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RIESZ DECOMPOSITION FOR WEAK BANACH-VALUED
QUASI-MARTINGALES

ZorRAN R. Popr-STOJANOVIC
University of Florida

In this paper we present the concept of a weak Banach-valued quasi-
martingale. The concept of a strong Banach-valued quasi-martingale was
introduced by the author in an earlier paper. We prove that a weak Banach-
valued quasi-martingale under certain conditions has a weak Riesz decom-
position, i.e., it can be decomposed in an essentially unique way as a sum
of a weak martingale and a weak quasi-potential.

Introduction. In an earlier paper [9], [10], the author has introduced the con-
cept of a strong Banach-valued quasi-martingale and obtained its strong Riesz
decomposition. In this paper is presented the concept of a weak Banach-valued
quasi-martingale and corresponding weak Riesz decomposition. Real-valued
quasi-martingales were treated in papers of D. L. Fisk [4], S. Orey [8] and
K. M. Rao [11]. Also, the Riesz decomposition for real-valued super-martin-
gales was obtained by P. A. Meyer [7].

The setting. Let (Q, 7, P) be a given probability space and let &2° be a Banach
space which is weakly sequentially complete. Let &2”* be the dual of 227 with
card (Z°*) = ¢, T = [0, + o) and (F; t € T) be an increasing family of ¢-sub-
algebras of 7, i.e., Vs,teT, s < ¢ implies &, & #,. Finally, let VreT,
X,: Q — 22”7 be a family of weakly integrable (Gel’fand—Pettis) random variables
[51, page 77, such that Vt e T, X, is .5 ,—weakly measurable [5], page 72. In [6],
page 240, M. Metivier has introduced the following.

DEFINITION. A family (X,, #; te T), with X,’s and _&#’s having the prop-
erties described above, is a weak martingale if:

*) VA, Ae 7 ,: (L, X,dP = {, X,.dP, t<tr,

where the integrals in question are weak (Gel’fand-Pettis) integrals.
Now we can introduce the following concept:

DErFINITION 1. A family (X,, & ; te T) is called a weak quasi-martingale if
there exists an M > 0 such that for every x* € $* ($* denotes the unit sphere in
&%), and every strictly increasing sequence (¢,)}=, t, e T,n=1,2, - - -, 1, 1 + o0
as n — - oo, one has:

1) sup Xi [B(x*(X,) — ¥* (X ) = M < F o0,

where the supremum is taken over all possible sequences (z,);;.; from T described

above.
It follows from (1) that Banach-valued strong and weak martingales are weak
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quasi-martingales. Indeed, if (X,, &; te T) is a weak martingale, (*) implies
that Vx* e 227 : {g x*(X,)) dP = §o x*(X,,,)) dP, i.e., E(x*(X,,) — x*(X,,,)) =0,
so that (1) holds. If (X,, & ; teT) is a strong martingale then

(+) X, = EX,, |5,) ae (P),

where E( | ) denotes the strong conditional expectation as introduced in [12],
page 353. Further, (*) implies that §o x*(X,  )dP = §o x*(E(X,,,,| 7 ,) dP =
§o x*(X,) dP, so,

v x* € %* : E(x*(Xt,,,) - x*(Xti+1)) = SQ x*(Xt.L - E(Xt,i_H I %z)) dP = O ’
because of (+). Therefore, (1) holds showing that (X,, & ;e T) is a weak
quasi-martingale. .

Also, a strong quasi-martingale [9], [10], is a weak quasi-martingale. Indeed,
if (X,, #; te T)is a strong quasi-martingale then there exists a constant M > 0
such that sup X7, E(||X,, — E(X,,, |.Z)I) < M, where t,eT,n=1,2, ---,

1+1

and ¢, T + o0 as n— +oco. This implies that Vx* ¢ $*, one has that:
|E(x*(X,,) — x*(X,, )| = [EE(x*(X,) | 7)) — B(E(x*(X,, )| F )

= [E(x*(X,,) — E(x*(X,,, )| F )

= E(|lx* 11X, — E(X,, 1 F D)D)

< [|xIE(1X, — B(Xyy,, | F )N

= E(||X,, — EX,,,,| #)I)
which implies that Vx* e §*; sup 21, |E(x*(X,)) — x*(X,, )| < sup X1, E(||X,, —
E(Xx, |%i)||) < M, as claimed.

i+1

i+1

i+1

1+1
DErFINITION 2. A family (X,, 7 ; t € T) is a weak quasi-potential if V x* € §*,
lim, .. E(|x*(X,)|) = 0.
One can easily show that a strong quasi-potential [9], [10] is also a weak quasi-
potential.

