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DESIGNS WITH PARTIAL FACTORIAL BALANCE

By DoNALD A. ANDERSON
University of Wyoming

In this paper a class of multidimensional experimental designs said to
have partial factorial balance is introduced. These designs are shown to
belong to the more general class of multidimensional partially balanced
designs. The analysis of designs with partial factorial balance is given in
detail and several series of three, four and five dimensional designs are
presented.

1. Introduction. An experimental design is said to be multidimensional if the
design involves more than one factor; see e.g., Potthoff (1962 a, b). For example,
the ordinary balanced and partially balanced incomplete block designs are two
dimensional. The Latin squares, Youden squares, and the designs of Shrikhande
(1951) are three dimensional. Finally the Graeco-Latin square designs are four
dimensional, and orthogonal arrays of strength two with m constraints are m
dimensional designs. The usual analysis of each of the above designs assumes
an additivity of the factorial effects; that is, all interaction effects are assumed
to be zero.

Srivastava (1961) and Bose and Srivastava (1964) introduced the class of multi-
dimensional partially balanced (MDPB) designs and the corresponding MDPB
association schemes. These MDPB designs include as special cases the above
mentioned designs, and have proved useful in further economizing on the number
of observations to be taken while retaining a relative ease of analysis. Srivastava
and Anderson (1970) establish some necessary conditions for the existence of
MDPB designs and also consider the connectedness of such designs. Srivastava
and Anderson (1971) introduce some new MDPB association schemes and con-
sider procedures for the construction of MDPB designs.

The purpose of this paper is to introduce a special class of MDPB designs for
the case where all factors have the same number of levels. These designs have
additional properties which further ease their analysis and interpretation. This
class of designs, termed to have partial factorial balance, is defined in Section 2
and the special features of their analysis are given. Series of three, four and
five dimensional designs with partial factorial balance are given in Sections 3
and 4, which are economic in terms of number of observations required.

The mathematical model is expressed as:

(1.1) Ely} = X'p, Cov {y} = ¢’ ,

where y denotes the N x 1 vector of observations, p the mr x 1 vector of un-
known parameters, and X’ the design matrix. The normal equations are given
by:
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(1.2) (XX')p = Xy .

For the basic definitions and properties of MDPB designs the reader is referred
to Bose and Srivastava (1964) and Srivastava and Anderson (1970).

2. Partial factorial balance. Suppose that there is a partially balanced associ-
ation scheme with » associate classes defined on the set {0, 1, 2, - - ., n — 1} with
parameters 7, « = 0, 1, - .-, 9, and p(a; B, r), Bose and Mesner (1959). That
is, if i and j are two integers in the set then there is a relation of association
defined so that (a) i and j are either Oth (if i = j), Ist, ..., or yth associates, (b)
each integer in the set has exactly »* ath associates, « =0, 1, ---, », and the
relation of association is symmetric, (c) if i and j are ath associates the number
of Bth associates of i which are also yth associates of j is a constant p(a; 8, r)
independent of i and j so long as they are ath associates. Denote by B" = I,
B, B?, ..., B" the n X n association matrices of the scheme.

Consider an experiment involving m factors F,, F,, - - -, F, each with n levels,
say F,, Fpy, -+, F,, ;,u=1,2,...,m. We define a relation of association
between the levels of factor F, and the levels of factor F, as follows: level F,;
of factor F, is said to be an ath associate of level F,; of factor F, if j, and j,
are ath associates in the scheme defined on the set {0, 1,2, ---,n — 1}, u, v =
1,2, ..., m. Thus we have defined an association scheme on and between the
m sets of levels of the m factors. It is easy to show that this scheme is MDPB.
Note that all within and between set association relations are the same.

If T'denotes a design for this m dimensional experiment let 21,7z, 7n(T) denote
the number of times the assembly (Flil’ sz, ceey ijm)’ appears in 7. Similarly
4,7«T) denotes the number of assemblies in T in which level F,; of factor F,
appears, and 2747»(T) the number of assemblies in which F,; and F,; both appear.

DeriNITION 2.1. The design T is said to have partial factorial balance if

(i) 2, = p, a constant independent of « and j,.

(ii)y Ajwv=4d*, u#+v=1,2,...,m, a constant depending on «a but inde-
pendent of u, v, j,, and j, so long as F,; and F,; are ath associates.

