RIESZ DECOMPOSITION FOR WEAK BANACH-VALUED QUASI-MARTINGALES

ZORAN R. POP-STOJANOVIC

University of Florida

In this paper we present the concept of a weak Banach-valued quasi-martingale. The concept of a strong Banach-valued quasi-martingale was introduced by the author in an earlier paper. We prove that a weak Banach-valued quasi-martingale under certain conditions has a weak Riesz decomposition, i.e., it can be decomposed in an essentially unique way as a sum of a weak martingale and a weak quasi-potential.

Introduction. In an earlier paper [9], [10], the author has introduced the concept of a strong Banach-valued quasi-martingale and obtained its strong Riesz decomposition. In this paper is presented the concept of a weak Banach-valued quasi-martingale and corresponding weak Riesz decomposition. Real-valued quasi-martingales were treated in papers of D. L. Fisk [4], S. Orey [8] and K. M. Rao [11]. Also, the Riesz decomposition for real-valued super-martingales was obtained by P. A. Meyer [7].

The setting. Let (Ω, \mathcal{F}, P) be a given probability space and let \mathscr{X} be a Banach space which is weakly sequentially complete. Let \mathscr{X}^* be the dual of \mathscr{X} with card $(\mathscr{X}^*) = c$, $T \equiv [0, +\infty)$ and $(\mathcal{F}_t; t \in T)$ be an increasing family of σ -subalgebras of \mathscr{F} , i.e., $\forall s, t \in T$, $s \leq t$ implies $\mathscr{F}_s \subseteq \mathscr{F}_t$. Finally, let $\forall t \in T$, $X_t \colon \Omega \to \mathscr{X}$ be a family of weakly integrable (Gel'fand-Pettis) random variables [5], page 77, such that $\forall t \in T$, X_t is \mathscr{F}_t -weakly measurable [5], page 72. In [6], page 240, M. Metivier has introduced the following.

DEFINITION. A family $(X_t, \mathcal{F}_t; t \in T)$, with X_t 's and \mathcal{F}_t 's having the properties described above, is a weak martingale if:

$$(*) \qquad \forall \Lambda, \Lambda \in \mathscr{F}_t : \int_{\Lambda} X_t dP = \int_{\Lambda} X_{t'} dP, \qquad t \leq t',$$

where the integrals in question are weak (Gel'fand-Pettis) integrals.

Now we can introduce the following concept:

DEFINITION 1. A family $(X_t, \mathscr{F}_t; t \in T)$ is called a weak quasi-martingale if there exists an M > 0 such that for every $x^* \in S^*$ (S^* denotes the unit sphere in \mathscr{X}^*), and every strictly increasing sequence $(t_n)_{n=1}^{+\infty}$, $t_n \in T$, $n = 1, 2, \dots, t_n \uparrow + \infty$ as $n \to +\infty$, one has:

(1)
$$\sup \sum_{i=1}^{n} |E(x^*(X_{t_i}) - x^*(X_{t_{i+1}}))| \leq M < +\infty,$$

where the supremum is taken over all possible sequences $(t_n)_{n=1}^{+\infty}$ from T described above.

It follows from (1) that Banach-valued strong and weak martingales are weak

Received June 17, 1971; revised October 11, 1971.

quasi-martingales. Indeed, if $(X_t, \mathcal{F}_t; t \in T)$ is a weak martingale, (*) implies that $\forall x^* \in \mathcal{X}^* : \int_{\Omega} x^*(X_{t_i}) dP = \int_{\Omega} x^*(X_{t_{i+1}}) dP$, i.e., $E(x^*(X_{t_i}) - x^*(X_{t_{i+1}})) = 0$, so that (1) holds. If $(X_t, \mathcal{F}_t; t \in T)$ is a strong martingale then

$$(+)$$
 $X_{t_i} = E(X_{t_{i+1}} | \mathscr{F}_{t_i})$ a.e. (P) ,

where $E(\mid)$ denotes the strong conditional expectation as introduced in [12], page 353. Further, (*) implies that $\int_{\Omega} x^*(X_{t_{i+1}}) dP = \int_{\Omega} x^*(E(X_{t_{i+1}} \mid \mathscr{F}_{t_i}) dP = \int_{\Omega} x^*(X_{t_i}) dP$, so,

$$\forall \, x^* \in \mathscr{X}^* \colon \mathit{E}(x^*(X_{t_i}) - x^*(X_{t_{i+1}})) = \smallint_{\Omega} x^*(X_{t_i} - \mathit{E}(X_{t_{i+1}} | \mathscr{F}_{t_i})) \, dP = 0 \; ,$$

because of (+). Therefore, (1) holds showing that $(X_t, \mathcal{F}_t; t \in T)$ is a weak quasi-martingale.

