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) In [7] ergodic properties of nonhomogeneous denumerable state space
Markov chains were studied. It was noticed in [6] that the results obtained
in [7] were easily extended to arbitrary state spaces. However, it was
admitted in [6] that the transition mechanism of the chain was defined by
means of transition density functions, thus restricting the generality of the
approach and, moreover, introducing elements irrelevant to the problem.
The aim of this note is to draw attention to the fact that ergodic properties
of the most general nonhomogeneous Markov chains are easily obtained
by using a theory developed by Dobrusin [2] in the middle fifties.

1. The ergodicity coefficient. Let (X, 227) and (Y, Z2’) be two measurable spaces
and let P denote a transition probability function (t.p.f.) from the first measur-
able space to the second one. In other words, P is a real valued function defined
on X X Z/such that P(x, «) is a probability on 2/ for any x € X and P(+, B) isa
£ -measurable function for any Be 7.

DEeFrFINITION. The real number
a(P)y =1 — sup |P(x', B) — P(x", B)|,

where the sup is taken over all x’, x"” € X and all Be 7/, is called the ergodicity
coefficient of the t.p.f. P.

Clearly, 0 < a(P) < 1. Incase a(P) = 1, P(., B) is a constant function for
any Be?/ and P is said to be a constant t.p.f. (In fact, a constant t.p.f. is a
probability on Y.)

The basic properties of the ergodicity coefficient have been established by
Dobrusin [2] (for a compact treatment see [5] pages 38-45). We now list those
properties we shall need. Given a measurable space (V, 77), let L(V, 27”) denote
the linear space of all finite completely additive signed measures A defined on
7 such that 2(¥) = 0. It is easy to see that under the norm

[14]]5- = sup4e - [4(4)|
L(V, 7") is a Banach space. Obviously, we can write

1 0(P) =ger 1 — a(P) = sup, ,ovex ||P(x', «) — P(x", )|, -
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It follows from (1) that
SUP,rex |[P(X's +) — P#(+)ll, = 6(P)

for any x € X, where P~ is the constant t.p.f. defined by P%(.) = P(x, -). This
means that any t.p.f. P can be represented as P = E + R, where E is a constant
t.p.f. and sup, ., ||R(x, +)||,, < 8(P).

Further, an operator 8 mapping L(X, 52°) into L(Y, /) is associated with the
t.p.f. P by setting

(AB)(B) = (x A(dx)P(x, B) , BeZ .

Then it can be proved that the norm of B,

_ 1148,
1Bl = suUpzerx, 2 0L

and the ergodicity coefficient of P are connected by

(2) [B]] = 1 — a(P)(=04(P)) .
In particular, it follows that
(3) [14B]],, < 6(P)||4]| -

for all 2e L(X, Z).
Finally, let (X, ), (Y, Z/), (Z, ") be three measurable spaces. Consider a
t.p.f. P’ from (X, 2°) to (Y, Z/) and a t.p.f. P” from (Y, Z) to (Z, Z°). Let P
be the t.p.f. from (X, 227) to (Z, %) defined by
P(x, €) = §y P'(x, dy)P"(y; C)
for xe X, Ce Z. Due to the fact that the operators B, ' and " associated
with P, P’ and P” respectively satisfy § = ', ", which in turn implies
1Bl = 1911 11%B]] 5
equation (2) leads to
(4) o(P) = 6(P")a(P") .
Notice thatin case X = Y = I (at most a denumerable set), when the t.p.f. P
is defined by means of a stochastic matrix (p;;); ;.; by
P(i, A) = Y;c4Pij > iel, ACI,
Dobrusin [2] pages 333-335 (see also [5] pages 1-2) has shown that
) a(P) = inf; jo; Xlpe, WD (Pyy, pjs) -
Taking into account that
min (a, b) = {(a + b — |a — b|),
we get
a(P) =1 — §sup, ;e Yper |Piv — Pirl
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that is

(6) O(P) = FSUP; jer Liker |Pie — Piel -
Therefore, the fact that §(P) and a(P), defined by (5) and (6), are connected by
0(P) = 1 — a(P) is not at all surprising, as was suggested by Paz ([7] page 542).

