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ASYMPTOTIC NORMALITY OF NONPARAMETRIC TESTS
FOR INDEPENDENCE!

By F. H. RuYMGAART, G. R. SHORACK? AND W. R. VAN ZWET
Mathematisch Centrum, Amsterdam and University of Leiden

Asymptotic normality of linear rank statistics for testing the hypo-
thesis of independence is established under fixed alternatives. A generali-
zation of a result of Bhuchongkul [1] is obtained both with respect to the
conditions concerning the orders of magnitude of the score functions and
with respect to the smoothness conditions on these functions.

1. Introduction. Foreachnrnlet (X,, Y)), ---,(X,, Y,) bea random sample from
a continuous bivariate distribution function (df) H(x, y) having marginal dfs
F(x) and G(y). The bivariate empirical df based on this sample is denoted by
H,. With respect to the n random variables (rvs) X,(Y;) corresponding to the
first (second) coordinates, the empirical df is denoted by F,(G,), the ith order
statistic by X,,(Y;,) and the rank of X;(Y;) by R,(Q;). All samples are defined
on a single probability space (Q, .5, P).

The rank statistics most commonly used to test the independence hypothesis
H = F.G, are of the linear type

T,=n"27%,a,(R)b.(Q)),

where a,(i), b,(i) are real numbers for i =1, - .-, n (see Hajek and Sidak [6]).
A suitably standardized version of T, will be (see also Bhuchongkul [1])

(1.1) m(T, — p) = m[§§ J(F)K(G,)dH, — p];

here

(1.2) Ju(s) = @), Ky(s) = b)),
for(i—l))n<s<imandi=1,.--,n and

(1.3) © = §§ J(F)K(G) dH ,

for some functions J and K on (0, 1) that can be thought of as limits of the score
functions J, and KX,,.

In order to summarize the main results of this paper let us introduce the
function

(1.4) r=1[I(1 —-1)]"" on (0,1),
where 1 is the identity function on the unit interval. Under the hypothesis and

under contiguous alternatives, asymptotic normality of (1.1) may be proved for
score functions J and K of order rt=? for some é > 0 (see Hajek and Sidak [6]).
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Jogdeo [7] establishes asymptotic normality under the hypothesis of a statistic
more general than T,; the growth condition on his score functions in the case
of T, is r#=%. By an approach analogous to that of Chernoff and Savage [3] for
the two-sample problem, Bhuchongkul [1] proves asymptotic normality under
fixed alternatives provided the score functions are of the order log r (see Section 2).
The main purpose of this paper is to relax these conditions to r#~? in general
and r#-? for a special class of dfs H.

In Theorem 2.1 the asymptotic normality of (1.1) is established for rather
smooth score functions with orders of magnitude not exceeding r* and r*, where
the numbers a and b satisfy the relations a = (} — d)/p, and b = (} — 9)/q, for
some 0 < § < 4 and some p,, g, > 1 with p,~* + ¢,~* = 1. No condition other
than continuity is imposed on the df H. The theorem is stronger than Theorem 1
of Bhuchongkul [1]. The proof is based on Holder’s inequality in the form

(1.5) 3§ [$(F)p(G)| aH < [§ |4] dI1[§ |$]7 dIT""

where ¢ and ¢ are functions on (0, 1), dI denotes Lebesgue measure restricted
to the unit interval and p, ¢ > 1 satisfy p=* 4 ¢7* = 1.

Theorem 2.2 gives asymptotic normality of (1.1) under much weaker condi-
tions on the score functions. Here these functions are allowed to be of order
reand r’, where a = b = 1 — 6 for some 0 < d < . The price for this is a
condition on the df H, keeping it in some sense similar to the null hypothesis.
This condition is
(1.6) dH < C[r(F)r(G))°* dF dG ,
with fixed constants C > 1 and 0 < 6 < 4. Mathematically, (1.6) allows a direct
factorization of the left-hand integral in (1.5) which is more efficient than
Holder’s inequality. Intuitively, this condition prevents the large (small) X’s
from occurring in the same pair as large (small) ¥’s with too high a probability.
Condition (1.6) trivially holds under the null hypothesis. More generally it is
also satisfied if H can be written as a polynomial in its marginals Fand G. This
class of distributions was introduced by Lehmann [9] and the special case where
H = FG[l 4+ a(1 — F)(1 — G)] for —1 < a < 1 was considered by Gumbel [5].
Finally (1.6) holds for all bivariate normal distributions with a sufficiently small
correlation coefficient (use Lemma 2 on page 166 of Feller [4] to see that (1.6)
holds for a correlation coefficient between —d/(2 — d) and 9/(2 — 9)).