Also, a strong quasi-martingale [9], [10], is a weak quasi-martingale. Indeed, if $(X_t, \mathscr{F}_t; t \in T)$ is a strong quasi-martingale then there exists a constant M > 0 such that $\sup \sum_{i=1}^n E(||X_{t_i} - E(X_{t_{i+1}}|\mathscr{F}_{t_i})||) \leq M$, where $t_n \in T$, $n = 1, 2, \dots$, and $t_n \uparrow + \infty$ as $n \to + \infty$. This implies that $\forall x^* \in S^*$, one has that:

$$\begin{split} |E(x^*(X_{t_i}) - x^*(X_{t_{i+1}}))| &= |E(E(x^*(X_{t_i}) \,|\, \mathscr{F}_{t_i})) - E(E(x^*(X_{t_{i+1}}) \,|\, \mathscr{F}_{t_i}))| \\ &= |E(x^*(X_{t_i}) - E(x^*(X_{t_{i+1}}) \,|\, \mathscr{F}_{t_i}))| \\ &\leq E(||x^*||\, ||X_{t_i} - E(X_{t_{i+1}} \,|\, \mathscr{F}_{t_i})||) \\ &\leq ||x^*||E(||X_{t_i} - E(X_{t_{i+1}} \,|\, \mathscr{F}_{t_i})||) \\ &= E(||X_{t_i} - E(X_{t_{i+1}} \,|\, \mathscr{F}_{t_i})||) \end{split}$$

which implies that $\forall x^* \in S^*$; $\sup \sum_{i=1}^n |E(x^*(X_{t_i}) - x^*(X_{t_{i-1}}))| \leq \sup \sum_{i=1}^n E(||X_{t_i} - E(X_{t_{i+1}}|\mathscr{F}_{t_i})||) \leq M$, as claimed.

DEFINITION 2. A family $(X_t, \mathscr{F}_t; t \in T)$ is a weak quasi-potential if $\forall x^* \in S^*$, $\lim_{t \to +\infty} E(|x^*(X_t)|) = 0$.

One can easily show that a strong quasi-potential [9], [10] is also a weak quasi-potential.

DEFINITION 3. A family $(X_t, \mathscr{F}_t; t \in T)$ has a weak Riesz decomposition if $\forall t \in T, X_t = X_t^{(1)} + X_t^{(2)}$ a.e. (P), where $(X_t^{(1)}, \mathscr{F}_t; t \in T)$ is a weak martingale and $(X_t^{(2)}, \mathscr{F}_t; t \in T)$ is a weak quasi-potential.

DEFINITION 4. Let $\mathscr{X}^* = (x_{\gamma}^*; \gamma \in \Gamma)$ where $\Gamma \subseteq R^1$. We say that a family $(X_t, \mathscr{F}_t; t \in T)$ is weakly separable if for every fixed $t \in T$ the real-valued random process $(x_{\gamma}^*(X_t); \gamma \in \Gamma)$ is separable with respect to closed intervals in R^1 , [2], page 53.

PROPOSITION 1. Let $(X_t, \mathcal{F}_t; t \in T)$ be a weakly separable family which has a weak Riesz decomposition: $\forall t \in T, X_t = X_t^{(1)} + X_t^{(2)}$ a.e. (P). Then, this decomposition is essentially unique.