2. Nonhomogeneous Markov chains. Following Dobrusin [2] pages 67-68 (see
also [5] pages 43-44) a nonhomogeneous Markov chain (NMC) can be considered
as a sequence of measurable state spaces (X;, &27) and t.p.f.’s 7P from (X;, Z7)
to (X;,, Z54),j=0,1,2 ... Clearly, P(x;, A;,,) is to be thought of as the
probability of being in the set 4,,, € &27;,, at time j + 1 conditional on being in
x; € X; at time j. Let us define as usual the n-step t.p.f.’s /P* from (X, -Z7)) to
(Xj 4> ‘%+n)’ j=0,n=1 by

IPM(xjy Ajipn) = ijﬂ IP(xj, dXjy) <o - S}tﬂ‘z_l P,y g dX,yyjy)
X SZ;i;l P(xn+.7'—1’ dxn+j) 4
where x; € X;, A;,, € 2;,,. An immediate consequence of (4) is the inequality
(7) o(P) < 13571 6(°P)

forany j >0,n > 1.

3. Weak ergodicity. An NMC is said to be weakly ergodic if lim,_,, 6(P") = 0
for all j = 0.
By making use of (1) and (7) one can first prove

THEOREM 1. An NMC is weakly ergodic iff (= if and only if) either one of the
following conditions is fulfilled.

(a) There exists a strictly increasing sequence (j,),=, of natural numbers such that
3 kst a(FEPIkr1=3k) diverges.

(b) For an arbitrarily fixed 0 < ¢ < 1 there is a function f mapping the set of the
natural numbers into itself such that lim inf;_ a(#P/9) > .

By making use of (1) and (3) (cf. [7] pages 544-545) one obtains

THEOREM 2. An NMC is weakly ergodic iff either one of the following conditions
is fulfilled. ’

(c) For any j = 0 there is a sequence of constant t.p.f.’s (°E,),., such that
=0.

ZLntj

lim,_,, SUP, cx, [|9P™(x;, «) — ‘E,(+)
(d) If P = E 4 iR, where the 'E are constant t.p.f.’s then
limfn—vm Supxjer HjRn(xj’ .)”Z'n"'j =0
orall j = 0.
Hj=0

Clearly, the “R™ above are constructed from the /R in the same way as the 7P"
were constructed from the 7P.
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REMARK 1. Theorem 1 is an easy extension of the corresponding theorem for
finite NMCs (i.e. such that any X, j = O is a finite set), proved by Hajnal ([3]
page 239).

REMARK 2. Condition (b) and Theorem 1.2.13 in [5] imply that any weakly
ergodic NMC has a trivial tail g-algebra under any initial distribution. The
converse is true at least for finite NMC, it being a consequence of Theorem 2
in [1]..

REMARK 3. A more narrow concept of weak ergodicity, namely uniform weak
ergodicity, is obtained by requiring that lim,__, 6(*P*) = 0 uniformly with respect
to j = 0. An NMC is uniformly weakly ergodic iff there exist an ¢ > 0 and a
natural number n,such that a(?P™) > ¢ for allj > 0. If this condition is fulfilled,
we have 9(’P") < (1 — ¢)*/™~! for all j = 0, n = 1. For details see [4] or [5]
pages 89-94.

4. Strong ergodicity. Suppose all the state spaces (X;, -27), j = 0, are copies
of a given measurable space (X, 227). An NMC with state space (X, -27) is said
to be strongly ergodic if there exists a probability Q on 227 such that
(8) lim, oo SUP, ey [[7P7(x, +) — Q(+)|l» = O

for all j = 0.
By making use of an elementary argument (cf. [7] pages 545-546) one can
prove

THEOREM 3. An NMC is strongly ergodic iff for any j = O there is a sequence of
constant t.p.f.’s (°E,),5, and a constant t.p.f. 'E such that

lim, . sup,cy [|["P*(x, ) — E,(+)]|,, =0
and

—

Note that Theorem 3 in [6] (corresponding to Theorem 5 in [7]) can also be
transcribed.

REMARK 4. It seems that unlike weak ergodicity, strong ergodicity is not a
“natural” concept for NMCs. In any case, strongly ergodic NMCs are a very
restricted class of NMCs. On the other hand, in the homogeneous case weak
ergodicity and strong ergodicity coincide.

REMARK 5. A more narrow concept of strong ergodicity, namely uniform
strong ergodicity, is obtained by requiring that (8) holds uniformly with respect
to jO. For a sufficient condition for uniform strong ergodicity in terms of the
ergodicity coefficient see [4] or [5] pages 89-94.
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