2. Statement of the theorems. Each of the theorems below establishes the
asymptotic normality
(2.1) n¥(T, — p) —4 N(O, ¢%) as n— oo,
of (1.1); here ¢ and ¢* are finite and are given by (1.3) and (3.10) respectively.

Let 577 denote the class of all continuous bivariate dfs H, and let 527,; denote
the subclass that satisfies (1.6) for fixed C= 1and 0 < d < }.

To prove (2.1) for general H in 5# we require a strong boundedness condition
on the score functions.
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AssuMPTION 2.1. The functions J and K are continuous on (0, 1); each is
differentiable except at an at most finite number of points, and in the open in-
tervals between these points the derivatives are continuous. The functions J,,
K,, J, K satisfy |J,| < Dr*, |K,| < Dr* and

|J(i)| < Dre+i |K(i)| < Dypb+i for i=0,1,
where defined on (0, 1). Here D is a positive constant and a and b satisfy
(2.2) a=(4—0p, b=~ g
for some 0 < § < } and some p,, g, > 1 with p;~' + ¢,7' = 1.

In proving (2.1) for the more restrictive class 527, we only require a weak
boundedness condition on the score functions.

AssUMPTION 2.2. Assumption 2.1 holds with
(23) a —= b = % — 0

for some 0 < d < §.
We also need a condition on the convergence of J,, K, to J, K. Define

(2.4) By, = n* \\,, [Ju(F,)K\(G,) — J(F,)K(G,)] dH, ,

(2.5) B, = nt §§ [J(F,)K(G,) — J(F,")K(G,*)] dH, ,

where

(2.6) A, =4, x4, with A, =[X,,, X,,) and A, =1[Y,, ¥,.),
(2.7) F* = [n/(n + DIF,,  G,* =[n/(n+ 1)]G,,

AssumpTION 2.3. Either (a) B,, —,0 as n— oo, or (b) Bj, —,0 as n— oo.
This assumption is very general, but may occasionally be difficult to verify.
However, most examples are special cases of Remarks 2.1 and 2.2 below.

REMARK 2.1. If the scores of (1.2) satisfy a,(i) = J(i/(n + 1)) and b,(i) =
K(i/(n 4 1)) for 1 < i < n for some functions J and K, then Assumption 2.3 (b)
holds uniformly for H in “7 . (In this case Bj, = 0 for all n.)

REMARK 2.2. Suppose that J and K are increasing and twice differentiable on
(0, 1), and that |[J®| < Dr*** and |K?| < Dr*** for i = 0, 1, 2 where D > 0 and
a and b satisfy (2.2). Let the scores a,(i) and b,(i) of (1.2) be the expectations
of the ith order statistics of samples of size n from populations whose dfs are
the inverse functions of J and K respectively. Then Assumption 2.1 holds and
Assumption 2.3 (a) holds uniformly for all Hin.»#". (Thisstatement generalizes
Theorem 2 of [1] and the proof may be given in the same way. It relies mainly
on the fact that Y77} |a,(i) — J(i/n)| = O(n®) and 72} |b,(i) — K(i/n)| = O(n’),
which follows from formulas (7.14) and (7.24) of [3] with «a =a and a = b
respectively.)

THEOREM 2.1. If His in &7 and if Assumptions 2.1 and 2.3 are satisfied, then
the asymptotic normality (2.1) holds. Given any subclass .7 ' of 7 such that As-
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sumption 2.3 holds uniformly for H in z"' and such that ¢ = ¢*(H) is bounded
away from 0 on 2%, the convergence in (2.1) is uniform for H in -7 ".

Note that (2.2) is satisfied if a = b =1 — ¢ for some 0 < ¢ <  (take p, =
¢, = 2 and 6 = 2¢). Thus Theorem 2.1 allows a rate of growth ri~« for the score
functions J and K and ri~« for their derivatives. In Theorem I of [1] these rates
are r*<and r respectively; in fact the latter condition reduces the rate for J and
K to log r. Moreover in [1] the score functions are assumed to be twice dif-
ferentiable throughout the unit interval.

THEOREM 2.2. Fix C=1and0 < d< L. If Hisin ‘% ,; and if Assumptions
2.2 and 2.3 are satisfied, then the asymptotic normality (2.1) holds. Given any sub-
class 57}, of 97, such that Assumption 2.3 holds uniformly for H in 7 /; and
such that o* = ¢*(H) is bounded away from 0 on JZ7;, the convergence in (2.1) is
uniform for H in %7 (;.