PROOF. Assume that $(X_t, \mathscr{F}_t; t \in T)$ has two weak Riesz decompositions, namely, that $\forall t \in T$:

$$(2) X_t^{(1)} + X_t^{(2)} = Y_t^{(1)} + Y_t^{(2)}$$

where $(X_t^{(1)},\mathscr{F}_t)$, $(Y_t^{(1)},\mathscr{F}_t)$ are weak martingales and $(X_t^{(2)},\mathscr{F}_t)$, $(Y_t^{(2)},\mathscr{F}_t)$ are weak quasi-potentials. Then, from (2) and (*) it follows that for every $x_\gamma^* \in S^*$, $(x_\gamma^*(X_t^{(1)}) - x_\gamma^*(Y_t^{(1)}), \mathscr{F}_t; t \in T)$ is a real-valued sub-martingale and therefore $E(|x_\gamma^*(X_t^{(1)}) - x_\gamma^*(Y_t^{(1)})|)$ is a non-decreasing function on t. On the other hand, $\lim_{t \to +\infty} E(|x_\gamma^*(X_t^{(1)}) - x_\gamma^*(Y_t^{(1)})|) = \lim_{t \to +\infty} E(|x_\gamma^*(Y_t^{(2)}) - x_\gamma^*(X_t^{(2)})|) = 0$, which implies that $E(|x_\gamma^*(X_t^{(1)}) - x_\gamma^*(Y_t^{(1)})|) \equiv 0$, that is,

(3)
$$P(x_r^*(X_t^{(1)}) - x_r^*(Y_t^{(1)}) = 0) = 1, \qquad \gamma \in \Gamma.$$

Note that a null set in (3) on whose complement $x_{\gamma}^*(X_t^{(1)}) = x_{\gamma}^*(Y_t^{(1)})$, depends on a functional x_{γ}^* .

From (3) and the fact that $(x_{\gamma}^*(X_t^{(1)}) - x_{\gamma}^*(Y_t^{(1)}); \gamma \in \Gamma)$ is a separable random process for every fixed $t \in T$, it follows that there exists a sequence $(\gamma_j)_{j=1}^{+\infty}$ from Γ such that

$$(++) P(x_{r_i}^*(X_t^{(1)}) - x_{r_i}^*(Y_t^{(1)}) = 0; j \ge 1) = 1.$$

Finally, using the result in [2], page 55, it follows from the assumed separability and relation (++) that $P(x_r^*(X_t^{(1)}) - x_r^*(Y_t^{(1)}) = 0, \gamma \in \Gamma) = 1$, i.e., that a weak Riesz decomposition is essentially unique, as claimed. Further on, the subscript γ is going to be omitted from the notation of a linear functional.

REMARK. It follows easily that a strong Riesz decomposition [9], [10], is also a weak Riesz decomposition.

Let $(\mathscr{F}_t; t \in T)$ be an increasing family of σ -sub-algebras of \mathscr{F} and assume, moreover, that $\forall t \in T$, $(\Omega, \mathscr{F}_t, P)$ is an atomic probability space. Further, $\forall t \in T$, let us assume that $X_t : \Omega \to \mathscr{X}$ is weakly integrable and \mathscr{F}_t -strongly measurable. Then, using the result in [1], page 268, one has the following representation for X_t 's:

(4)
$$\forall t \in T: X_t = \sum_{j=1}^{+\infty} y_j^{(t)} I_{E_j^{(t)}}$$

where $y_j^{(t)} \in \mathcal{X}$, $j = 1, 2, \dots, E_j^{(t)} \in \mathcal{F}_t$ and the series

(5)
$$\sum_{i=1}^{+\infty} y_i^{(t)} P(E \cap E_i^{(t)})$$

is unconditionally convergent for every $E \in \mathscr{F}$. Moreover, from the same paper [1], page 269, one gets the following representation for a weak conditional expectation of random variables X_t having representations (4):

(6)
$$E(X_t | \mathscr{F}_{t'}) = \sum_{j=1}^{+\infty} y_j^{(t)} P(E_j^{(t)} | \mathscr{F}_{t'}),$$

provided that the series in (6) is unconditionally convergent a.e. (P). ($\mathscr{F}_{t'}$ is a σ -subalgebra of \mathscr{F} , $P(E_j^{(t)}|\mathscr{F}_{t'})=E(I_{E_j^{(t)}}|\mathscr{F}_{t'})$ is a real-valued conditional expectation.)

