ¢,(x) satisfy the conditions (i) and (ii) in Lemma
5.2. We show that condition (iii) is also satisfied. By using the mean value
theorem we get, with p as in (2.20),

lo1(%) — @o(x)| = ’1 — et 4 VY (exp <— _rp’_sx> — e—m)

(5.23) <1+ 20 (B = p e < 1 pxentie

8

§1+—l];[—xe"”"“‘”:1—|—p-%-e“”‘/”’§1+pC,

where C is a constant. Thus, condition (iii) is also fulfilled. According to
(4.13) we have

(5.24) t(y)§l<1 — %f.

(5.25) t(y;s)§%<1— J >—1.

From (5.24) and (5.25) we get

(5.26) t(y) = max (1), H(y; 5)) < )liC<N}: 1),
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where C(x) is bounded on every interval [0, x], 0 < x < 1. Furthermore, we
have

(5.27) @/(%) = X, p et Z e HNE x=0

5.28) of(x) = YV, _Pr P > <_ _ L  x),

(5.28)  ¢/(x) ,_ll_psexp(l_psx)_exp R =)
x=0.

From (5.26)—(5.28) we get

o L

5.29 (), () = - = . Jc( :

(5:29) min(e/ () /) Zexp(— e ()

From Lemma 5.2 and (5.29) we now get

5.30 Hn) — t(m; 5)| < C(p, "

(5.30) 1) — 10 9| < € (00 ")

where C(., +) is as in (1.4). Now (5.14) for i = 4 follows from (5.6) and
(5.30). Thus, Theorem 3.1 is proved.

6. Two basic conditioning results. In the sequel we shall carry out a number
of conditioning computations. In this section we shall consider some simple,
but basic conditioning principles for successive sampling, upon which all the
following conditioning computations will be based.

Let as usual I, I,, - - -, I, be a p-permutationof 1,2, - .., N. <2 will here,
and in the sequel, be the following sigma-algebra of events.
6.1) Z, =B, 1, -, 1), n=20,1,2,...,N.

We shall need the following concept.
DEFINITION 6.1. Let G = (s,, 8,, - - -, 5y.) be asubsetof (1,2, ---, N). Bya

(P1s po + + +» py)-permutation of the items in G, we mean the random permutation
of (s,, 8, - - -, 8,,) which is obtained by drawing procedure 1 (see Section 2)
with draw probability proportionates p, , p,,, - - -, p,, (see the remark in Section
2).

LeMMA 6.1. The following result holds for general draw probability proportion-
ates.
The conditional distribution of I, .\, I, ,, - - -, I, given %, (i.e. given I, I,, - - - 1)

is the same as the distribution of a (p,, p,, - - -, py)-permutation of the items in
(6.2) G(Z,)=(,2,---,N\(, L, ---, 1) .
The proof of Lemma 6.1 is straightforward and we omit it.

LEMMA 6.2. The following result holds for general draw probability proportion-
ates.

Let I, 1, ---,1, be a (p,, p,, - - -, py)-permutation of (1,2, ---, N) and let
D, D,, .-, D,be the corresponding p-permutation of the elements in the population
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(dy, dy, - -+, dy). Then we have

(6.3) E=wD,,, = 2P = BiapiDe gy
2Py — Zf=1p1,
Proor. The following formula, which holds for general draw probability
proportionates, is easily realized,
(6'4) EDI = Z?’:lpsds/z‘iv:lps .
Now, from the previous lemma and (6.4) we get, with G(.=Z,) as in (6.2),

> ;;V: sds - f: Dv
E“»D, , = 2iscaia, psds/ZsEG(ﬁn)ps = ) 11;” Zn 11, .
3=1ps - Zu:lpl,,
Thus, the lemma is proved.

7. Bounds on the central moments of the sample sum. The following bounds
on the central moments of the sample sum will be needed repeatedly in the
sequel.