DeFINITION 3. A family (X,, & ,; te T) has a weak Riesz decomposition if
VieT, X, = X, + X,® a.e. (P), where (X,, &7 ; teT) is a weak martingale
and (X,”, & ,; teT) is a weak quasi-potential.

DEFINITION 4. Let &27* = (x,*; y e I') where I' & R'. We say that a family
(X;,» F; te T)is weakly separable if for every fixed ¢ € T'the real-valued random
process (x,*(X,); y € ') is separable with respect to closed intervals in R!, [2],
page 53.

ProposITION 1. Let (X,, F;;te T) be a weakly separable family which has a
weak Riesz decomposition: Vte T, X, = X,Y' + X,® a.e. (P). Then, this decom-
position is essentially unique.

Proor. Assume that (X,, & ,;teT) has two weak Riesz decompositions,
namely, that Vze T:

(2) Xt(l) _|_ Xt(2) — Y't(l) _|_ Yt(2)
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where (X,*, #7), (Y'Y, &) are weak martingales and (X,*, #), (Y,*, &)
are weak quasi-potentials. Then, from (2) and (*) it follows that for every
x*eS8*, (x,*(X,") — x,*(¥,"), &, teT) is a real-valued sub-martingale and
therefore E(|x,*(X,")— x,*(Y,)|) is a non-decreasing function on . On the other
hand, lim,_.,.. E(x,*(X,%) — x,*(¥,0)]) = lim,_,.. E(x,*(¥,”) — x*(X,*)]) =0,
which implies that E(|x,*(X,") — x *(Y,'V)]) = 0, that is,

3) Px,*(X,") — x*(Y,") =0) =1, rel.

Note that a null set in (3) on whose complement x,*(X,") = x,*(¥,"), depends
on a functional x *.

From (3) and the fact that (x, *(X,") — x,*(Y,); y € I') is a separable random
process for every fixed ¢ e T, it follows that there exists a sequence (y;)j=; from
I" such that

(++) PO (XY — x (V) = 0= 1) = 1.
Finally, using the result in [2], page 55, it follows from the assumed separability
and relation (4 +) that P(x *(X,") — x,*(¥,") = 0,y eI') = 1, i.e., thata weak

Riesz decomposition is essentially unique, as claimed. Further on, the subscript
7 is going to be omitted from the notation of a linear functional.

ReMARK. It follows easily that a strong Riesz decomposition [9], [10], is also
a weak Riesz decomposition.

Let (#,; te T) be an increasing family of g-sub-algebras of % and assume,
moreover, that V¢e T, (R, &, P) is an atomic probability space. Further,
Vte T, let us assume that X,: Q — 227 is weakly integrable and & ,-strongly
measurable. Then, using the result in [1], page 268, one has the following repre-
sentation for X,’s:

“) VteT: X, = ;‘:;yj“’IEjm
where y,¥e 27, j= 1,2, .-, E;¥ ¢ 7, and the series
(%) 75y, P(E N E;®)

is unconditionally convergent for every E € . Moreover, from the same paper
[1], page 269, one gets the following representation for a weak conditional ex-
pectation of random variables X, having representations (4):

(6) EX, |7 ) = B2y PE | F 1)

provided that the series in (6) is unconditionally convergent a.e. (P). (%, is
a g-subalgebra of 7, P(E;" | .7 ,)) = E(Iy,» |7, ) is a real-valued conditional
expectation.)

If (Q, &, P) is an atomic probability space then it has at most countably
many atoms, say (4,)i=;, and (6) can be written as

E(X,| F)(0) = Liay® L (PEY 0 4)[PA),, (@),  e0el,

or, for every w € Q, there is a positive integer k() such that
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EX,| 7o) @) = (1/P(4y0)) 275y PIE; 0 Ay »

and which is unconditionally convergent a.e. (P) due to (5). Therefore, under
assumptions made on page 1022 concerning a family (.#; t e T), it follows that
there exist weak conditional expectations E(X,| &), Vt, ¢’ € T. (X, ’sare weakly
integrable and strongly measurable.)

REMARK. Recently L. Schwartz has shown (not yet published result) that in
a general case a weak conditional expectation does not exist.