In the remainder of this section we consider the analysis of designs having
partial factorial balance. It follows directly, Bose and Srivastava (1964), that
each diagonal block of XX’ is uI, and each off diagonal block is B = }}7_,d*B".
Hence,

(2.1 (XX =, ® ol) + (Jpw — 1) Q B, B=3%1_,d*B*,

where J,, denotes the p X ¢ matrix with every element unity and ® denotes the
usual left Kronecker product, i.e.,

(2.2) A® B = ((a,;)) ® B = ((aB)) -

If the design T is completely connected it follows that the matrix

(2.3) M = (XX') + (I, ®6J,.) 0 +0
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is nonsingular and that M~ is a conditional inverse of (XX"). Hence, a solution
to the normal equations is given by

(2.4) p=MXy.
Let 4 = pl, + 6J,,, then the matrix M may be expressed as
(2.5) M=[I,&(A— B)]+ [Jun ® B] and

M? =L,V = W)+ [Jun @ W]
where (V — W) = (4 — B)™,
(2.6) W= —[4d+ (m—1)B]"B[4— B]" = Xl w: B,
V=[A+ (m— 1)B]"[4 + (m — 2)B][4d — B]" = Y7, v, B .

Thus the calculation of M~* involves the inversion of two matrices, (4 — B)
and [4 + (m — 1)B], where 4 and B are known from the parameters of the
design. The properties of the linear associative algebra generated by the as-
sociation matrices B°, B!, - - -, B” and its regular representation may be employed
to simplify the calculations. For example, if 7 = 2 the problem reduces to the
inversion of two 3 x 3 matrices. In general there will be two (y + 1) X (p + 1)
matrices. A detailed example is given in the next section.

It is obvious from (2.6) that the variance of a simple contrast of ath associates
is 2¢*(v, — v,) and there are  accuracies. Suppose there did exist an orthogonal
design (usually there does not) with the same value of N and p. For such a
design the variance of a simple contrast would be 20?/. The “efficiencies” of
a design are obtained by considering the ratio of these two variances, that is

_ 2 _ 1
200, — V) p(Vy — V,)

2.7) a=1,2,.---,7,

3. Example from triangular association scheme. In this section a series of three
dimensional designs with partial factorial balance is constructed from the tri-
angular association scheme. The number of levels of each factoris n= #(t — 1)/2
where ¢ is a positive integer. We take a ¢t X ¢ square, and fill the #t — 1)/2
positions above the main diagonal with the » integers 0, 1, 2, - .., n — 1 taken
in order (see Fig. 3.1). The positions on the main diagonal are left blank, while
the positions below the main diagonal are filled so that the # X ¢ matrix is sym-
metric. Then F,; and F,; are said to be Oth associates if i = j, 1st associates if
iand j, i # j, lie in a common row (or column), and 2nd associates if they do
not lie in a common row.

W= o X
N A~ X O
09X A~
O X 9 v N
X O 00 O\ W

Fi1g. 3.1. t=5,n=10.
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The parameters of the triangular association scheme are given in matrices

0 1 0
3.1) P=|2t—4 t—-2 4 s
0 t—3 2t—8
0 0 1 B
0 t— 3 2t — 8
3.2 2 —
(3:2) P (=2t =3) ¢t=3)(t—4) (=Ht-95]
2 2 2

where in general P7 = ((cg,)) and ¢y, = p(@; B, 7)-
It is well known (see Bose and Mesner (1959)), that the mappings

I, 1, B'—P', B P

generate the regular representation of the linear associative algebra generated
by the association matrices. Then if B = b1, + b, B* + b, B, its representation
is P = by, + b, P* 4 b, P* where P is a 3 X 3 matrix. If B is nonsingular so is
P,and if P~ = ¢,I, + ¢, P* + ¢, P? it follows that B~ = ¢,I, + ¢, B* + ¢, B*. Thus
the inversion of the » X n matrix Breduces to the inversion of the 3 x 3 matrix
P.

Consider the set of assemblies (F,,, F,,, F,,)’ such that all pairs of levels are
first associates and such that x, y, and z do not lie in a common row of the array.
For example, with # = 5 and the array of Fig. 3.1, F,; and F, are a pair of first
associates. The levels of F, which are first associates of both F}, and F,, are F,,
F,, and F,,. The only level of F, such that there is no row containing all three
is F,,, hence the corresponding assembly is (F,,, F,, F,)’ or more compactly
(0, 1, 4)" It is easy to see that for all # and for any pair of first associates x, y
there is a unique z satisfying the above condition.

The parameters of this series are

(33) N:t(t—l)(t—Z), y:Z(t—Z), d=d*=0, d=1.