Lemma 7.1. Let D,, D,, - - -, D, be a p-permutation of the elements in = —
(d, d,, - --,dy). Then we have foru >0,1 <n < N,

(7.1) E|3 Dy < nl* - M(m) - C,(p, n/N)
where M(r) and p are according to (2.24) and (2.20) and C,(+, +) is as in (1.4).

Proor. According to Lemma 4.3 we have

(7.2) v D, = QTn =0im + R,,

where

(7.3) R, = ZvT:t(n)H HvdJ,, if T,> Hn,
=0 if T,=1tn,

= Zﬁ(ﬁ)rnﬂ HudJ,, if 7, < tn),
and where the H-variables are defined in (4.8). From (7.3) we get
(7‘4) |Rn| é lTn - t(n)| - max, Ids| = M(TL') . |Tn - t(n)| .
By centering at means in (7.2) we get
E| i D" = E|Qi, + R|* < C, - E|Qi|* + C, - E|R,|"
(7.3) = C, - E|Qi[* 4+ € - E[R,|* + C/(E|R,|)*
according to (7.4)
= CLEIQ:," + C/
X M(z)*(E|T, — (n)[* 4 (E|T, — t(n)])*) .
By applying the estimates (4.11)—(4.13) in (7.5) we obtain (7.1) and the lemma
is proved.
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8. Some auxiliary results. As stated in Section 1, our basic tool in the proof
of the main results will be the technique in [4]. To apply Theorem B in [4]
we have to check certain conditions. In this section we shall derive results
which are preparations for the verification of these conditions.

We continue to use notation which has been introduced so far. In particular
L, I, p and M are according to (2.18)—(2.20) and (2.23).

Asusuval I, I,, - - -, I, isa p-permutationof 1,2, ..., Nand Y,, ¥,, ---, Y,
the corresponding p-permutation of the elements in 7 = (a,, @, - - -, a,). We
introduce the following new quantities

1 o ..
(8.1) 9= ¥, (Np)a , Lj=0,1,2, ...

In (8.1) and in similar formulas we use the convention that &® = 1 even if
a=0.
Furthermore, we define the following random variables for i, j = 1,2, - - -

(8.2) Y, (i, j) = (Np[y)ia{u , y=1,2,..-,N,
(8.3) Z”(i,j) = :L:l Yu(i’j) k) n = 19 2’ M) N9
(8'4) Vﬂ(l’]):qw_%zn(l’j)’ n:1929"‘,N~

Note that the definitions (8.2), (8.3), (2.10) and (3.1) are related in the
following way

(8.5) Y,=Y,0,1) and Z, = Z,0,1).

LEMMA 8.1. The random variables Y,(i, j), Y,(i, j), - - -, Yy(i, j) constitute a
p-permutation of the elements in the population

(8.6) n(i, j) = (Np,)'a?, (Np,Ya,’, - - -, (Npy)ia,) .
Proor. Obvious.

Lemma 8.2. Fori,j=0,1,2, ... we have

. V(i 1))
8.7 E“n s =2 - J7, =0,1,2,...,N— 1.
(8.7) N

Proor. According to Lemma 6.2 and the previous lemma we have

E“n (J)= L PNp)'al — i pr(Np)'ad,
n+1\%s -

1 — Zf:d’z,
— G —(AN)Z(+ L)) _V.(i+ 1))
Tr0 — (1/N)Z,(1,0) V.(1,0)

Thus the lemma is proved.
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We denote the expected values of the random variables Y, Z and V by the
corresponding small letters, i.e.,

(8.8) .30, j) = EY,(i, ),
(8.9) z,(i j) = EZ,(i, J)
(8.10) v.(i ) = EV, (i, )

LemMA 8.3. With t(n) according to Definition 3.1 we have for
i’jZO’ 132’ e, = 1’2’ "'9N9

(8.11) V(6 J) = % ¥, (Npyaje ™ 4 r(n, i, j)[N?
where
(8.12) [r(n, i, j)| < L'Mir(n)

and ry(n) is defined in (3.5).
Proor. For the population z(i, j) in (8.6) we have
(8.13) M(z(i, j)) < LM, Lj=0,1,2,---.