3. Proof of the theorems: Asymptotic normality of the leading terms. Let F~'(s) =
inf {x: F(x) = s}and G~\(t) = inf {y: G(y) = t}; these definitions imply F(F™") =
G(G") = I. The random functions F,(F-') and G,(G™") are with probability 1
the empirical dfs of the sets of independent uniform (0, 1) rvs F(X)), - - -, F(X,)
and G(Y,), ---, G(Y,) respectively. Define the empirical processes U, =
m[F,(F) — I]and ¥V, = n}[G,(G™") — I] on [0, 1]. With probability 1 these
processes satisfy U, (F) == n¥(F, — F)and V,(G) = n¥(G, — G)on (—oo, c0). All
of the above remarks follow from the fact that

(3.1 P(Qy) = P({w: F,(F\(F)) = F,, G,(G"(G)) =G,
forall x,y and n})=1.
Without loss of generality we shall prove Theorems 2.1 and 2.2 in the case

where both J and K fail to have a derivative at just one point, say at s, and #,
respectively. For small positive y define the sets

(3.2) Sy =[F(), FY(si = )] U [F(sy + 1), F7I(1 = 7)]-
S, =1[G"(), Gty = NIV [G(H + 1), GT(1 — )]s
(3.3) Q, ={w:supl|F, — F| < 7/2,sup |G, — G| < 7/2}.

Let S, = S,, X S,, be the product set in the plane and let 2(Q,,) denote the
indicator function of Q . For w in Q; N Q_, the mean value theorem gives

niJ(F,) = ntJ(F) + U,(F)J'(®,)

for all xin A,, N S,,. In the above formula the function @, is defined by @, =
F + O(F, — F), where # = 6(w, x, n) is a number between 0 and 1. Thus with
probability 1 (using Assumption 2.3 (a))

(3'4) n%(Tﬂ - !’l) = Z?:l Ain + Z?ZO Bz'n + ZZ::{ Brin + BR'n + Cn ’

where B,, is defined in (2.4) and where
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A, = n §§ JPK(GY(H, — H),
Ay = SV ULPW(PKG)dH , Ay, = §§ V,(GV(F)K(G) dH ,
B, =\, JJF)K(G,) dH,, B, = —nt\§, . JPKG)dH, ,
B, = (@) §,, [I(F,) — JF)IK(G)dH, — 4.},
By = 2R §S4 05,0 [I(F) — J(F)K(G) dH,
Byo = 2(2,2) §8s,05, Un(F)T(®@,) — J(F)IK(G) dH, ,
By = 2R,) V4,05, Un(F)V(F)K(G)A(H, — H),
By = —1(2,2) $s,005,¢ Un(F)T(F)K(G) dH ,
B,, = nt {\,, JPIK(G,) — K(G)ldH, — 4,,,
C, = nt 8., [J(F,) — JPK(G,) — K(G)] dH, .

8n

Let us note that
Lo Bw = 1t §,, [U(F,) — J(F)K(G)AH, — A, ,

1=3 rin
which is symmetric to B,,. For this reason B, will not be treated in the sequel.
We now proceed to prove the asymptotic normality of the A-terms. Let us
start with the very useful remark that if @ and b satisfy (2.2), then for i =1
and 2 we can find numbers p;, ¢, > 1 satisfying p,~* + ¢,”* = 1 and

(3.5 (a+3+d2p<l,  bg<l, ap, <1, (b+4+9/2):<1.
As to the first pair of inequalities, we have @ + 1 4 6/2 + b = 1 — d/2 and con-
sequently @ + } + 6/2 < 1 — /2 (the numbers @ and b are strictly positive).
Now choose p, = (a + § + 3d/4)'and let ¢, = (1 — p,~")~". Then (a+ 3+9/2)p,<1
and bg, = (4 — a — 0)/(} — a — 36/4) < 1. The second pair of inequalities can
be obtained in the same way.

The rv A4,, can be written in the form

(3'6) Aln =nt Z?:l Alin ’

where 4,;, = J(F(X;))K(G(Y;)) — p are independent and identically distributed
(i.i.d.) with mean zero. Under Assumption 2.1 application of (1.5) with p = p,
and g = g, shows that the rv 4,;, has a finite absolute moment of order 2 + 4,
for some 9, > 0. The same conclusion holds under Assumption 2.2 for H in 577,
as may be seen by applying (1.6). Moreover this moment will be uniformly
bounded above for H within SZ(57,;).

Because

UF) = nt S, (py, — F)
where
3.7) ¢Xi(x) =0 if x<X, and ¢Xi(x) =1 if x=X,,
we have

(3'8) A2n =nt Z;{Ll AZin s
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where the 4,;, = §§ (¢, — F)J'(F)K(G)dH are i.i.d. with mean zero. Under
Assumptions 2.1 or 2.2 we have

[Aya|l < D= 1(F(X)) §§ rot 94 (F)r(G) dH .

For some d, > 0 the random part of this upper bound possesses an absolute
moment of order 2 4 d, which is uniformly bounded above for Hin £z". Under
Assumption 2.1 the nonrandom integral is seen to be uniformly bounded above
for H in 2%~ by application of (1.5) with p = p, and ¢ = ¢, as in (3.5). Uniform
boundedness of this integral for H in .22 ; holds under Assumption 2.2, as may
be shown by application of (1.6).

