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THE STOCHASTIC APPROXIMATION APPROACH
TO A DISCRIMINATION PROBLEM
By MARTIN A. HAMILTON
Montana State University

1. Introduction. Let the function M map the real line R into R; let
{Y(x), xe R} be a family of independent random variables, where Y(x) has dis-

ZwydF(y|x) = M(x) and  §2.[y — M(x)]PdF(y|x) = o*(x) < oo,
for every x e R.

Let a € R be a particular value and suppose that there exists a point § ¢ R such
that [M(x) — a](x — 6) > 0, for every x = 0.

Let {Z;,i =1, 2, - ..} be a family of independent, identically distributed ran-
dom variables, independent of {¥(x), xe R}, with distribution function G(-),
where §~, zdG(z) = a and =, (z — a)*dG(z) = y* < co.

Suppose that the regression function M and the values § and « are unknown
and that after observing some Z’s and Y(x)’s at various x values, one wishes to
estimate 6.

For ease in presentation, observations corresponding to the Z’s will be called
“control observations” and observations corresponding to the Y(x)’s will be
called “test observations.”

The discrimination problem described above would be fairly straightforward
if the form of the regression function M and the distribution functions F(.| x),

is normal with ¢*(x) = ¢?, for every x ¢ R, then a solution to the discrimination
problem is given by the well-known Fieller estimate (Fieller [4]).

It is important from a practical point of view, however, to look for a solution
to the discrimination problem when little is known a priori about the functions
M, G, and F.

For example, suppose a scientist is comparing two drugs, a test drug and a
control drug, and that he is interested in designing a biological assay to estimate
the number of dose units of the test drug necessary to elicit the same mean
response as the standard dose of the control drug. Suppose, further, that the
experimenter knows little about the shape of the response function associated
with the test drug and about the probability distribution of responses at any
one dose level of either drug.

Make the following notational identifications. Let an observed response to the
control drug administered at the standard dose level correspond to the random
variable Z with mean «. Let the observed response to the test drug at dose level
x correspond to ¥(x) with mean M(x). Let ¢ be the dose level of the test drug
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that elicits a mean response, M(#), equal to a. If [M(x) — a](x — 6) > O for
every x = 6, then this bioassay problem is essentially the discrimination prob-
lem. Obviously, neither the Fieller estimate nor any other estimate based on
strong assumptions will be appropriate for this bioassay problem.

One solution to the discrimination problem that relies on only weak assump-
tions about M, G, and F is provided by a simple extension of the Robbins-Monro
stochastic approximation process (Robbins and Monro [7]) which is as follows.

Choose a starting value X, € R, a sequence of positive constants {a,, n = 1,
2, ...}, and define the random sequence {X,,n = 2, 3, ...} by

(1.1) Xoo=X, —a (Y, —Z,),

n

where Y, is a random variable distributed as Y(X,), n = 1, and Z, is a random
variable distributed according to G. Then after n pairs of observations (viz.

(Y, 2), ---,(Y,, Z,)), the estimate of ¢ is X, ,. In the special case where « is
knownand Z, = a,n= 1,2, ..., this process is identical to the Robbins-Monro
process.

This process can be visualized as the stochastic analogue of a numerical
approximation process. If the problem were deterministic with Z = « and
Y(x) = M(x), for every x ¢ R, then equation (1.1) would become

(1.2) X, =X, — a(M(X,) — a), n=1,

which is the definition of a numerical approximation process having the property
that lim, ., X, = 6 if M and {a,} satisfy some weak conditions (Schmetterer [9]
and von Mises and Pollaczek-Geiringer [12]). Equation (1.1) is simply (1.2)
with M(X,) replaced by the unbiased estimate Y, and a replaced by the unbiased
estimate Z,,.

Since all known properties of the original Robbins-Monro process hold for
the process of (1.1), the corresponding sequential estimate is an appealing solu-
tion to the discrimination problem. It seems, however, that (1.1) does not use
all available information at each step in the sequential procedure. Consider,
for example, an identical process with (1.1) replaced by

1.3 Xpr=X, —a(Y,—n'r.Z), n=>1.
n n 1=1 )

n+1

Since n~! Y7, Z, is a better estimate of @ than Z,, one would expect that the
estimate of ¢ provided by the process of (1.1) should have a larger small sample
mean square error than the estimate given by the process with equation (1.3).
One might expect that these two estimation procedures have quite similar asymp-
totic properties.