The design may be increased in size by taking p replications of the n assemblies
(Fy, Fy, Fy)', i =0,1, ..., n — 1. In this case

(3.4) N=tt—1)(t—2)+pn, p=20t—2)+0p,
dozp, d1:1, d>=0.

We shall now consider the analysis of these latter designs with parameters as
in (3.4). From (2.1) we have

(3.5) XXy = (L®uL) + (Jy —L)®B, B=opl,+ B'.

In (2.3)let § = 1, then M = I;® (4 — B) + (J;; ® B) and the two matrices to
be inverted are

(3.6) (A — B) = [2(t — 2) + pll, + J,, — B= (2t — 3)I, + B
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(3.7) (A + 2B) = [2(t — 2) + plI, + J,, + 20I, + 2B"
= [2t — 3 + 3p}l, + 3B' + B*.

The calculations are easily made by taking the same linear combinations of the
3 X 3 regular representation matrices P°, P*, and P2, that is P, = (2¢t — 3)I, + P2,
P, =[2t — 3 4 3p]I; + 3P' 4 P?, and P, = pI, + P*. Now calculate P,”%, P,!
and g
— PP, P~ = wyl, + w, P* 4+ w, P?
P,~' — PP, Pt = v,1, + v, P + v, P?.
Then we have
W = w,, + w,B* + w,B?, V =1, + v,B* + v,B?

~

and the inverse is complete.

The values of v, v;, v,; w,, w;, w, and the efficiencies for t = 4, 5,6, 7and p =
0, 1, 2, 3, except for the design with # = 4 and p = 0 which is not completely
connected, are given in Table 3.1. The design with r = 4 and p = 1 may be
regarded as a Latin square with the diagonal deleted, and with o = 2 there isa

TABLE 3.1
Analysis of designs from triangular association scheme
n 0 N oy 7 V2 &1 &2
Wo w1 w2
6 1 30 .2024 —.0159 —.0119 .91 .93
—.0060 —.0159 .0298
2 36 .1764 —.0069 —.0236 .91 .83
—.0319 —.0069 .0181
3 42 .1661 —.0041 —.0262 .84 .74
—.0422 —.0041 .0155
10 0 60 .2029 —.0221 .0029 .74 .83
.0504 —.0246 .0254
1 70 .1482 —.0063 —.0109 .92 .90
—.0043 —.0088 .0116
2 80 .1330 —.0027 —.0134 .92 .85
—.0195 —.0052 .0091
3 90 .1256 —.0012 —.0143 .88 .79
—.0269 —.0037 .0082
15 0 120 .1398 —.0074 —.0046 .85 .87
.0198 —.0107 .0087
1 135 .1165 —.0025 —.0073 .93 .90
—.0035 —.0059 .0060
2 150 - . 1067 —.0007 —.0081 .93 .87
—.0133 —.0041 .0052
3 165 L1011 .0002 —.0085 .90 .83
—.0189 —.0032 .0048
21 0 210 L1091 —.0030 —.0040 .89 .89
.0104 —.0064 .0045
1 231 .0958 —.0009 —.0049 .94 .90
—.0029 —.0043 .0036
2 252 .0889 .0001 —.0053 .94 .88
—.0098 —.0033 .0032
3 273 .0846 .0007 —.0054 .91 .85

—.0140 —.0027 .0031
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Latin square with N = 36. For higher values of ¢ these designs become more
attractive in terms of decreasing the number of observations and maintaining
reasonable efficiency.

4. Cyclic association scheme. In this section we consider a cyclic association
scheme and some three, four, and five dimensional designs obtained from this
scheme. As before let S, S,, - - -, S,, denote the m sets of factor levels, S, =
{(Fopr Fupy -+  Fy b u=1,2, ..., m.

u

DEerINITION 4.1. The element F,; € S, is said to be an ath associate of F,; € S,
ifi —j=amod(n)ori — j= —a mod (n). The sets S, and S, are not neces-
sarily distinct.

It follows directly from the definition of the association scheme that,

(4.1) n = (n+ 1)/2 if n isodd,
= (n 4 2)/2 if n iseven,
(4.2) =1 a=0
=2 a=12,.---,(n—1)2 n odd;
(4.3) 7=1 a=0 or n/2
=2 a=1,2,---,n2—1 n even.

The association matrices B~ are most easily expressed in terms of the powers
of the (r X r) matrix P, where

0 0 0...0 1
1 00...00
(4.4) p={010...0 0
0 0 0..-10

It is well known that the powers of P,
P, PP PP =],

form a basis for the class of circulants. Then from Definition 4.1 we see that
if nis even

Be=Pr4 P, a=1,2...,n2—1

(4.5) = P, a = nf2
=1,, a=20,

and if » is odd

(4.6) B* = P« | pr-« a=1,2,...,(n— 12
=1,, a=0.