Analogously we can write

(3'9) A?m = l’l_% Z?zl Asin )

where A4, = {§ (¢,, — G)J(F)K'(G) dH are i.i.d. with mean zero. Again for
8, > 0 this rv has a finite absolute moment of order 2 + d, which is uniformly
bounded for H in &% (~%,;). This time use (1.5) with p = p, and ¢ = ¢, as in
(3.5).

Combining (3.6), (3.8) and (3.9) we get >.%_, 4;, —, N(0, ¢*) as n — co. The
variance ¢* is given by (see [1])

(3.10)  o* = Var [J(FX)K(G(Y)) + §§ (9, — F)J(F)K(G) dH
+ ¥§ (¢y — OJ(F)K'(G)dH] ,
with ¢ defined in (3.7).

Since we have shown that an absolute moment of order larger than 2 exists
and is uniformly bounded on .7 (“# ,;), and because the variance is uniformly
bounded away from zero on 7 (% /;), the established convergence in distribu-
tion is uniform for H in 2 "'(~ ;) by Esséen’s theorem (see e.g. [3], Section 4).

4. Some lemmas. We start with a number of lemmas to be used in the proofs
of both Theorem 2.1 and Theorem 2.2.

LeEMMA 4.1. For any { = O the function r* is symmetric about %, decreasing on
(0, 4] and has the property that for each § in (0, 1) there exists a constant M = M
such that r+(8s) < Mri(s) for 0 < s < } and ri(1 — B(1 — 5)) < Mri(s) for § <
s< 1.

Proor. On (0, ] we have ri(8s) = (8s)"%(1 — Bs)~¢ < p7r%(s). A similar
argument applies to the interval (4, 1). [J

LEMMA 4.2. For each w let ®, = ®,, and ¥, =¥, be functionson A, = A,
and A,, = A, respectively (see (2.6)), satisfying min (F, F,) < ®, < max (F, F,)
and min (G, G,) < ¥, < max (G, G,) where defined. Then uniformly for n = 1,
2,.--and He 27:

(i) sup,  r{(®,)r¢(F) = 0,1) foreach (=0;
(i) sup, r(¥,)r7(G) = 0,1) foreach 7=0;
(i) SUP o e |U(F)|rF=7(F) = O, (1) foreach 7 >0.
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Proof. (i) From formula (3.1) and e.g. from [11], Lemma A.3 it follows
that for each ¢ > 0 there exists a constant 8 = §, in (0, 1) such that
(4.1) PQ,)=P{SF<F, =1 — 51 —-Fyond,})>1—c¢,
for all » and uniformly in all continuous F. Because of the definition of (i)n we
have SF<®, <1 — (1 — F)on A,,. By Lemma 4.1 this implies that for some
constant M., we have rC((i)n) < M, r*(F) for x in A,; on the set Q,.

(ii) This is analogous to (i).

(iii) This follows immediately from Lemma 2.2 of Pyke and Shorack [10]. []

For each positive integer k we define a function /, on [0, 1] by
(4.2) 1(0)=0, I(s) =G — )k for (i— )jk<s<Zilk,

i=1,...,k,

LemmA 4.3, As k, n— co, SUP e o |U(I(F)) — U,(F)| —, 0 uniformly in all
continuous F.

Proor. Notethatsup_..., .. |U,(I(F))— U,(F)| = sup,.,<, |U,(I,) — U,|, which
is no longer dependent on F. The U,-processes converge weakly to a tied-down
Wiener process U, (see e.g. Bnllmgsley [2]). In Pyke and Shorack [10] these U,-
and U -processes are replaced by U,- and U,-processes defined on a single new
probability space (Q, .97, P) and having the same finite dimensional distributions
as the original processes (see also Skorokhod [12]). These new processes satisfy
sup |U, — U,| —,.,. 0 and hence also sup |U,(1,) — U(l,)| —,... 0 uniformly in
k, as n— co. Now sup|U,,) — U,| < sup|U, — U,| + sup|U, — Uy(l,)| +
sup |U(I,) — U,(1,)|. For almost every @ the function U, is uniformly con-
tinuous on [0, 1] so that sup |U, — Uy1,)| —,.,. 0 as k — co. This proves that
sup |U,(1,) — U,| -, 0 for k, n— oco. This last result implies the convergence
in probability of the lemma. []

Let v and 2 be the random indices 1 < v(w), A(w) < r such that
(4.3) X, =X, and Y,=7%Y,,.

LEMMA 4.4. Asn— oo, P({a, < FX)<1—a,} N{a, =G(Y)1—0a,})—1
uniformly for H in 7 provided only o, = o(n™").