Comment. One could define the X, -sequenceby X, ., =X, —a, (Y, — 21 W, Z,)
where the chosen weights {W,;; i=1,...,n}aresuchthat W >0and )} W =1.
Equations (1.1) and (1.3) are special cases of this equation (for (1.1), W, = 1;
W,=0,i=1,.--,n—1and for (1.3), W,, = 1/n, i =1, ..., n) and they

correspond to two extremes from the set of reasonable choices of weights. For
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this reason, sequential estimation processes based on (1.1) and (1.3) are espe-
cially interesting and attention is restricted to them in this study.

The purpose of this paper is to derive the properties of a stochastic approxi-
mation process, called Process II, defined by a generalized version of (1.3) and
to compare the properties to those of a process, called Process I, defined by a
similarly generalized version of (1.1). Surprisingly, Process I can be better than
Process II in both large and small sample situations.

The paper is divided into five sections. These sections contain the introduc-
tion, preliminary information including some known asymptotic properties of
Process I, the asymptotic properties of Process II, the minimization and com-
parison of the asymptotic normal variances, and the small sample bias and mean
square error of X, for the case where M is linear.

2. Preliminaries. Let the product Borel space, field, and measure generated
jointly by the two independent families of random variables {¥(x), x € R} and
{Z,,i=1,2, ...} be denoted by Q, &, and P respectively and let the typical
element of Q be denoted by w.

The term “step” will henceforth be used to indicate the taking of additional
observations to adjust the estimate of §. For example, if the process of (1.3) is
being employed, the experimenter observes (Y,, Z,) and changes his estimate
from X, to X, “at the nth step.” The “size of the nth step” is |X,,, — X,|.

Equations (1.1) and (1.3) provide estimation procedures in which pairs of
observations (Y;, Z;) are taken sequentially. In practice, the experimenter may
want to take more than one control observation (or possibly no control obser-
vation) at selected steps in the process. For example, it may be nearly as easy
for him to take k control observations as one control observation at a time.
Or he may feel that after a few steps of the process, few control observations
need be taken. The following processes will allow the experimenter to vary the
number of control observations taken from step to step.

Process 1. Choose a starting value X, € R, a sequence of positive numbers
{a,,n=1,2, ...} and astrictly increasing sequence of positive integers {b,,
n=1,2,...}. Observe the sets of random variables (Y, Z,,i_lﬂ, e Zy), i =
1,2, ..., sequentially, where Y, is distributed as Y(X;) and

(2‘1) Xn+1 = Xn - an( Yn - Zn) ’
where
Z'n. = (b'n. - b'n,—l)_1 Zg;‘b,n_1+l Z@ .

At the kth step of experimentation the estimate of # is X, ;. Notice that at least
one control observation must be taken at each step.

Process 11. Choose a starting value X, e R, a sequence of positive numbers
{a,,n=1,2, ...} and a non-decreasing sequence of positive integers {b,, n =
1,2, ...}. Observe the sets (Y, Zy vt L), i = 1,2, ..., sequentially,
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where Y, is distributed as Y(X;) and
(2.2) Xopp=X,—a, Y, —2Z,), where Z,=b,""Y!»Z,.
At the kth step of experimentation (i.e., after observing (Y3, - - -, ¥, Z,, - - -, Z, )

the estimate of # is X, ,,. Notice that if b, = b,_,, then only the test observation
Y, is taken at the kth step in the process. '

The properties of Process I, which is a trivial extension of the Robbins-Monro
procedure, are known. The properties of Process II have not previously been

studied.
The following conditions will be referred to by number in subsequent sections.

Conditions on the distribution functions F(+|x), x € R.

F1. ¢%x) £ 0® < oo for every xe R.

F2. lim,_, o*(x) = ¢*?0).

F3. lim,  limg,supy,_p i< Siy-neism [y — M(X)]dF(y|x) = 0.