If $(\Omega, \mathcal{F}_{\iota'}, P)$ is an atomic probability space then it has at most countably many atoms, say $(A_k)_{k=1}^{+\infty}$, and (6) can be written as

$$E(X_t | \mathscr{F}_{t'})(\omega) = \sum_{j=1}^{+\infty} y_j^{(1)} \sum_{k=1}^{+\infty} (P(E_j^{(t)} \cap A_k)/P(A_k))I_{A_k}(\omega), \qquad \omega \in \Omega,$$

or, for every $\omega \in \Omega$, there is a positive integer $k_0(\omega)$ such that

$$E(X_t | \mathscr{F}_{t'})(\omega) = (1/P(A_{k_0(\omega)})) \sum_{j=1}^{+\infty} y_j^{(t)} P(E_j^{(t)} \cap A_{k_0(\omega)}),$$

and which is unconditionally convergent a.e. (P) due to (5). Therefore, under assumptions made on page 1022 concerning a family $(\mathscr{F}_t; t \in T)$, it follows that there exist weak conditional expectations $E(X_t | \mathscr{F}_{t'})$, $\forall t, t' \in T$. $(X_t$'s are weakly integrable and strongly measurable.)

REMARK. Recently L. Schwartz has shown (not yet published result) that in a general case a weak conditional expectation does not exist.

PROPOSITION 2. If $(X_t, \mathcal{F}_t; t \in T)$ is a weak martingale where X_t 's and \mathcal{F}_t 's have the properties described on pages 1022, 1023, then $\forall s, t \in T, s \leq t$,

(7)
$$X_s = E(X_t | \mathcal{F}_s) \quad \text{a.e.} \quad (P) ,$$

where E(||) denotes a weak conditional expectation.

PROOF. From (*) and (4) it follows that $\forall x^* \in \mathcal{X}^*$,

$$\forall \Lambda \in \mathscr{F}_s \colon \smallint_{\Lambda} x^*(X_s) dP = \smallint_{\Lambda} x^*(X_t) dP = \sum_{j=1}^{+\infty} x^*(y_j^{(t)}) P(\Lambda \cap E_j^{(t)}),$$

(this series is absolutely convergent because the series without linear functional is unconditionally convergent; this is due to the Orlicz-Pettis theorem [5], page 62), or,

$$\int_{\Lambda} x^*(X_s) dP = \sum_{i=1}^{+\infty} x^*(y_i^{(t)}) \int_{\Lambda} P(E_i^{(t)} | \mathscr{F}_s) dP,$$

wherefrom by using (6) one gets that $\int_{\Lambda} x^*(X_s) dP = \int_{\Lambda} x^*(E(X_t | \mathscr{F}_s)) dP$, which implies (7).

PROPOSITION 3. Let $(X_t, \mathcal{F}_t; t \in T)$ be an \mathscr{X} -valued random process with X_t 's and \mathcal{F}_t 's described as in Proposition 2, i.e., as on pages 1022, 1023. If, moreover, there exists a constant M > 0 such that $\forall x^* \in S^*$:

(8)
$$\sup \sum_{i=1}^{n} E(|x^*(X_{t_i}) - x^*(E(X_{t_{i+1}}|\mathscr{F}_{t_i}))|) \leq M < +\infty,$$

then the process $(X_t, \mathcal{F}_t; t \in T)$ is a weak quasi-martingale.

Proof. The conclusion in the proposition follows immediately from

$$\begin{split} |E(x^*(X_{t_i}) - x^*(X_{t_{i+1}}))| &= |E(x^*(X_{t_i})) - E(E(x^*(X_{t_{i+1}}) \,|\, \mathscr{F}_{t_i}))| \\ &= |E(x^*(X_{t_i}) - x^*(E(X_{t_{i+1}} \,|\, \mathscr{F}_{t_i}))| \\ &\leq E(|x^*(X_{t_i}) - x^*(E(X_{t_{i+1}} \,|\, \mathscr{F}_{t_i}))|) \;, \end{split}$$

for $i = 1, 2, \dots$

Now we have the following

THEOREM. Every weakly separable \mathscr{X} -valued weak quasi-martingale $(X_t, \mathscr{F}_t; t \in T)$, which satisfies assumptions of Proposition 3, possesses a weak Riesz decomposition. Moreover, this decomposition is essentially unique.