Proor. The probability of the complementary event is bounded above by
2a," 4+ 2[1 — (1 — a,)"] — 0 as n— oo, independently of H in 27", []

We conclude this section with some lemmas needed for Theorem 2.2.

LEMMA 4.5. Asn— oo, P{Y, = Y,,}) — O uniformly for H in ¢ ;.

PROOF. P({Y, = ¥,,}) = P(Ui: (X, ¥) = (X, Y,,,)}) = n§§ H*~ dH. Note
that for all x, y we have H(x, y) < F(x) and H(x,y) < G(y). Lettingn,= (n—1)/2
and applying (1.6) we obtain

n§§ H"(x, y) dH(x, y) < n §§ F"o(x)G"(y) dH(x, y)
Cn[ §; I"ri? dI?
Cn[l'(n, — /2 + HI'(1 — 6/2)/T(n, — 0 + 2)]
Cnnd~* = O(n’~') — 0

A

A
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asn — oo, because 0 < d < 4. Here C, is a constant depending on C and g only;
hence the convergence is uniform for H in 22 7;. [

LeMMA 4.6. Asn— oo, P({y, < G(Y,) < 1 — 7,})) — 1 uniformly for H in 52
provided 7y, < an=° for some positive constant a.

Proor. This probability equals 1 — P({G(Y,) < 7,}) — PH{G(Y,) > 1 — 1.}
for n larger than (2a)'°. Because of the independence of the sample elements,
application of (1.6) gives

PUG(Y,) < 1.}) = nP(INS {F(X:) = F(X)H 0 {G(Y,) < 7.D)
=n|=, S‘j;“m F(x,) dH(x,, y,)
< Ca[§} PP dl[§jn ot i
= Cn[['(n — 8/2)/T'(n + 1 — 9)|n~2+%2
é Cznn—1+5/2n—a+62/2 — Czn'5/2+52/2—+ 0
as n — oo, because —d/2 + 6*/2 < 0 for 0 < 6 < }. Here C, and C, are constants
depending on C, ¢ and a only; hence the convergence is uniform for H in
s 1
5. Proof of the theorems: Asymptotic negligibility of the remainder terms under

Assumption 2.3(a). Let us start with a further decomposition of C,, which can
be seen to be the sum of

Crin = 171§, U(F,) — J(F)][K(G,) — K(G)]dH, ,

Cr?n = X(an)n& SSAnﬂSrC [J(Fn) - J(F)]K(Gn) dHn ’
Cr3n = _X(an)n% SSAnHSTC [J(Fn) - J(F)]K(G) dHn )
Crin = 1(2) §84,05, U(F)(P,)[K(G,) — K(G)] dH,, .

From this we see that B, and C,,, cancel out. The asymptotic negligibility
of the other B- and C-terms will be given as corollaries to the lemmas of the
previous section.

r3n

COROLLARY 5.1. As n—s oo, B, —, 0 uniformly for H in S2° (2 ;).
Proor. The rv B, is bounded by 3%, B,;, where

By = (D)) §§ x50, K GuD))] dH (%, p) 5
By, = n} |, (MK,(D)| §Si0x 070 dH,(x, y)

Blsn = n%IKn(1)| SSAMX(}’ML) |Jn(Fn(x))| dHn(x’ y) .

Under the assumptions of Theorem 2.1 we have at once that the sum of these
terms is of order O(n~#+*+’) = O(n~%) — 0 as n — oo, uniformly for H in 572"

Under the assumptions of Theorem 2.2 first consider B,,,. By Assumption 2.2,
|K.(G,(»))| < Dr¥(G,(y)). Application of Lemma 4.2 (ii) with ¥ —=G,and p=>b
gives the existence of a constant M such that Q,, = {r(G,) < Mr*(G) on A,,} has
probability larger than I — ¢ uniformly forn = 1,2, ... and all continuous H.
Also
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1) By = DM"‘*IJn(l)IV”(G( r),

where v is defined by (4.3). Set y, = n7#/,(1)| and note that by (1.2) and As-
sumption 2.2 we have y, < D n~° for some constant D, = D. Let Q,, = {r, <
G(Y)<1—7y,). Then

2NV Qin) By = DMy, (1 — 7)™ = O(n=°""") > 0

as n — oo. Applying Lemma 4.6 we see that P(:., Q;,) > 1 — 2¢ for n large
enough, uniformly for H in 227;. A symmetric argument can be given for B,,,.