Now (8.11) and (8.12) follow by some simple computations from Lemma
8.1, (8.3), (8.4), (3.9) and (8.13).

LEMMA 8.4. Fori, j=10,1,2,...,n=1,2, ..., N we have

(8.14) V.6, )l = LM(1 — n/N),
(8.15) v (i, )l < LiM(1 — n/N) ,
(8.16) V.(i,0) = i1 — n/N),
(8.17) v,(1,0) = (1 — n/N).

Proor. Let G(.<Z,) be according to (6.2). From (8.1)—(8.4) we get
. 1 .
(8'18) Vn(l’ .]) = F ZseG(ﬁn)(Nps)zasJ °
As the number of elements in G(<Z,) is N — n we get from (8.18)
., 1 i v N —n
|Vn(l])| é N ZSEG(Q,,L) (Nps)zlasv é LM T .

Thus (8.14) is proved. (8.15) follows from (8.14) and the relation |v (i, j)| =
|EV (i, ))] < E|V,(i, ])|. From (8.18) we get

1 N—n
(8.19) Vil 0) = = Baesiay Np, 2 1- 20

and (8.16) is proved. By taking expectation in (8.16) we obtain (8.17).
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Lemma 8.5. Fori,j=0,1,2,.-.,n=1,2, ..., N,u = 0 we have

(8.20) E|Z, (0, ) < wiLeMC, (o, 1),
u/

(8.21) BV, ) = B LeaeC, (o, 1)
N N

where C(+, +) is as in (1.4).

Proor. (8.20) follows from Lemmas 7.1 and 8.1 and (8.13). (8.21)is a
consequence of (8.20) and the following formula which is easily derived from
(8.4),

. 1 .
8.22 Vi) = — X Z i, ).
(8.22) UY)) Nnon
LeMMA 8.6. Fori,j=20,1,2,...,n=0,1,2, ..., N — 1 we have
(8.23) (@) E7Y, (i) =20 L) o pog, i)
vn(l’o)
where
4 %
8.24 Emv,yug<iyw>c<,£»
(5:24) RO, i, )l = (2 (o2
. i1, .
(8.25) ©) yatiof) = " )
where
3 u
8.26 rn, i, j)* < iuMa)c(,i),
(8.26) s I = (% (o 2

and C,(+, +) is as in (1.4).
Proor. According to (8.7) and (8.10) we have
(3827 By (i) = Vol t D) vl L)+ V(i L))

V’n(l’ 0) ’Un(l, 0) + Vnc(l’ O)
By using the identity
(8.28) ata_a  ab—ap
b+pB b bbb+ P
with
(8.29) a=v,(i+1,)), a=Vs @i+ 1)),

b=v,(1,0), B =V:(1,0)
we obtain from (8.27) the formula (8.23) with

(8'30) R(l)(n, iaj) — Vno(i + l,j)vn(l, 0) — Vnc(l, O)’Un(l. + ],j) )
v (1, 0)7,(1, 0)
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From (8.30), (8.15)—(8.17), (8.21) and the formula |a + b|* < C,(|a|* + |b|*)
we get

. 1 u . .
E|R"(n, i, ug<_‘.—> -CuL"'EVnc L, )
R (n, i, j)|* < BT~ Ny ( [V, (i + 1, )]
5 u
Lé+vuppiv . E|V ¢(1, 0)| g(iLiMf) Cu< ) __n) .
+ V(L0 = N

Thus, (a) is proved. (b) is readily obtained from (a) by taking expectation in
(8.23).