PROOF. Let $t_n \in T$, $n = 1, 2, \dots, t_n \uparrow + \infty$ as $n \to +\infty$ and define $u(n) = X_{t_n} - E(X_{t_{m+1}} | \mathscr{F}_{t_n})$ for $n = 1, 2, \dots$. Then, for every $x^* \in S^*$ it follows from (8) that

 $\sum_{n=1}^{+\infty} E(|x^*(u(n))|) \le M$. Let $t \in T$ be fixed and assume that $t_n \ge t$, $n = 1, 2, \cdots$. Define $v_t(n) = E(X_{t_n} | \mathscr{F}_t)$. Then, using the properties of the weak conditional expectation it follows that for every $x^* \in S^*$:

$$E(x^*(u(n)) | \mathcal{F}_t) = x^*(v_t(n)) - x^*(v_t(n+1))$$
 a.e. (P) ,

which implies that $\sum_{n=1}^{+\infty} E(|x^*(v_t(n)) - x^*(v_t(n+1))|) \leq \sum_{n=1}^{+\infty} E(|x^*(u(n))|) \leq M < +\infty$. Without loss of generality we may assume that $E(|x^*(v_t(n) - v_t(n+1))|) \leq (\frac{1}{2})^n$, $n = 1, 2, \cdots$. Put $v_t(0) = 0$, and define:

(9)
$$g_t(n) = \sum_{k=1}^n |x^*(v_t(k) - v_t(k-1))|, \qquad n = 1, 2, \cdots.$$

Then, $g_t(n)$, $n=1,2,\cdots$, are integrable due to the fact that $v_t(k)$, $k=1,2,\cdots$, are weakly integrable and, moreover, $0 \leq g_t(n) \uparrow$ as $n \to +\infty$, and $t \in T$ is fixed. From (9) it follows that $E(g_t(n)) < 1 + E(|x^*(v_t(1))|)$ for all n. Hence by the monotone convergence theorem there exists an integrable function g_t such that $g_t(n) \uparrow g_t$ a.e. (P), as $n \to +\infty$. Using (9) it follows that $|x^*(v_t(n))| \leq g_t(n)$, which implies that $|x^*(v_t(n))| \leq g_t$ a.e. (P) for all $n=1,2,\cdots$. Finally, define $h_t(n)=v_t(n)-v_t(n-1)$, $n=1,2,\cdots$. Then, one gets that $\sum_{k=1}^n |x^*(h_t(k))| = g_t(n) \leq g_t$ a.e. (P), for $n=1,2,\cdots$; hence for every $x^* \in S^*$ the series $\sum_{k=1}^{+\infty} |x^*(h_t(k))|$ is convergent a.e. (P). Now, $\mathscr X$ being weakly sequentially complete implies that there exists an $A(t) \in \mathscr X$ such that for every $x^* \in \mathscr X^*$, $x^*(A(t)) = \sum_{k=1}^{+\infty} x^*(h_t(k))$. Further, one has that:

(10)
$$\forall x^* \in \mathcal{X}^* : |x^*(A(t)) - x^*(v_t(n))| \to 0 \quad \text{a.e.} \quad (P), \quad \text{as} \quad n \to +\infty.$$

This relation shows that A(t) is weakly \mathscr{F}_t -measurable for every $t \in T$. Since $|x^*(v_t(n))| \leq g_t$ a.e. (P), it follows that $|x^*(A(t))| \leq g_t$ a.e. (P), hence A(t) is a weakly integrable function for every $t \in T$. Finally, let $s, t \in T$, $s \leq t$, and $t_n \uparrow + \infty$ as $n \to + \infty$ such that $t_n \geq t$, $n = 1, 2, \cdots$. Then, using the Lebesgue dominated convergence theorem and representation (6) for a weak conditional expectation one gets that for every $\Lambda \in \mathscr{F}_s$:

$$\int_{\Lambda} x^{*}(A(s)) dP = \int_{\Lambda} (\lim_{n \to +\infty} x^{*}(v_{s}(n))) dP = \lim_{n \to +\infty} \int_{\Lambda} x^{*}(v_{s}(n)) dP$$

