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RATES OF CONVERGENCE FOR WEIGHTED SUMS
OF RANDOM VARIABLES!

By F. T. WRIGHT
The University of Iowa

For N=1,2, .- let Sy = 3ran,x Xr where an i is a real number for
N,k=1,2,--- and {xx} is a sequence of not necessarily independent
random variables. For the case 0 < ¢ < 1, with assumptions closely related
to E|Xi|t < oo it is shown that the rate of convergence of P(|Sn| > ¢) to
zero is related to Xk |an,k|t. The theorems presented here extend some of
the results in the literature to not necessarily independent sequences {Xj} .

1. Introduction and summary. Let X, for k= 1,2, ... be a sequence of
random variables (not necessarily independent), let @, , for N,k = 1,2, --. be
real numbers, let 0 < ¢ < 1 and p,, be a sequence of positive numbers such that
elayt < oy, and let Sy, = 3% a, X, for Ny M =1,2, .-.. In Section
2 with assumptions closely related to E|X,|* < co, we show that for each N,
Sy » has an almost sure limit S, as M — co and that the rate at which
P(|S,| > ¢) converges to zero is related to p,. We conclude with some remarks
about the case t = 1.

The results of this paper are similar to those of [2], [3], [4], and [7]. In the
references cited above the random variables were assumed to be independent.
However in [4] it was observed that Theorems la and 2a of that paper were
valid if the assumption of independence was omitted. Since Theorems la and
2a of [4] were generalizations of Theorems 1 and 2 of [2], the question is raised
as to whether Theorems 3 and 4 of [2] can be generalized to include dependent
sequences {X,} for 0 < # < 1. In[7] Theorem 4 of [2] was generalized to the case
0 < t < 1 but the sequence {X,} was still assumed to be independent. The
above question is answered in the affirmative by Theorems 3 and 4 of this paper.

2. Results. Using the notation of Section 1, define for y = 0,
F(y)=P(X,|=y) and F(y)=sup, F,(y)-

Throughout this paper C will denote various positive constants whose exact
values do not matter. Where appropriate, summations will be taken over those
values of k for which a, , + 0 and integrals will be Lebesgue-Stieltjes integrals.

We now prove the following

LemmA. If y'F(y) < B< oo forall y > 0, then for each N as M — oo Sy,
has an a.s. limit which we will denote by S,.

Proor. We define Yy , = X, I, ,x, 1<y @nd observe that for each N and for
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eache >0
(1) P(Supjgl ISN,M+j - SN,MI > e)
= Ziewn Pllay o Xo| = 1) + P(supss, | X @y Youl > €) -

Since y'F(y) is bounded for all y > 0, we see that the second expression in (1)
is bounded by C 3 7., |ay,|*- Using the inequality of Theorem 1 of [5] with
¢; = 1 and r = 1, the third expression in (1) is bounded by

C Xtewi |8yl Stotay -1 x|dF,(x)|

(where the last integral is taken with respect to the Lebesgue-Stieltjes measure
corresponding to —F,). Integrating by parts we see the last expression is
bounded by

CYlteun laN,kl S(’)‘w’kl—l F(x) dx
é C ZIT=M+1 IaN,kl S(!"IN,kl—l x_t dt
= C iy @yl -
So expression (1) tends to zero as M — oo and hence S, , has an almost sure
limit (cf. page 115 of [6]).
The following theorems give rates of convergence for P(|S,| > ¢).
THEOREM 1. If y'F(y) £ B < oo for all y > 0, then for every ¢ > 0
P(|Sy| > €) = O(ey) -
THEOREM 2. If y'F(y) — 0 as y — oo and if max, |a, ,|— 0 as N — oo, then
foreverye >0
P(|Sy| > ¢) = o(ex) -

For Theorems 3 and 4 we assume that p, is of the form CN-¢ and hence
there exists a constant 8 such that

(2) max, |ay .| < CN~#.

For Theorem 3 let s be a constant such that 0 < s < ¢t and let « be a constant
such that 33, |a, ,|* < CN*. As in [4] it can be shown that we may assume
B=pft, B= —ajs, and p = p(t — 5) — a.

THEOREM 3. If B8 > 0 and if F satisfies
3) lim, .. F(y) = 0 and §7 y' |[dF(y)] < oo,
then for every ¢ > 0
Ty NS, > ¢) < oo .

THEOREM 4. If B > 0 and if there exists a non-increasing real valued function
G(x) satisfying (3) and such that G(x) = F(x) for all x > 0 and

(4) SUP,21 SUP,z. Y H(y)/(x'G(¥)) < oo,
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then for every ¢ > 0
2w NeTP(ISy| > ¢) < o0

Note. Theorem 1 was proved in [4] and has been included here for complete-
ness. Theorem 2 was proved in [4] under the assumption that p, — 0 as
N — oo; however, examining that proof we see that the weaker assumption
max, |ay ,| -0 as N — co would suffice. Rohatgi in [7] extended Theorem 4
of [2] to the case 0 < ¢ < 1, but did not give an extension of Theorem 3 of [2].
Theorem 4 of this paper extends the above work to dependent sequences {X,}
and removes assumption (6) of [7]. Theorem 3 of this paper extends Theorem
3 of [2] to the case 0 < ¢ < 1 and to not necessarily independent sequences {X,}.