Lemma 8.7. Fori,j=0,1,2,...,n=0,1, ..., N — 1 we have
L j) 1 . .
8.31) E“nyy ﬂ<_n‘(i+_fz Lz, )
(8:31) ma D) = (o 20 = gy 2+ 1)
+ R(2)(n, l,])
where
PR n i A\ % n
(8.32) E|R(n, i, j)| §<N2LMJ> -Cu<p, N>’ u=0
where C («, +) is as in (1.4).
Proor. By using the identity
(8.33) a+a_ﬁ+ab—ﬂa_ﬁ(ab—ﬂa)
b+p b b b + f)

with a, a, b and § as in (8.29) we get from (8.27)
(8:34) EnY, (i j)
vn(i + l’j) + Vnc(i-‘f- l’j)vn(l’ O) — Vnc(l’ O)vn(i+ l’j)

v,(1, 0) v, (1, 0)
+ Q(n, 1, j)
where
8.35) O(n i, j) = — L'(LOV (£ 1, (Jl)vggzl 0)(—1VO)(1 0)v, i+ 1))
By centering in (8.34) and by using (8.22), we obtain (8.31) with
(8.36) R(n, i, ) = Q(n, i, j .

The estimate (8.32) can now be deduced in a straightforward way from (8.36),
(8.35) and the estimates in Lemmas 8.4 and 8.5. We leave the details to the
reader and we regard the lemma proved.

LemMMA 8.8. For iy, iy, f1,/, =0,1,2, -, n=0,1, ..., N — 1 we have

(8.37) E’» (s J) Y5115 Jo)

V(4 b+ 1L+ ) _ v+ L), + 1L, jy)
v,(1, 0) v,(1, 0)*

—+ R(n, iv iz*jl’j2)
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where

3 %
(8.38)  E|R(n, iy, iy ju, jo)|* < (% Li1+isz1+J'z> : cu<p, ﬁ) . uz0

where C (+, +) is as in (1.4).
Proor. We have
(8.39) E“n (i ) Y5 11(5s o)
= EQ”(Yn+l(il’ jl) - yn+1(i1’ jl))(Yn-E—l(iZ’ jZ) - yn+l(i2’ jZ))
= EZnY, (i )Y wa(los o) — Vuia(ls JVEZY 11(bss o)
— Vusrllas )EZY (i 1) + Yora(ias JO)Yuia(ios Ji) -
The following formula is easily realized (cf. (8.2)),
(8-40) Yn+1(i1a jl)Yn+1(i2’ ]z) = Yn-\‘-l(il + iw j1 + .]2) .
By using (8.40), (8.23) and (8.25) in (8.39), Lemma 8.8 is obtained after some

computations using the estimates (8.24) and (8.26). We omit the details and
regard the lemma proved.

LemMMA 8.9. Letn, = (d,,d,, ---,dy) and nty = (hy, hy, - - -, hy,) and let 1, I,,
- -+, I, be a p-permutation of 1,2, ..., N. Put

(8.41) D,=d,, v=1,2,...,N
(8.42) H =h,, v=1,2,...,N.
Then we have for 1 < v, # v, < N,

1 ma ,
(B843)  [EDLH:| < - M(x) - M(x) - C (o, 200 2)),

where M(r) and p are according to (2.24) and (2.20) and C(-, +) is as in (1.4).
To prove this lemma we shall need estimates of the following probabilities. Let
(8.44) p(n,s) = P(I, = s), ns=12...,N.
For s, i, i,, - - -, i, being different elements from (1, 2, ..., N) we let

(8.45) p(n, s i, by, oo, i) = PU,*=s), where I[*, L,*, ..., I*_, isa
(Pw P> -+ +» Py)-permutation of the items
in (1,2, .-, N)\(i, &y, < -+, i) (see De-
finition 6.1), n = 1,2, ..., N — k.

LemMMA 8.10. There is a function C(., «) which satisfies (1.4) such that
(8-46) (@) [p(n,s) — p(n+ 1, 9| < (1/N)p(n, 5)C(p, n/N)
(8.47)  (b) p(n, s) < (1/N)C(p, n/N)
(8.48) (o) |p(n, 551) — p(n, 5)| < (1/N*)C(p, n/N) .
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Although the estimates (8.46)—(8.48) look quite innocent they will be
complicated to prove. We therefore postpone the proof and we first show
that Lemma 8.9 follows from Lemma 8.10.