ProrosiTION 2. If (X,, & ,;te T) is a weak martingale where X,’s and F’s
have the properties described on pages 1022, 1023, then Vs, te T, s < t,

@ X, = EX,| 7)) ae. (P),
where E( | ) denotes a weak conditional expectation.
Proor. From (*) and (4) it follows that Vx* ¢ 227%,
VA e 7,1 o0 (X,) dP = §, x*(X,) dP = Si5 x*(y,“)P(A N E9),
(this series is absolutely convergent because the series without linear functional

is unconditionally convergent; this is due to the Orlicz-Pettis theorem [5], page
62), or,
§a ¥*(X,) dP = 335 x*(p;1) \a P(E;Y | ) AP,
wherefrom by using (6) one gets that §, x*(X,) dP = §, x*(E(X,| #,)) dP, which
implies (7).
ProrosITION 3. Let (X,, & teT) be an 2Z°-valued random process with X,’s

and 7 s described as in Proposition 2, i.e., as on pages 1022, 1023. I [f, moreover,
there exists a constant M > 0 such that ¥ x* ¢ S*:

®) sup iy E(lx*(X,,) — ¥*(B(X,,, | F o)) = M < oo,

then the process (X,, 7 ; t € T) is a weak quasi-martingale.

i+1

Proor. The conclusion in the proposition follows immediately from

|E(* (X)) — x*(X, | = [E(x*(X,)) — E(E(x*(X,,, )| F7))
= |E(x*(X,)) — x*(E(X,,,, | F )
= E(jx*(X,) — x*(E(X,,,, | F2)D) 5

fori=1,2,....
Now we have the following
THEOREM. Every weakly separable 2°-valued weak quasi-martingale (X,, 7 ;

t e T), which satisfies assumptions of Proposition 3, possesses a weak Riesz decom-
position. Moreover, this decomposition is essentially unique.

Proor. Lett,eT,n=1,2,...,¢, 1 + oo asn— -+ oo and define u(r) = th —
EX, |5, )forn=1,2,.... Then, forevery x* ¢ S* it follows from (8) that
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+o E(|x*(u(n))]) < M. Lette Tbefixed and assumethats, > ¢, n =1,2,-...
Define v,(r) = E(X, | ). Then, using the properties of the weak conditional
expectation it follows that for every x* ¢ $*:

E(x () |77) = #(v(n) — ¥ n + 1) ae. (P),
which implies that 31i% E(x*(u(n) — x*(vn + 1)) < X5 E(x*@m))) <

M < +oo. Without loss of generality we may assume that E(|x*(v,(n) —
v+ )N @E)n=1,2,.... Putv,(0) =0, and define:

®) 9un) = i [x*(v(k) — vk — D), n=12..-.
Then, g,(n),n = 1,2, - .-, are integrable due to the fact that v,(k), k = 1,2, - - -,
are weakly integrable and, moreover, 0 < g,(n) T asn — oo, and t € Tis fixed.
From (9) it follows that E(g,(n)) < 1 + E(|x*(v,(1))|) for all n. Hence by the
monotone convergence theorem there exists an integrable function g, such that
g.n) 1 g,a.e. (P),asn— +oo. Using (9) it follows that |x*(v,(n))| < g,(n), which
implies that |x*(v,(n))| < g,a.e. (P)foralln = 1,2, .- .. Finally, define h,(n) =
v(n) — v(n — 1), n=1,2,.... Then, one gets that 3 »_, |x*(h,(k))| = g,(n) < g,
a.e. (P), forn=1,2, -..; hence for every x* e S* the series }}/= |x*(h,(k))| is
convergent a.e. (P). Now, &£~ being weakly sequentially complete implies that
there exists an A(f) € £27such that for every x* € Z27*, x*(A(¢)) = 2375 x*(h(k)).
Further, one has that:
(10) Vx*e2Z7*: |x*(A(t)) — x*(v(n))] > 0 a.e. (P), as n— +4oo.
This relation shows that A(¢) is weakly . ,-measurable for every te 7. Since
|x*(v(n))] < g, a.e. (P), it follows that |x*(A(?))] < g, a.e. (P), hence A(f) is a
weakly integrable function for every te T. Finally, let s,te T, s < ¢, and
t,7 +oc0asn— +oosuchthats, > ¢, n=1,2,.... Then, using the Lebesgue
dominated convergence theorem and representation (6) for a weak conditional
expectation one gets that for every A e .7 :
§a X*(A(s)) dP = § 5 (lim, .o, X*(v,(n))) AP = lim,_ .. § 5 x*(v,(n)) dP