F4. F[w + M(x)]|x) = Fy(w), for every xe R and w e R, where Fy(+) does
not depend on x; §=., wdFy(w) = 0; and {>, w?dFy(w) = ¢%) < co. This con-
dition means that {[ Y(x) — M(x)]} are independently and identically distributed.

Conditions on the regression function M.

M 1. M(-) is Borel measurable and for some K;, K, > 0,

[M(x) — a| < K,|x — 0] + K, for every xeR.
M2. For every de (0, 1),
inf;cjppi<s-1 {{M(x) — al} > 0.
M 3. There exist 8 > 0 and s = 1 or 2 such that for every x e R,
M(x) = a + B(x — 0) + d(x, 0), where d(x, 0) = o(|x — 0])

as x — 0.
M4. M(.) is Borel measurable and for some K, K, > 0,

Klx— 0| < |M(x)— o] < K, |x— 0|, for every xeR.
Conditions on the sequence of positive numbers {a,}.
Al (1) Tra,—c (b)) Xral<oco.
A2. There exist K, > 0 and ¥ € (4, 1] such that
a, = KynY[1 4 o(1)], n=1,2,-.

It is easy to show that A2 implies A 1.
Conditions on the non-decreasing sequence of positive integers {b,}.

Bl. Yra,b,* < co.
B2. There exist K, > 0 and 2 > 2 — 2W, where ¥ is defined in condition
A2, such that b, = K;n'[1 + o(1)].
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The following well-known lemma is used repeatedly in Section 3.

LemMA 2.1, Let k, be a fixed positive integer. Then

@) lim, .. [(@ + Hr-eD Y2, k=1, if a> —1,
(ii) there exists a positive constant c(k,) such that
Dier k7 = elky) + log, forevery n>1;

and

(i) Do k® < (—a— D)7k, — D —m+e],  if a< —1,

The following theorem is a special case of Theorem 3 of Venter [10], which is
a generalization of a theorem of Dvoretzky [3]. The details will not be given here.

THEOREM 2.1. Assume Process 1 and conditions F1, M1, M2, and A1. Then
lim,_, X, = ¢ a.s. and lim,__, E(X, — 0)* = 0.

The method of proof due to Sacks [8] can be used directly to prove Theorem
2.2 below.

THEOREM 2.2. Suppose Process 1 under conditions F1, F2, F3, M3, M4, and
B2 with 2 =1 and K, = 1. Leta, = K;n~' for every n = 1, where K, > (28)7".
Then n}(X, — 0) is asymptotically normally distributed with mean O and variance
K3 (a*(0) + K7'r")(2K, B — 1)~

n—00

3. Asymptotic properties of Process II.
THEOREM 3.1. Suppose Process 11 under conditions F1, M1, M2, A1, and B1.
Then lim,_, X, = 0 a.s. and lim,_,, E(X, — 0)* = 0.

Proor. It is not difficult to demonstrate that conditions F1, M1, M2, A1,
and B 1 satisfy the hypothesis of Theorem 3 of Venter [10] (Hamilton [5]). The
method of Blum [1] can also be used to prove lim,_,, X, = 6 a.s.

CorOLLARY 3.1. Theorem 3.1 holds if A1 and B1 are replaced by A2 and B2.

n—oo

Proor. It is easy to show that A2 and B2 imply Al and B1.

Comment. Similar consistency conditions for Process Il are given by Hamilton
[5] for the cases where the b,-sequence is random and/or the a,-sequence is
random. For Process I with random «a,, see Venter [11].

THEOREM 3.2. Suppose Process 11 under conditions M3, M4, and B2 with
U =1 LetK,>Q2K)'anda,=Kn',n=12,....

(i) Suppose 2 < 1 (see B2), s =2 (see M3),F1,F2, and F3. Thenn'*(X, — 0)
has an asymptotic normal distribution with mean O and variance [2K,"'y*K,57'] X
[2K,8 — ]

(ii) Suppose 2 = 1,5 =2, and F4. Then n(X, — 0) has an asymptotic normal
distribution with mean 0 and variance K[2K,3 — 1]7'[c*(0) + 2K,7'y*K,~'f71].