For the rv B,,, use Lemma 4.5 to see that the set on which this rv may assume
a nonzero value has probability converging to zero as n — co, uniformly for H
in 527,;. [

COROLLARY 5.2. Asn— oo, B,, —, 0 uniformly for H in 2 (5% ;).
Proor. The rv B,, is bounded by >;2_, B,;, where

2in
By, = D'ntri(F(X,)r'(G(Y)))
By, = D'ntri(F(X)))r'(G(Y)))
with v and 2 defined by (4.3).
Under the assumptions of Theorem 2.1 consider Q,, = {a, S F(X,) <1 —a,} N
{a, < G(Y,)) £ | — a,}, with a, = n***~1. Note that na, — 0. Then

X(Qm)len < Dnte, (1 — a, )77t

= D¥(na,)'~*%(1 — )"+ —0

as n— co. Lemma 4.4 gives that P(Q,,) — 1 as n — co, uniformly for H in 2",
The same argument applies for the rv B,,,.
Under the assumptions of Theorem 2.2 consider

Q= sFX)=s1=-8}Nn{r.=G6Y)=1—-r},
with 8, = (nlogn)~'and y, = n=°. Then by (2.3)
1(Q,) By, < D48, 707, 7 (1 — Bo)7(1 — 7)™ — 0

as n — oo. By Lemmas 4.4 and 4.6 we see that P(2,,) — 1 as n — oo, uniformly
for H in ~¢,;. The rv B, can be treated in the same way. []

COROLLARY 5.3. For fixed v, B,,, —,0 and C,,, —,0 as n — co, uniformly for
Hin oz

ProOF. P(Q:,) — 0 uniformly for H in 22~ by the Glivenko-Cantelli theorem
and because the distribution of sup |F, — F| does not depend on H in 7. []

COROLLARY 5.4. For fixed v, B,,, —,0 and C,,, —,0 as n — oo, uniformly for
Hin (()}/.

ProoF. According to Lemma 4.2 (iii) with = = }, for given ¢ > 0 there exists
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a constant M such that Q, = {sup |U,(F)| < M} has probability larger than 1 — ¢
for all n and H in 5Z. Also

2(Q)|Bysa| = M sup, s, V(@) — J'(F)] sups,, [K(G)] -
The function K(G) is bounded on S,, and the bound does not depend on H in
S7. The function J’ is uniformly continuous on [r/2, s, — 7/2] U [s; + 7/2,
1 — 7/2]. Since |®, — F| < |F, — F| where @, is defined, the Glivenko-Cantelli
theorem yields sup, s, |[/(®,) — J'(F)| —,0 uniformly for H in &2°. A similar
argument may be used for C,,,. [I
COROLLARY 5.5. For fixed 7, B, —,0 as n — oo, uniformly for H in 7"
Proor. For arbitrary k we have (see (4.2)) |B,e.| < 231 Bjoirar Where
Byin = §$a,05, |Un(EW'(F)K(G) — Un(I(E)"(I(F)K(I(G))| 4H,, ,
Brosen = |§ 80,05, Un(T(F)NT(I(F)K(I(G)) d(H, — H)|,
Brggien = § 8,05, |Un(E)'(F)K(G) — U (L(F)J'(I(F)K(1(G))] 4H .

Let us first consider B, and B,,,, which are both bounded by the supremum
of the integrand over the set S,. Let an arbitrary e > 0 be given. Application
of Lemma 4.3 gives the existence of constants 7, — 0 as k, n — oo, such that
Q,, = {sup |U,(F) — U,(I(F))| < 7,.} has probability larger than 1 — ¢ for all
k,nand all Hin 57. Notethaton ([, s, —7]U[ss+ 7. 1 —7) x(r» i — 7]V
[t, + 7. 1 — 7]) the function J'(s)K(t) is bounded, say by a constant M,, and
uniformly continuous. By Lemma 4.2 (iii) with ¢ = }, there exists a constant
M such that Q, = {sup |U,(F)| < M} has probability larger than 1 — . Let us
finally write {,, = maxg_|[J'(F)K(G) — J'(I(F))K(I(G))], which tends to zero as
k — oo, uniformly for H in 5Z°. Hence fori=1,3

X(an ﬂ Qn)Brsikn é 77Ic'n]‘4r + Mckr I O

as k, n — oo for fixed y. Because P(Q,, N Q,) > 1 — 2¢ uniformly for H in &2~
we may conclude that B, —,0 and B, —,0 uniformly for H in &2, as
k,n— oo.

Let us next consider B,q,, for a fixed value k. For each v in Q, the integrand
in the expression for this rv is a simple step function assuming a value a;; ()
on the rectangle

Rijin = (F((i — D)/k), F7Yi[K)] X (G — D/k), G7(jlk)1 N S, N A,

fori=1,.--,kand j=1, ..., k. Because |a,;,] < M(M, + (,) on Q,, we
have
X(Qn)Br(ﬂkn - |Z',ic=l ZI;=1 aijkn SSRijkn d(Hn - H)I
< 4k*M(M, + ¢,,)sup |H, — H| —,0
as n — oo, uniformly for H in ©#. Here Theorem 1-m of Kiefer [8] is used.