This representation of the B* in terms of the powers of P simplifies multiplica-
tion of association matrices.
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Series of designs with partial factorial balance will now be given which cor-
respond to this cyclic association scheme. For compactness an assembly (Fljl’
F, -, F,; ) will be denoted by (ji, o - -, ju)'- All integers are assumed to

2j2’ ..

be mod (n).
DESIGN 4.1. n X n X ndesignn > 3, N = 3n, n, = 2.
k k k
T=|k—1 k k+1: k=0,1,...,n—1
k k—1 k+1
Parameters: p=3;d=d*'=1;d*=0,a > 1
(XX') = [, ® (31, — B)] + [/ ® B]
where B = I, + B' and B' is the (n X ») matrix corresponding to first associates
as defined in (4.5).

DESIGN 4.2. n X n X ndesignn >4, N =4n,n,=n 4 2.
k k k k
T=|k—1 k k+1 k: k=0,1,.---,n—1
k k—1 k+1 k
Parameters: ¢ =4,d"=2,d'=1,d*=0,a > 1,
(XX =[,® (41, — B)] + [/ ® B], B =2I,+ B'.
DESIGN 4.3. n X n X ndesignn = 5, N = 5n, n, = 2n + 2.
k k k k- k
T=\k—2 k-1 k k+1 k+2: k=0,1,---,n—1
k—1 k—2 k+2 k+1 k
Parameters: p=5;d'=d'=d*=1;d*=0,a > 2
(XX = [, ® (5, — B)] + [Ju® B], B=1,+ B + B
DEsIGN 4.4. n X n X n X ndesignn> 5, N =5n,n,=n+ 3.

k k k k k
k—2 k—1 k k+1 k42: k=0,1,--,n—1
Tlk—1 k—2 k+2 k+1 &
k  k—2 k4+1 k—1 k+2

Parameters: g =5;d'=d"' =d*=1;d*=0, a > 0.
(XX") = [I,® (51, — B)] + [J.® B], B=1,+ B'+ B.

A second four-dimensional design may be obtained from the preceding by
adjoining the assemblies (k, k, k, k)’, k = 0,1, ..., n — 1. For this design we
have N=6n,n,=2n+3, p=6,d"=2,d'=d*=1,andd* =0, a > 2.
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DeSIGN 4.5. n X n X n X ndesignn>7, N="Tn, n, = 3n + 3.
k k k k k k k
k—3 k—2 k-1 k k+1 k+2 k+3:
T=|k—1 k—3 k+2 k k—2 k+3 k+1
k—2 k k+2 k—3 k-1 k+1 k43
k=0,1,...,n—1
Parameters: p=7;d*=1,a=0,1,2,3;d*=0, a > 3.
(XX') = [L® (1, — B)| + [Ju®B], B=1I,+B +B+B.

It should be noted that an » x » X r design with N = 6n may be obtained
from Design 4.5 by deleting the assemblies (k, k, k, k — 3)" and then disregarding
factor F,. Also an X n X ndesign with N = 7n is obtained by simply disregard-
ing factor F, from Design 4.5.

DESIGN 4.6. n X R X B X n X ndesignn =5, N = 5n,n, = 4.

k k k k k
k—2 k—1 k k+1 k—2
T=|k—1 k—2 k+2 k+1 k : k=0,1,...,n—1

k k—2 k4+1 k—1 k+2
k—2 k k+2 k—1 k+1
Parameters: p=5d=d' =d*=1;d*=0, a > 2.
(XX = [I,® (5I, — B)] + [J,® B], B=1,=B"+ B.

Design 4.6 has only four degrees of freedom for error. If more degrees of
freedom are required the assemblies (k, k, k, k, k) k = 0,1, --., n — 1 may be
adjoined. In this case we have N = 6nand n, = n + 4.

Several other designs may be constructed which have the properties of those
given. The examples given above should be sufficient to illustrate the general
structure of the cyclic designs.

Bruner (1967) has tabled the matrices ¥ and W for each of the designs given
in this section with » < 15 and all matrices required for testing hypotheses of
the usual type. It has been observed from these tables that for n < 15 these
designs possess the property of contiguity. That is, the variance of a simple
contrast of ath associates increases as a increases. Further results on this property
will appear in a later publication.
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