(iii) Suppose 2 > 1,5 = 1,F1,F2,and F3. Then n*(X, — 0) has an asymptotic
normal distribution with mean 0 and variance K *o*(0)[2K,8 — 1]7%.
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Proor. Without loss of generality, let # = 0. Define b, = 0. Henceforth,
an unsubscripted K will be used generically for a positive constant and 4(X, 0)
of M 3 will be written d,. Define, fora > 0; k=0,1, .-, min=1,2, ...,
(31) ABkn:IIf:k+l(1—i‘1a)’ kZOsla"‘»n"“l

=1 , k=n.

Following the method of Sacks [8] (2.2) may be written
(3:2)  Xopy=XiBon — B a1 akT B0y — BT X @k Bl Y — M(X))]

+ B Dk B(Ze — @)
where §,, is defined by (3.1) with a = K8 > 1.

Let h, = (i, a*%*p%,)tand g, = min{l, n~""22L, 2> 0,n=1,2, - ...

According to Sacks [8],

(3.3) h, = nt(2a — 1)ta'[1 + o(1)] as n— oo and
(3.4) B = k*n7?[1 4+ 0(1)] as k—>oo, k< n.

To find the asymptotic distribution of ntg, X, it is sufficient to derive the

asymptotic distribution g,4, X,. For, if g, k4, X, is asymptotically distributed as
N(0, ¢,%) then ntg, X, is asymptotically distributed as N(0, a*(2a — 1)7's,?).

The following four lemmas form the body of the proof.

Lemma 3.1. Under (i), (ii), and (iii), lim,_. g,h,X,8,, = 0.

LemMMA 3.2. Under (i), (i), and (iii), lim,_.g,h, >r_,ak™'B,,0, = O in prob-
ability.

Lemma 3.3. g, h, Xir_ak™'B,,[Y, — M(X,)] is asymptotically distributed as
degenerate at 0 if (i) and as N(0, ¢*(0)) if (ii) or (iii).

LemMa 3.4. g,h, 31 ak™'B, (2, —a)isasymptotically distributed as N(0, 2y*(2a—
Da'K;7'(2a — A)7") if (i); as N(O, 2y%a~'K;7") if (ii),; and as degenerate at 0 if (iii).

Proor oF LEmMa 3.1. The proof follows directly from Sacks ([8], Lemma 2).

Proor oF LEmmA 3.2. Choose t > 0. By M3, there exists { > 0 such that
for every xe (—¢, §), |9(x, 0) - x~*| < . Since M4 implies M 1 and F4 implies
F 1, Corollary 3.1 holds and lim,_,_, X,* = 0 a.s. Thus there exists N > a — 1
such that Pr{|X | < {, foreveryn = N} = 1 — .

Let
(3.5) V(n, N) = g,h, Zi_y ak™' B, 0, nzN.
Then, as shown by Sacks ([8], page 383), for every n > N.

Pr{|V(n, N)| > 1} < t[g, h, 2k y ak™' B, E(|1X,)] + ¢
Clearly,
(3.6)  E(Xi,) = E{X,)[| — K (M(X,) — )X,”'T + O(n~?) + 2d, ,
where d, = E(X,(Z, — a)K,n'[1 — K, X, (M(X,) — )]}.
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By M4, for every n > K,K;, |1 — K,n7'X,7(M(X,) — a)| < (1 — K,K,n");
and therefore, |d,| < E{|X,(Z, — a)|Kn~(1 — K,K,n"")} or
(3.7)  |d,| £ Kynlyn P{E(X )}, for every n > K K,.
By Corollary 3.1, lim,_,, E(X,?) = 0; and therefore,
(3.8) |d,| = o(n*%?) as n— co.
If s =2 and 2 < 1, then by M4, (3.6), and (3.8)
E(Xz,l) S B[ — 2Kon™'K, + Kin K] + o(n1=31%) ;
and by Venter ([10] Lemma 2),
(3.9 E(|X2,.]) = O(n*?%), A< 1.
If s = 1and 2 > 1, then by (3.6), (3.7), and M4
{E( XD = E(X30) = E(XA[T — n7'(2K K, + Kin7'K /)]
+ O(n™?) + [E(X,)]PO(n7174%) .