We now prove Theorems 3 and 4.

Proors. First we observe that

) P(ISx| > ¢)
= Zeflay ™) + P12k ay i Yol > ¢)

where Y}, , is defined as in the proof of the lemma. The proofs of Theorems 3
and 4 are completed by showing that the last two expressions in (5) behave as
specified in the theorems.

To show that the second expression in (5) behaves as specified in Theorem 3
one only needs to mimic the proof given for Theorem 3 of [3] found on pages
446 and 447. For Theorem 4 the argument on pages 351 and 352 of [2] suffices.
It should be noted that the two arguments cited do not require 8(t — s) — a >0
or p > 0 but only that 8 > 0.

In considering the last expression in (5), we define 9, , = card. {k: M <
|ay .|} for N, M = 1,2, .... Using the Markov Inequality we see that

(6) Zy NI TP D ay, Yy k] > €)
S CRy N E |3 ay Yyl
< C Ry N =t S 8w el Stontay, -1 ¥ |dF ()|
< C 3y Notm=et 52 ay | §ieve ™ Fx) dx

7) < C ¥y NHte 5 [ | Sl F(x) dx

(8) + C Xy Nt s Oy — Oy ) (M — 1)7 (3 F(x) dx

where the prime on the summation in expression (7) indicates it is to be taken
over those values of k for which |a, ,| = 1. Since 8 > 0 expression (7) is finite.
Expression (8) is bounded by

) C Xy Nem et 3 iaa Oy — Oy )M LI F(j — 1)
S CEFLFU— 1) X5e M7 TR NP0 700y

We now obtain estimates for d, ,. Since )], |ay ,|* £ CN* and max, |a, | <
CN-*, we see that d, , = 0 unless N < CM"# and 9, , < CN“M*. Therefore
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(9) is bounded by
C Z}ll F(] _ 1) Z;# M-@2-9 Zgszll/ﬁ] NB(t=8)-1
= CXULJ T — 1) £ C+ C X5, jU U (j)
< C+ C iy xt|dF(x)| < o .

For Theorem 4 an argument similar to the one beginning at (6) shows that
it is sufficient to consider

(10) iy N7t 3y lay ol 39+ F(x) dx
From (2) wee see that there exists a positive constant 4 such that |ay |7t = ANP
forN,k=1,2,.... Expression (10) is equal to

(1) B N T [y o] §87 F(x) dx + Dy No7t 5, fay o §1525 7 Fx) div
The first expression in (11) is bounded by
(12) C 2y N77P00 3L FA(k — 1)))[KF — (k — 1)7].

Applying the Mean Value Theorem to the function 1 — (1 — x)#, one can show
that there exists a constant C depending only on 8 such that k* — (k — 1)f <
CK?~'. Hence expression (12) is bounded by

C T K F( Ak — 1Y) T3 N77000 < € ¥z, kIR A(k — 1)
= C+ C YU, K*[F(Ak?) — F(A(k + 1))] £ C + C {3 xt |dF(x)| < oo .
Choose N, so that AN,# = 1. Using (4) we see that

Dy N7 T4 ay, ] §124 7 F(x) dx
< C Z5n, N TIG(AN?) 33, [y o § T xtdx

ANF
= C 25 NP#IG(ANF) < C (7 xt |dG(x)| < oo .
We have shown that the second expression in (11) is finite and the proofs are
completed.

In [3] (see Theorem 6), it was shown that {7 x* log* x |dF(x)| finite implies the
existence of the hypothesized G of Theorem 4. In [3] and [4] the sharpness of
these theorems has been investigated for sequences of independent random
variables.

For the case # = 1 it was shown in [4] that Theorems 1 and 2 are not valid
for independent random variables even if it is assumed that p, — 0 as N — co.
However for ¢ = 1 it was shown that with the additional hypotheses that p,, — 0
as N — oo and limsup,._., sup, |§;_,.,; dP(X, < x)| < o the conclusions of
Theorems 1 and 2 hold for independent variables. The following example shows
that this is not the case for dependent variables.

ExamMpPLE. Let Z,7,, Y,, ... be independent random variables such that
PZ=-1)=PZ=1)=4, Y, Y, .- are identically distributed, P(¥,> 0) =
1, yP(Y, =z y) >0asy— oo, and EY, = co. Set X, = ZY, for k= 1,2, - ...
Clearly yF(y) -0 as y — oo and §;_, ,;xdP(X, < x) = 0 for all T and k =
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1,2,.... Now N!'Y¥ Y, -, . oo since EY, = co and so there exists a se-
quence of positive numbers §, — co such that
PN 2L, Y| >0 = % for N=1,2,....

Let ay, be (Noy)™ for 1 <k < N and zero for k > N. For this example
oy = 0y tand p,'P(|Sy| > 1) — co.

In [1] an example of a stationary ergodic sequence X, was given for which
EX, =0, |X| = 1, and

Ly NTP(NT il X > ¢) = 0.

Hence Theorems 3 and 4 do not hold for t =1 if p = 0. It would be of interest
to know if they hold in the case t = 1 for §(t — s) — a > 0 or p > 0, respec-
tively.
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