= lim, .. §» ¥*(E(X,,| #7) dP

= lim, ., 2175 x*(p;”) §5 P(E;" | 7,) dP

= lim,_,. 215 X,(y,")P(A N E,n)

= lim, . 215 x*(y;) §a P(E; | F,) dP

= lim,_ ., §a x*(E(th | 7)) dP = lim,_, §, x*(v(n)) dP

= § (lim,_,, x*(v(n)) dP = §, ¥*(A(1))dP, ae. (P),
which shows that the family (A(¢), & ; te€ T) is a weak martingale. Also, by
the dominated convergence theorem a.e. (P), one has that

(11) E(|x*(A(t)) — x*(v,(n))]) > 0 as n— +oo.
Now, given ¢ > 0 there is an integer n, such that for every x* e $*:
(12) wZng B(1X*(X,,) — x*(E(X,, ., | F ) < /2.
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Let k = n,. Then (11) implies that E(|x*(A(t,)) — x*(v,,(m))|) is small for m
sufficiently large. Let m(k) + 1 be an integer for which:

(13) E(|x*(A(t)) — x*(v,,(m(k) + 1)) < /2.
Taking into account (12) one gets that
(14)  E(jx*(X,) — x*(A(t)]) = E(|x*(X,,) — ¥*(v,,(m(k) + D)) + ¢/2.

Now for n = k it follows that E(x*(u(n)) | #,,) = x*(v,(#) — v, (n + 1)), so that
E(|x*(v,, (1) — v, (n + 1))|) = E(|x*(u(m))|). Therefore it follows that

(15)  E(jx*(X,,) — x*(v,,(m(k) + 1))

= X E(x* (v, (1) — v, (n + 1))

< Do E(x*um))) = 232, E(x*(um))) < ¢/2,
where the last inequality in (15) is obtained from (12). Finally, from (13) and
(15) it follows that for every x* ¢ S*:
(16) lim,_, ., E(|x*(X,) — x*(A(%,)))) = 0.
Further we have to show that the weak martingale (A(¢), & ,; te T) is inde-
pendent of a particular choice of the increasing sequence (7). as well as that
the limit in (16) is independent of a choice of this sequence. To prove this, let

us assume otherwise. Then there exists a strictly increasing sequence, say
(8,)i=, such that s, T + o0 as k — + oo, and ¢, > 0 such that for every x* ¢ $*:

17) lim,_,, ., E(|x*(X,,) — x*(A(s))]) = ¢, > 0.

Let us form the increasing sequence (p,){<, p, T + o0 as k — + oo by interlacing
the sequences (t,);=; and (s,);i=; satisfying (16) and (17), respectively. Then by
applying the first part of the proof, there exists a weak martingale (B(?), 7 ;;
t e T) such that:

(18) Vx*eS*lim,, . B(x*(X,,) — ¥*(B(p))]) = 0.

It follows that (A(f) — B(t), &, t e T) is a weak martingale which implies that
for every x* e S*, (|x*(A(?)) — x*(B(?))|, F ,; t € T) is a real-valued sub-martin-
gale, which further implies that E(|x*(4(t) — B(?))|) is a non-decreasing function
on t. On the other hand: E(|x*(A(t,)) — x*(B(t,))]) = E(|x*(X,,) — x*(A(t))]) +
E(x*(X,,) — x*(B(1))), or, E(x*(A(1,)) — x*(B(t))]) < E(x*(X,,) — ¥*(A(t))]) +
E(|x*(X,,) — x*(B(py))|) — 0 a.e. (P) as k — +oco. This fact, together with the
earlier conclusion that E(|x*(A4(f) — B(t))|) is a non-decreasing function on ¢,
implies that:

(19) VteT: A(t) = B(t) a.e. (P).

The relations (18) and (19) imply that E(|x*(X,,) — x*(4(p,))|) — Oask — + oo,
which contradicts (17). Therefore, Vx* ¢ $*: lim, ., E(|x*(X,) — x*(4(?))|) = 0.
Finally, put Yte T: Y, = A(t) a.e. (P), Z, = X, — Y, a.e. (P). Then, we have
a weak Riesz decomposition X, = Y, 4+ Z, for the weak quasi-martingale (X,.
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F,; teT). This decomposition is essentially unique due to Proposition 1, which
terminates the proof of the theorem.
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