By Corollary 3.1, {E(X,*)}* — 0 as n — oco. The sequence of positive numbers
{E(X,}),n=1,2, ...} satisfies Lemma 2 of Burkholder [2] (with g = /2, r = §,
p =1, and ¢ = 2K K,); and therefore, E(X,?) = O(n7') or
(3.10) E(X,|) = O(nY), i>1.

By Lemma 2.1, (3.3), (3.4), (3.9), and (3.10), g, h, >37_ ak™'B,, E(|X,]*) = O(1)
under (i), (ii), and (iii) so that lim,__, ¥(n, N) = 0 in probability. It is not diffi-
cult to show that lim,_ g,h4, 2,75 ak™'B,,0, = 0 in probability and therefore
Lemma 3.2 is true.

Proor oF LEMMA 3.3. The proof follows directly by imitating the proof of
Sacks [8] and appealing to a slightly extended form of Sacks’ Lemma 6.

Proor oF LEMMA 3.4. Let
T, = guhy i ak ™ B, b, [ D560 (Z; — a)]
= g,h, 2, (Z; — o) Tio,, ak B, b,
where ¢; = max{k: b, < j, k=0,1,2, ...} + 1.
Let T;, = h,9(Z; — a)f(Zi-; ak7Binb, ™), j= 1, -+, b,.
Then T, = }}%», T,, and {T,,,j=1, -..,b,} is a set of independent random

i=1"%j5n

variables with E(T;,) = 0 and
E(T},) = 9.°h(Xk=c; @k Binb, )"
Also, since for j < k < n,
ﬁjn = ﬁjk Bien »
(3.11) Var(T,) = r*9,°h,'[ i1 (ak™' B, b, 71)'D,
+ 2 Dk @k B kb 55 B
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By B2, (3.4), and (3.3), given £ > 0, there exists N > a such that for every
n>N,

(3.12) (I = &)kn7')* < By = (1 4 E)kn7Y)";
for every n > k > N,
(3.13) (1 —=86QR2a—Nan<h? < (1 4 §)(2a — Da?n;

for every k = N,
(3.14) (1 = Kk < b, < (1 + &K K
and, since a > }, by Lemma 2.1 there exists N, > N such that for every k > N,,
(3.15) (1 — Okma < Tkl jor < (1 4 Eka.
Write Var(T,) = [T, + A(T,® + T,*® + T, + T,*)], where
T, = 00 Sim kL0,
T,” = S, SEIDG ks T = Biya D35 DU ko)
T, = X3 2528 DUk, m) 5 T, = iy 552y DU ks m) 5
and D(j, k, n) = (9,h,ak™"B,,)kb, "B j" -

Using (3.12)—(3.15), Lemma 2.1, and Lemma 3 of Sacks [8], it is easy to
show that |T|, |T*®|, |T®|, and |T*| approach zero as n — co and that T, =
K, 'a™'(2a — 1)(2a — A)7'[1 + o(1)]if 2 < 1and T, = o(1)if 4> las n— oo.

Combining these results,

lim,_. Var(T,) = 27K, a2a — 1)2a — 2)~*, if 1< 1
(3.16) — 20K, 'a ", if =1
-0, if A>1.

Choose £ > 0 and let @, () = 1 if |T;,| > { and @,,({) = 0 otherwise. Then
j21 E{T5, @50} = L2, Sy, Th(@) dP(@)
where R;, = {0 |T;,(0)| > {}; 1.e.,
R;, C {0:]Z; — a| > Ch, 79, [ Die; ak 7’07 BT} -
It is not difficult to show that for some K > 0 and # sufficiently large,
C, 7 [ D ey 0k, Bl 2 CKnm i
Let R, = {0 |Z(w) — a| > (Kn~™"%12) Then
(3.17) by E[T5@,,(0] £ Thni 20,4 Die, 0k 70,7 B1a) Vo, (£ — @) dP.

It is easy to show that the right-hand side of (3.17) approaches zero as n — oo
by using the argument that established (3.16).

By the Lindeberg-Feller Central Limit Theorem for double sequences, T, has
an asymptotic normal distribution with mean zero and variance lim, _, Var(T,)
as given by (3.16).
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The proof of Lemma 3.4 is complete.