The conclusion of the corollary follows by straightforward combination of these
results. []
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COROLLARY 5.6. Asy | 0and n— co, B,,, —,0 and C,,, —,0, uniformly for
H in 27(5¢ ;).

ProoF. Let ¢ > 0 be given and let us first consider B,,,. By Lemma 4.2 (iii),
taking = = d/4, there exists a constant M, such that Q,, = {|U,(F)| < M, r ¥+}(F)}
has probability larger than 1 — ¢ for all » and H in &Z°. From Assumption 2.1
(Assumption 2.2) it may be seen that

(.1 1(Qu)| Byl = DMy §§s os o rt I E)(G) dH

Next consider C,,,. By Assumption 2.1 (Assumption 2.2) we have |K(G,)| <
Dr(G,) on A,, and application of Lemma 4.2 (ii) with ¥, = G,andy = b gives
the existence of a constant M, such that Q,, = {r*(G,) < M,r%(G) on A,,} has
probability larger than 1 — ¢ for all » and H in &7, .Take an arbitrary w in Q
and let us first consider those values of x in A, for which the open random
interval between the points F(x) and F,(x) does not contain s,. Then by continuity
of J on the closed and differentiability on the open interval, the mean value
theorem can be applied; it follows from Assumption 2.1 (Assumption 2.2) that

n|J(F,) — J(F)| = |U(F)J'(@y,)| < DIUL(F)|r**(Dy,) -

For those values of x in A,, for which the open random interval between the
points F(x) and F,(x) does contain s, the mean value theorem can be applied
stepwise, since J is continuous on the closed interval and differentiable on the
two open intervals between F(x), F,(x) and 5;,. We thus get the estimate

ni|J(F,) — J(F)| = |U.(F)| 2 V'(Pin)| < DIUL(F)| Zie (D)

by Assumption 2.1 (Assumption 2.2). Where defined on A,,, both ®,, and @,,,,
®,, lie between F and F,. By Lemma 4.2 (i), taking { = a + 1, there exists a
constant M, such that Q,, = {max;_,,, r***(®;,) < M,r**'(F) where defined on
A,,} has probability larger than 1 — ¢ for all » and H in &Z”. Combining these
results we have

(5:2)  EG(Mi=: )| Craal) < 2D°M My M s rt4401(F)r(G) dH

From (5.1) and (5.2) it is clear that the corollary is proved if we show that
the integral on the right in (5.1) converges to zero as y | 0 and #n — oo, uniformly
for H in 527°(2#7,;). For this purpose we start with the integral
(5.3) §\s,c rett(F)Y(G) dH
and note that S,° C (8¢, X (—co, 00)) U ((—o0, 00) X S%). Under Assumption
2.1, by application of (1.5) with p = p, and ¢ = ¢, as in (3.5), we find that (5.3)
is bounded uniformly for H in 27~ by
(5-4) [So.n0is-rsnua—r rletirslim gring§ padr]io

+ [§ rleriroromn dl]wl[s(o,r)u<t1—r,t1+r)uu—r,1) rroadle,

Since by (3.5) both exponents of the function r are smaller than 1, the dominated
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convergence theorem implies convergence of (5.4) to zero as y | 0. Under As-
sumption 2.2 and for H in &2°,,, by an application of (1.6) we see that (5.3) is
bounded uniformly for H in 77, by

(5.5) ClS 0.1 u0sy=rasgtmua—rn PO dI[§ ol
+ C[§ ri-on d[][S(0,7)U(tl—r,t1+r)U(l—r,l)r£_6/2 ary,

which by the dominated convergence theorem converges to zero as y | 0. Hence
under the assumptions of Theorem 2.1 (Theorem 2.2) a value 7 of y can be chosen
such that (5.3) is smaller than ¢ for all H in 5Z°(5%,,) provided y < 7. For this
7 there exists an index 7 = 7i; such that P({A, D S}}) > 1 — ¢ uniformly for H
in &2, provided n = 7. It follows that under the assumptions of Theorem 2.1
(Theorem 2.2) the integral on the right in (5.1) is smaller than ¢ with probability
larger than 1 — e uniformly for H in 52 (52 ,;) for all y < 7and all n > a. []
In order to show how the results of these corollaries can be combined to
complete the proof of Theorems 2.1 and 2.2, let an arbitrary ¢ > 0 be given.
First use Corollary 5.6 to choose a fixed y and an index n, to ensure P({|B,,,],
|C,on| < €}) > 1 — ¢ forall n > n,. Next use Assumption 2.3 (a) and Corollaries
5.1-5.5 to choose for the above fixed y an index n, = n,, > n, such that P({|B;,|,
1B, iuls |Crpal < e fori=0,1,2;j=3,56 k=1,4)) > 1 — ¢forn > n, This
implies that the probability that the sum of all these second order terms does
not exceed 10e is larger than 1 — 2¢ uniformly for H in 5Z°(5#,;), as n > n,.