Proor oF LEMMA 8.9. For 1 < n < N we have,
(8.49) ED\H, = Ed, E"H, .
From Lemma 6.1 we get (cf. (8.45)),
(8.50) EhH, = Z#,lp(n — 1,8 I)h, = 32, p(n, s)h,
+ Zier, (p(n = 1, 8) — p(n, 5))h,
+ Zorr (p(n — 1, 53 5) — p(n — 1, $))h, — p(n, L)k, .
By using the estimates (8.46)—(8.48) we readily get that the last three terms

in (8.50) all are dominated by N~! max, |k,| - C(p, n/N). Furthermore, the
first sum to the right in (8.50) is EH,. Thus we get

(8.51) EnH, = EH, + ¢(I,),
where
1 n
. I < — h|-Clo, =).
(8.52) )| = 5 max, | - C (o, 3

Now (8.49), (8.51) and (8.52) easily yield
1 n
(8.53)  |EQD, — ED)(H, — EH,)| < - M(z)M(x)C 0, +).

Thereby we have proved (8.43) for v, = 1. Next we show that the general
case can be reduced to the case v, = 1. Let 1 < v; <y, < N. Then we have

(8.54)  |ED; H:| = |EE®+-1D; H: | < E|Ew-1D; H;|
= E|E“w\(D, — E“w-1D, \(H, — E“v-1H,)
1 1 2 2

» + (E®w1D, — ED, )(E“-H, — EH,)|.

(8.55) r(F,) ={d,: se G(Z,)} and n(FZ,) = {h,:se G(ZH,)},
where G(7,) is defined in (6.2). From Lemma 6.1 and (8.53) we conclude,
(8.56) |E“vi\(D, — E“vw1D, )(H, — E<v-1H, )|

1 Y, — v
< M ‘@v - - M (@ - ) C( ’ 3 : >
=N, 20 (( 1 1) (7a( v 1) o N_(,— 1)

1
< M(z,) - M(x,) - c(,;,%) .
The following estimate is easily derived from Lemma 8.6,
4 %
(8.57) E|E#-D, — ED |* < (L : M) .c, (p, i) , u=0.
N N
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By using (8.57) and the fact &7, O 7, , we get
E|(E“w-1D, — ED,)(E“v-H, — EH,)|
1 1 2 2
(8.58) < (E(E“»1D, — ED, )} - (E(E“vH, — EH, )"}
< ]szz - M(z)) - M(,) - c(,;, %)

(8.43) now follows from (8.54), (8.56) and (8.58). Thus, Lemma 8.9 is proved
and we turn to the proof of Lemma 8.10.

Proor oF LEMMA 8.10. For i, i, -, i, being different numbers among (1,
2,---,N)we put

(859) a(il, l'2, ey, in) = P(Il = il, 12 = i2, ey, In = ln) .
(2.6) yields,
(8.60) a(iy iy ---, i) =Pn. Pa ... Pi, ,
v 1 I_Pil 1_(Pi1+°"+Pz'n_l)

We have

pn, s) — p(n + 1, 5)
(8.61) = Dlipgme Wiy by o ou b)) — Xou Al By - 0y )

B . . P,
= Zse(il,m,in_l) ll(ll, Iy, ++ vy ln—l) 1 — (Pil ¥ ... Pin_l)
X [1 - Zz” i1y rig_1e8 Piy jl
€ (1q 1)1_(P7:+."+Pi”)
Furthermore we have,
DPi
L — X ety g *
i Zne(l’ n_l)l_(Pi1+"'+Pin)
Pi
=|1—- Gy € (1, 25y 1,8 ~
i Zne(l n—1 )(1—(P@1+ +Pi”_1)
7,
- Zine(il,--

= (Pt Py DA = (Pt )
L=+ - 4P +P)

<|i-
1 — (Pil + -+ pi )
P?
+l Ty @ (T, 2y 118 -
Zn(l nl)(l_(pil_'—+P’n—1))(1_(p’”1++1)’n))
(8.62) as 1= (Pt +p)ZW—n L,
L N LY/ N 1 n
LN (ALY _Ywv—wm=lc(o ),
63 =% l(N—n)+<N> <I(N—n)>( "=y (p N>
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where C(+, +) is as in (1.4). By inserting (8.63) into (8.61) we obtain
plm,s) = pln+ 1,9 < €0, %) Tyl oy -+, 1)
(e )