Proor oF THEOREM 3.2. Under the hypothesis of Theorem 3.2 (i), by Slutsky’s
Theorem, Lemmas 3.1, 3.2, 3.3, and 3.4, and equation (3.2), g, 4, X, hasan asymp-
totic normal distribution with mean zero and variance 25-%°K,*a='(2a— 1)(2a—
2)~! or n*?X is asymptotically distributed as N(0, y’K,~'2K,57'(2K, 5 — 2)7%).

Under the hypothesis of Theorem 3.2 (ii), the two families of random vari-
ables {r_, ak'8,,[Y, — M(X,)]} and {3}7_, ak™'B,,(Z, — a)} are independent,
and by Lemmas 3.3 and 3.4 the asymptotic distribution of g Ak, >17_, ak™'8,, X
{[Y, — M(X)] — [Z, — a]}is N(O, ¢*(0) + 2y*a~'K;"). The conclusion of Theo-
rem 3.2 (ii) follows directly.

Similarly, under the hypothesis of Theorem 3.2 (iii), g, 4, X, is asymptotically
distributed as N(0, ¢%(0)) and the conclusion of Theorem 3.2 (iii) follows directly.

The proof of Theorem 3.2 is completed.

COROLLARY 3.2. Theorem 3.2 remains true if K, =0 and a, = K,n™', n =1,
2, ---. where Ky > (28)7".

Proor. Corollary 3.2 follows from Theorem 3.2 by an argument suggested
by Hodges and Lehmann [6]. The details will not be given here.

Comment. The proof of Theorem 3.2 contains information about rates of
convergence. Preceding (3.10) is E(X, — 0)* = O(n™"), if 2 > 1, and using (3.6),
(3.7), Lemma 2 of Venter [10], and an inductive proof, it can be shown that
for any { > 0, E(X, — 0)* = O(n~*"~%), if 2 < 1.

4. Optimal design. Using Theorems 2.2 and 3.2 something can be said about
optimal choices for 4, K, and K.

Assume Process 11 with a, = K ,n~' and let N,(n) be the total number of obser-
vations taken in the first n steps when b, ~ K;n*. Then, for large n, N,(n) ~
n+ Knt. Let m(n, ) = (n + K,n*)(1 + K;)='. Then N(m(n, 1)) ~ N, (n).

Let V,*(n) be the asymptotic normal variance of n™"*4/*(X, — @) for Process
Il according to Theorem 3.2. Then the variance of the normal distribution one
would use to place confidence intervals around (X, — ¢) when # is large is given
by V.(n) = =04V *(n).

Let 2, < 1 and £, > 1. Then V,(n)V,"'(m(n, 4))) — co; as n— oco; and
V., (m)V,"(m(n, 4,)) — oo as n — co. Thus, regardless of the values of K, K, 7",
B, and ¢%(0), the confidence interval about (X, — ) for 2 # 1 is wider than for
2 =1 when the total number of observations is a large fixed number. (The
choice 2 = 1 is also best if one assigns a finite cost to each observation and
minimizes the length of the confidence interval with respect to Asubject to a large,
fixed total cost, even if the cost of a control observation is different from the
cost of a test observation.) On the basis of these asymptotic considerations it
seems advisable to choose the sequence {b,} subject to b, ~ K;n. Henceforth,
let 2 = 1 and drop the subscript from V(n).

Consider Process I1 with @, = K;p~! and b, ~ K;n. Let N(n) be fixed and



STOCHASTIC APPROXIMATION APPROACH TO DISCRIMINATION 1105

large and write Ny(n) simply as N. Let T' = y~%?%0). Let
V = ming . (V(n); N fixed, K; > 0, K, > 3} .
Let K, and K, be the values of K, and K; at which V is atjained. Then
(4.1) R,= @287l + (1 + 47K, )]s K, = (2/TBK,)* .
Approximate solutions for (4.1) are easy to compute using the Newton-Raphson

method.
Consider Process I with a, = K;p~* and b, ~ K;n, K, = 1. Referring to

Theorem 2.2 let U(n) = K32(2K,5 — 1)7/[T + K;']n~* and
U = ming, . {U(n); Nfixed: K, = 1; K, > 4} .
Let K, and K; be the values of K, and K, at which U is attained. Then