$$= \lim_{n \to +\infty} \int_{\Lambda} x^{*}(E(X_{t_{n}} | \mathscr{F}_{s})) dP$$

$$= \lim_{n \to +\infty} \sum_{j=1}^{+\infty} x^{*}(y_{j}^{(t_{n})}) \int_{\Lambda} P(E_{j}^{(t_{n})} | \mathscr{F}_{s}) dP$$

$$= \lim_{n \to +\infty} \sum_{j=1}^{+\infty} x_{*}(y_{j}^{(t_{n})}) P(\Lambda \cap E_{j}^{(t_{n})})$$

$$= \lim_{n \to +\infty} \sum_{j=1}^{+\infty} x^{*}(y_{j}^{(t_{n})}) \int_{\Lambda} P(E_{j}^{(t_{n})} | \mathscr{F}_{t}) dP$$

$$= \lim_{n \to +\infty} \int_{\Lambda} x^{*}(E(X_{t_{n}} | \mathscr{F}_{t})) dP = \lim_{n \to +\infty} \int_{\Lambda} x^{*}(v_{t}(n)) dP$$

$$= \int_{\Lambda} (\lim_{n \to +\infty} x^{*}(v_{t}(n))) dP = \int_{\Lambda} x^{*}(A(t)) dP, \quad \text{a.e.} \quad (P),$$

which shows that the family $(A(t), \mathcal{F}_t; t \in T)$ is a weak martingale. Also, by the dominated convergence theorem a.e. (P), one has that

(11)
$$E(|x^*(A(t)) - x^*(v_t(n))|) \to 0 \qquad \text{as} \quad n \to +\infty.$$

Now, given $\varepsilon > 0$ there is an integer n_0 such that for every $x^* \in S^*$:

(12)
$$\sum_{n=n_0}^{+\infty} E(|x^*(X_{t_n}) - x^*(E(X_{t_{n+1}}|\mathcal{F}_{t_n}))|) < \varepsilon/2.$$

Let $k \ge n_0$. Then (11) implies that $E(|x^*(A(t_k)) - x^*(v_{t_k}(m))|)$ is small for m sufficiently large. Let m(k) + 1 be an integer for which:

(13)
$$E(|x^*(A(t_k)) - x^*(v_{t_k}(m(k)+1))|) < \varepsilon/2.$$

Taking into account (12) one gets that

$$(14) E(|x^*(X_{t_{\nu}}) - x^*(A(t_{\nu}))|) \leq E(|x^*(X_{t_{\nu}}) - x^*(v_{t_{\nu}}(m(k) + 1))|) + \varepsilon/2.$$

Now for $n \ge k$ it follows that $E(x^*(u(n)) | \mathscr{F}_{t_k}) = x^*(v_{t_k}(n) - v_{t_k}(n+1))$, so that $E(|x^*(v_{t_k}(n) - v_{t_k}(n+1))|) \le E(|x^*(u(n))|)$. Therefore it follows that

(15)
$$E(|x^*(X_{t_k}) - x^*(v_{t_k}(m(k) + 1))|)$$

$$\leq \sum_{n=k}^m E(|x^*(v_{t_k}(n) - v_{t_k}(n + 1))|)$$

$$\leq \sum_{n=k}^m E(|x^*(u(n))|) \leq \sum_{n=n_0}^{+\infty} E(|x^*(u(n))|) \leq \varepsilon/2 ,$$

where the last inequality in (15) is obtained from (12). Finally, from (13) and (15) it follows that for every $x^* \in S^*$:

(16)
$$\lim_{n\to+\infty} E(|x^*(X_{t_n})-x^*(A(t_n))|)=0.$$

Further we have to show that the weak martingale $(A(t), \mathcal{F}_t; t \in T)$ is independent of a particular choice of the increasing sequence $(t_n)_{n=1}^{+\infty}$ as well as that the limit in (16) is independent of a choice of this sequence. To prove this, let us assume otherwise. Then there exists a strictly increasing sequence, say $(s_k)_{k=1}^{+\infty}$, such that $s_k \uparrow + \infty$ as $k \to + \infty$, and $s_0 > 0$ such that for every $x^* \in S^*$:

(17)
$$\lim_{k\to+\infty} E(|x^*(X_{s_k})-x^*(A(s))|) \geq \varepsilon_0 > 0.$$

Let us form the increasing sequence $(p_k)_{k=1}^{+\infty}$, $p_k \uparrow + \infty$ as $k \to +\infty$ by interlacing the sequences $(t_n)_{n=1}^{+\infty}$ and $(s_k)_{k=1}^{+\infty}$ satisfying (16) and (17), respectively. Then by applying the first part of the proof, there exists a weak martingale $(B(t), \mathcal{F}_t; t \in T)$ such that:

(18)
$$\forall x^* \in S^* : \lim_{k \to +\infty} E(|x^*(X_{p_k}) - x^*(B(p_k))|) = 0.$$

It follows that $(A(t) - B(t), \mathcal{F}_t; t \in T)$ is a weak martingale which implies that for every $x^* \in S^*$, $(|x^*(A(t)) - x^*(B(t))|, \mathcal{F}_t; t \in T)$ is a real-valued sub-martingale, which further implies that $E(|x^*(A(t) - B(t))|)$ is a non-decreasing function on t. On the other hand: $E(|x^*(A(t_k)) - x^*(B(t_k))|) \leq E(|x^*(X_{t_k}) - x^*(A(t_k))|) + E(|x^*(X_{t_k}) - x^*(B(t_k))|)$, or, $E(|x^*(A(t_k)) - x^*(B(t_k))|) \leq E(|x^*(X_{t_k}) - x^*(A(t_k))|) + E(|x^*(X_{t_k}) - x^*(B(t_k))|) \to 0$ a.e. (P) as $k \to +\infty$. This fact, together with the earlier conclusion that $E(|x^*(A(t) - B(t))|)$ is a non-decreasing function on t, implies that:

(19)
$$\forall t \in T \colon A(t) = B(t) \quad \text{a.e.} \quad (P) .$$

The relations (18) and (19) imply that $E(|x^*(X_{p_k}) - x^*(A(p_k))|) \to 0$ as $k \to +\infty$, which contradicts (17). Therefore, $\forall x^* \in S^* : \lim_{t \to +\infty} E(|x^*(X_t) - x^*(A(t))|) = 0$. Finally, put $\forall t \in T : Y_t = A(t)$ a.e. $(P), Z_t = X_t - Y_t$ a.e. (P). Then, we have a weak Riesz decomposition $X_t = Y_t + Z_t$ for the weak quasi-martingale (X_t) .

 \mathcal{F}_t ; $t \in T$). This decomposition is essentially unique due to Proposition 1, which terminates the proof of the theorem.

REFERENCES

- [1] Brooks, J. K. (1969). Representations of weak and strong integrals in Banach spaces. *Proc. Nat. Acad. Sci. U.S.A.* 63 266-270.
- [2] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] DUNFORD, N. and PETTIS, B. J. (1940). Linear operations on summable functions. *Trans. Amer. Math. Soc.* 47 323-392.
- [4] Fisk, D. L. (1965). Quasi-martingale. Trans. Amer. Math. Soc. 120 369-389.
- [5] HILLE, E. and PHILLIPS, R. S. (1957). Functional Analysis and Semi-Groups. Amer. Math. Soc., Providence.
- [6] Metivier, M. (1967). Martingales à valeurs vectorielles; Application à la derivation. Lecture Notes in Mathematics. Springer-Verlag, Berlin.
- [7] MEYER, P. A. (1966). Probabilities and Potentials. Ginn and Blaisdell, New York.
- [8] OREY, S. (1967). F-processes. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 2 301-313. Univ. of California Press.
- [9] POP-STOJANOVIC, Z. R. (1970). Decomposition of Banach valued quasi-martingales. *Notices Amer. Math. Soc.* 17 1063.
- [10] Pop-Stojanovic, Z. R. (1971). Decomposition of Banach valued quasi-martingales. Math. Systems Theory 5 No. 4, 41-47.
- [11] RAO, K. M. (1969). Quasi-martingales. Math. Scand. 24 79-92.
- [12] SCALORA, F. S. (1961). Abstract martingale convergence theorems. *Pacific J. Math.* 2 347-374.