6. Replacing Assumption 2.3(a) by Assumption 2.3(b). We shall now suppose
that Assumption 2.3 (b) holds. Again the theorems will be considered only in
the case where J and K fail to have a derivative at one point, s, and ¢, respectively.
The proof is based on an analogue of (3.4). We shall need both the empirical
processes and the processes U, *(F) = n¥(F,* — F), V,*(G) = n¥G,* — G). Instead
of the set Q, we shall use Q% = {w: sup [F,* — F| < r/2, sup |G,* — G| < 7/2}.
The role of A, will be taken over by its closure A, = A, X A,, = [X,,, X,.] X
[Y.., Y,.]- Because integration over A, with respect to dH, is the same as in-
tegration over the entire plane, we now have the simpler decomposition
(6.1) mi(T, — p) = 20i-1 Ain + B + 231 Bfin + BS + G,
with probability 1. Here By, is defined in (2.5), the A4-terms are as given in
Section 3 and

B, = 1(Q){nt §§ [J(F,*) — J(F)IK(G) dH, — 4,,},
B, = 2(Q)n §§s0 [J(F,*) — J(F)IK(G) dH,,
By, = x(Q5) §s, U*(B)J(@,*) — J(F)]K(G) dH,,
B, = 1(Q5) §55,05, U*(EW'(F)K(G) d(H, — H),
B, = 1258 35,05, U (F)(F)K(G) dH — 4y,
By, = n* \§ J(F)[K(G,*) — K(G)] dH, — A4, ,
C,* = nt §§ [J(E,*) — J(P)IK(G,") — K(G)] dH, .
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The function @, * arises from application of the mean value theorem and lies
strictly between F and F,* where defined. The analogues of B,, and B,, are
missing in this decomposition; this essentially simplifies the proof of the theorems.
However, if one tries to prove the validity of Assumption 2.3 (b) when Assump-
tion 2.3 (a) is given to hold, problems similar to those connected with B,, and
B,, recur.

Only the second order terms differ from those in (3.4). For their asymptotic
negligibility we need the following modifications of Lemma 4.2.

LeMMA 6.1. Foreach o let ®,* = ®* and ¥ * = *, be functions on A, =1,
and A, = A,;, respectively, satisfying min (F, F, *) < <i) * < max (F, F,*) and
min (G, G,*) < ¥ * < max (G, G,*) where defined. Then, uniformly for n = 1,

2,---and He 57:

(i) supz,, rC((?n*)r“(F) = 0,(1) foreach{ = 0;
(ii) sups., (T, *)r"(G) = O,(1) for each = 0.

Proor. It suffices to prove (i). Let us first show that for each ¢ > 0 there
exists a 8 = B, in (0, 1) such that PAF < F,* <1 — (1 — F)onl, }) > 1 —e,
for all nand uniformly in all continuous F. By (4.1)and because { <n/(n+1)<1,
we only have to prove that P({n/(n + 1) < 1 — B[1 — F( M)]}) >1—¢ for g
small enough. Because the F(X;) are independent uniform (0, 1) rvs, this proba-
bility equals 1 — {Il — 1/[(n 4 1)]}* > 1 — ¢ for all » and uniformly in all
continuous F, provided 8 = B, is chosen sufficiently small. The proof can be
concluded in the same way as that of Lemma 4.2. []

LEmMA 6.2. Uniformly in all continuous F we have:

(i) sups, |U*(F) — U (F)|rt~*(F) —,0 as n— oo, foreach p > 0;
(i) supg  |U*(F)|[rt=*(F) = O,(1) uniformly for n=1,2, ..., foreacht > 0.

Proor. (i) Note that |U,*(F) — U,(F)|rt=?(F) < n~#rt=¢(F) and that for any
fixed B (0, 1) we have rt=#(8/n) = rt=¢(1 — B/n) = O(nt=*). Because the F(X))
are independent uniform rvs, given an arbitrary ¢ > 0 we can choose a 8 = §,
in (0, 1) such that P({8/n < F(X,,) < F(X,,) <1 — B/n}) > 1 — ¢ for all n and
uniformly for all continuous F. Part (i) follows from a combination of these
results. (ii) follows from (i) and Lemma 4.2 (iii). []

The proof that the sum of the B*- and C*-terms converges in probability to
zero can be given by a method quite similar to that of Section 5, by using Lemmas
6.1, 6.2 instead of Lemma 4.2.
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