4.2) K,=p7; K,=max{l, T}}.
The quantities
(4.3) Nr=gV = (KyBPR,8 — 1)7(1 + R)IT + 2(K,K, )]
and
(4.4) Ny=?pU = (K, B)(2K,p — 1)7(1 + K)[T + K]

are standardized forms of the minimum variance of éhe asymptotic (in n)
distribution of (1 + K,)!n}(X, — 0) ~ N}¥(X, — 6) for Process II and Process I,
respectively. The right-hand sides of (4.3) and (4.4) are easy to compute and
conveniently illustrate the relationship between the minimum variance and the
important quantities K;, K,8, and ¢%0) - y=> = T. Some typical values of 1%5,
BK,, R, BK,, Ny=*fV, and Ny~*f*U are presented in Table 1.

Notice that bounds in terms of K, T can be placed on U(n)V-(n); e.g., + <
(K, T4+ 1)K, T+4)" < UmyV—Y(n) < (14K, Ty and limy ., [U(n) V" (n)] = 1.

Table 1 suggests that if K, and K; can be chosen optimally, then Process II is
asymptotically better than Process Iif and only if T is large. It should be pointed
out, however, that Process I as defined and discussed above is constrained so

TABLE 1
Optimum values of Ko and Ks and the corresponding standardized asymptotic normal variance
T = o%0)/r*
.01 .10 .25 .5 1 2 4 10 100
Process 11
Ko B 4.38 2.43 2.00 1.75 1.57 1.42 1.31 1.20 1.07
Ks 6.76 2.87 2.00 1.5 1.13 .84 .62 .41 .14

Ny—2p2V 1.49 2.29 3.00 3.86 5.22 7.41 11.09 20.40 129.77
Process 1

130/3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ks 10.00 3.16 2.00 1.41 1.00 1.00 1.00 1.00 1.00

Nr—2p2U 1.21 1.73 2.25 2.91 4.00 6.00 10.00 22.00 202.00
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that at any stage in the sequential procedure, the total number of test obser-
vations is less than or equal to the total number of control observations. Clearly,
such a procedure will have poor properties when the test observations are much
more variable than the control observations. If the definition of Process I is
altered in the obvious way to allow m test observations to be taken at X, in the
kth step, k = 1,2, - .., then it can be shown that Ny~23? times the minimum
variance of the asymptotic distribution of the resulting estimate is less than
7728V, even for large values of T. It can also be shown that altering the defini-
tion of Process IT in a similar manner produces no change (other than notational)
in the discussion of the properties of Process II.

Since U(n)V~'(n) = 1 as K, = 2, the choice of K, has a strong influence on
the large sample precision of Process I relative to Process II. Process I will
yield larger step sizes than Process II on the average; and therefore, if K, is
small with respect to 23~* then Process II produces step sizes that are too small
for rapid convergence of X, to ¢ while if K, is large with respect to 25~ then
Process I produces step sizes that are too large.

The implication of the last two paragraphs is that one can do worse by taking
sequential steps toward the mean of the control observations (Process II) rather
than toward the most recent control observation (Process I). In the next section,
it is shown that this unexpected result, based on large sample theory, remains
true in a simplified small sample situation.

5. Small sample m.s.e. when M is linear. Suppose that M(x) = a« + Bx, 8 >0,
xcR. Let§ =0,a,=K,n', and b, = (K;n) if K, = 1 and b, = 1 + (K;n)
if 0 < K, < 1, where {x) is “the greatest integer < x.” Let Ey(X,,,) and E(X,,,,)
denote the mean-square error (m.s.e.) and bias at the nth step of estimation for
Process I and let E;;(X2,,) and E;(X,,,) be the m.s.e. and bias at the nth step
for Process II. Leta = K, B and B,,, k =0, 1,- - ., n be defined by (3.1). Finally,
let o*(x) = ¢%0), for every xe R, and T = ¢*(0)y~*. Then
5.1 Ey(X2,) = (1 — an™)Ey(X,?) + B~%an~*(a*(0) + b,7'r%)