Thus (8.46) is proved. From (8.46) we get,
(8:64)  pln+ 1,5) < pln,5)(1 +71\,—C<p, ). m=12 N1

By iterating the inequality (8.64) we obtain,

Pl s) < (1) T (1 4+ 1.0, 2)) S p, - exp (P C (0 1))

1 n
gﬁ.c'<,_>.
=Ny \"xN

Thereby also (8.47) is proved, and we continue with the proof of (8.48). We
start by deducing the following identity, where p(n, s; i,, - - -, i,) is defined in
(8.45),

p(n, 85 0y, Gy ooy B — p(By 8 gy by By - e 0y )
. Pi 1 Y |
= Zik-plg(sviovil""’ik) — (pZI +k+.1' : +P1k)[P(n —_ l,S, U, 5 lk+1)
(8.65) —pn— 1,8 0y, 0y -y )]
+ P, [p(n — 1,85y 0y, -+ -, 0y)
C=(po+ -+ pip) o

- P(n’ 55 ioa iv R} ik)] .
From Lemma 6.1 we get,
(8.66) p(n,s; iy, by, - -+, 0p)
Piyiy
(ps, + - +13)

pr— 1,80 -+, 0,0, )

= Zikﬂe(s,il,~-~,~;k) 1
and

8.67 Cld e 1) = . o . Piy
( ) P(na S5 10, 117 ’ lk) sz+lg(s’10'7‘l"“'7’k) 1 _ (plo +p’bl + . +P1k)

X plm — 1,85 gy Iy« v+, Byy) -

By using the identity

(8.68) Pigiy
I —(piy+pi, + - + i)
— Piyi
1—(P¢1+Pi2+ +Pik)

+ Piy " Piyiy
(= (piy+ - +p )= (pi,+ - +p))




396 BENGT ROSEN

we obtain from (8.67),
(8.69) p(n, s; iy, iy, - -+, )

— pik s .
= Dlipare (srigerig) 1= (p:, + +,1, St Pik)p(n — Losgig by oo ey dyy)

+ P
L= (pot - +P,
] X P(n - 17 S; io’ ila D) ik+1)
— . ) ) Pij iy
IR e
+ Pio
[ (py + o+ Py
By substracting (8.69) from (8.66) we get (8.65), which is thereby proved.
The following inequality is a consequence of Lemma 6.1, (8.46) and (8.47).

) Piyia
- 1—(Pi0+Pi1+ o+ piy)

) ZikJrle(s,io,il,“-,i

P(" - 1’ 55 io’ ip R} ik+1)

P(n, 85 io, i17 B ik) .

.. . - , 1
(8.70)  |p(n— 1,850 by -+ s ) — p(m S5 dos By -+, )| < ﬁzc<f” N i k>’
where C(-, «) is as in (1.4).
Now define fork =0,1,2, ---,N—1,n=1,2, ..., N — k,
(871) fl(n’ k) - maxs,io’il,-~~,ik |P(n, 85 i1, iza ct lk) — p(n, S, io, ip iz, ey lk)l .

By taking absolute values in (8.65) and by taking maximum over s, i, i;, - - -, i,
we get from (8.71), (8.70), (8.47) and (8.62),

1 n
8.72 k)< pin— 1,k + 1 _c<,___>.
(8.72) pHn, k) = p(n +D+5C(0 57—
By iterating the inequality (8.72) we obtain
1 n
(8.73) w(n,0) < p(1,n — 1)+ ﬁc<p,ﬁ>, l<n<N.

Furthermore, as is easily checked,

1 n
8.74 In—1 g_c< ,~>.
(8.74) plon—1) s €0

Now (8.73) and (8.74) yield (8.48) and Lemma 8.10 is completely proved.
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