+ 287'an (1 — an~)b,_,b,7'd, ,
where _
d,=b,b;tE[X(Z, — a)].
Now
d,= b b, [l —an— 1)d,_, + Ba(n — 1)7y°b;1,;
(5:2) d, =BTl X AT B
Substituting (5.2) into (5.1), solving the difference equation (5.1), and stand-
ardizing the m.s.e.,
(5.3) Ny Ey(X2,) = NBy—X26i, + (T + K, ")Na*fi, + TNH(n)
+ K;7'NG(n) , if K; is a positive integer;
NBy—En(X},,) = NE'r* X8, + (T + 1)NaBi,
+ TNH(n) + NQ(n), if K;€(0, 1),
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where
H(n) = 2iim @Bl
G(n) = Lia [T + 2a7'(1 — ai™) B3 475 50]a7 Bl
O(n) = T, [1 + <KDL + 2ia (1 — ai™") ik ak ™' B, i0]a% 2B,
Similarly, it can be shown that

(5.4)  NByE(X},)) = Ny X;8;, + (T + K,7)Na*Bi, + TNH(n)
+ K,7'NH(n), if K; is a positive integer.

Remember that Process I is well-defined only for K, > 1.

Since E(X,,,) = Ex(X,.1) = X,B.., equations (5.3) and (5.4), in essence, ex-
press the mean-square error as the bias squared plus the variance. The squared-
bias term decreases rapidly for increasing n if 2a — 1 is not small; in fact,
nB2, = O(n*~*) (Sacks [8], page 374). Hodges and Lehmann ([6] Table 1) list
values of nfB2, for a = .2(.2).8, 1.2 and n = 5(5)30.

IfN—n—|—<nK>anda> then

m, .. By *NEy(X2,,) = (T + 2a7K,Va*(2a — 1)1 + K)), K, >0;
m, . By INE(X2,,) = (T + K, Na2a — 1)1 + Ky), K,=>1;

and therefore, for each process, the m.s.e. approaches the asymptotic normal
variance as N — oo.

For purposes of comparing Process I to Process II and comparing the small
sample mean-square errors to their asymptotic values, it is helpful to plot the
normalized m.s.e.’s of equations (5.3) and (5.4) as functions of loga. Figure 1
provides typical examples of such plots.

For the asymptotic case, N = oo, the graphs display some of the properties
derived in Section 4. The asymptotic curves (see (c) and (f) of Figure I) are
U-shaped and are independent of the choice of X;. When K; > 1, the asymptotic
curve corresponding to Process Il is located above and to the right of the asymp-
totic curve for Process I and the curves intersect at loga = .301 (K, = 287 The
asymptotic curve for Process I always reaches its minimum at loga = 0 QK:, =£).

For loga = 0, the small sample curves closely resemble the asymptotlc curves.
In Figure 1 compare (a) and (b) to (c) and compare (d) and (e) to (f).

One would not expect the small sample curves to resemble the asymptotic
curves if log a < 0 since the asymptotic curves go to oo as loga | —.301 and
are not defined for loga < —.301. Figure 1 shows that the shape of the small
sample curves for values of loga below 0 depend heavily on N and X,. The
influence of increasing N is illustrated by (a) and (b) of Figure 1; the influence
of the initial guess X, is illustrated by (d) and (e) of Figure 1.

It seems generally true that in small sample situations, the curves will cross
at a point to the left of log a = .301.

It is appropriate to conclude that the asymptotic curve for loga > 0 is a good
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N=10 :' N=t0 !
x28%5%:00 | x2B%y%:20 |
8 | - | I~
/ !
—_ / /
7l BF ! L / =
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z 4 I / 1y, B
/ \ /
///\I \I
O 1 { [ | | | [ { 1 1 { | 1 | | { | J
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Fi1G. 1. Normalized mean-square errors (for linear M(-) whenever N is finite) plotted against
loga,a= KoB,at 0 =0; Ks = 1; T = 1.0 in (a), (b), (c); and T = 0.1 in (d), (e), ().

representation of the small sample situation; the only qualification being that
Process II may be slightly better relative to Process I in the small sample case
than is suggested by the asymptotic theory.
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