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CODING THEOREM FOR STATIONARY, ASYMPTOTICALLY
MEMORYLESS, CONTINUOUS-TIME CHANNELS

By T. T. KapoTA AND A. D. WYNER
Bell Telephone Laboratories, Incorporated

We give a mathematical definition of stationary, asymptotically
memoryless, continuous-time channels, and prove a coding theorem and
its converse for such channels.

1. Introduction. Consider a continuous channel described by
1) () = §io b(t — 8)x(s) ds + z(¥) ,
where x and y are the input and the output of the channel, # a filter impulse-
response, and z an additive noise. Suppose z is a zero-mean, stationary, Gaussian
process. Observe that the probability distribution of y is same as that of z except
for the mean, which is the integral term in (1). Hence the distribution of the
output is invariant under time shift if the input is similarly shifted (Property 1).
Next, under certain conditions on #, x and z the distribution of the present out-
put y(#) depends diminishingly little on the input of the remote past (Property
2). Third, the noise covariance must vanish as  — co. Hence the output values
at two different time-points are asymptotically independent as the time-points
are separated further apart (Property 3). We call a channel with Property 1,
stationary, with Property 2, asymptotically input-memoryless; with Property 3,
asymptotically output-memoryless. We call a continuous-time channel with Prop-
erties 1—3, stationary and asymtotically memoryless.

Suppose we consider increments of the output, instead of its values, and their
probability distribution for a fixed x. Then, we can define the incremental version
of the stationary, asymptotically memoryless, continuous-time channel. Obvi-
ously, the incremental version is more general than the non-incremental. For
example, if z in (1) is a process with stationary, independent increments, then
the channel described by (1) is incrementally stationary, incrementally input-
and output-memoryless, while it is nonstationary and has infinite output-memo-
ry, in general, and it obviously has ir}ﬁnite input-memory. Here the incremental
stationarity and the output-memorylessness are the direct consequence of z having
stationary, independent increments. The incremental input-memorylessness fol-
lows from the fact that y(r) — y(s) depends on x only during (s, 7).

In the next section, we give general mathematical definitions of the stationary,
asymptotically memoryless, continuous-time channel and its incremental version,
and prove a coding theorem and its converse for such channels.
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Previously, Wolfowitz (1964) treated a special case (the discrete-time and
finite-alphabet version) of our channel, where the input and the output are
sequences of integers taken from a finite set. He defined stationary, output-
memoryless, asymptotically input-memoryless channels and proved the coding
theorem and the converse for such channels. He then indicated how to extend
the results to asymptotically memoryless channels. Pfaffelhuber (1971) which
appeared after this paper was written, also studied the same special case.
Although he gave an apparently more general definition of the asymptotically
memoryless channel, he did not prove the converse, thus failing to obtain the
capacity. Our definition is a generalization of Pfaffelhuber’s to the continuous-
time and continuous-alphabet case, where the input and the output are functions
on the real line. The capacity we obtain incorporates a given input contraint
and takes into account the intersymbol interference.

2. Mathematical definitions and coding theorem. Let X and Y be spaces of all
real functions x and y on (—co, co). Denote by .97 (s, ] the o-field generated
by the class of cylinder sets {x: a, < x(¢;) < b;, i =1, ..., n}, s < t; < t, where
a;, b, t; and n are arbitrary. Denote by ZZ(s, t] the o-field of y sets similarly
generated. Lety(+; x) be a transitional measure defined on Z#(— oo, oo) for every
x € X. By definition, v(B; «)is %(— oo, co)-mesurable. We refer to v as a channel,
X and Y as the input and the output spaces respectively. A channel v is causal
if Be & (— oo, t] implies ¥ — oo, t]-measurability of v(B; +) for any Band 1. v
is stationary if v(S, B; S, x) = v(B, x) for any Be &F(— o0, o0), x and u € (— oo,
o), where S, denotes the operation of shifting time by u. We say v is asympro-
tically input-memoryless if for a given ¢ > 0 there exists 7(¢, s) such that |v(B; x) —
v.(B; x)| < ¢ for any Be £&(s, o0), x and s, where v (B; .), Be ZZ(s, o), is a
(s — 7, co)-measurable version of y(B; +). In other words, v(B; x,) and v(B; x,)
differ at most by ¢ for any x, and x, coinciding on (s — 7, co). If v is stationary
then ¢ is independent of s. This definition of asymptotic input-memorylessness
on the whole input space X may be too restrictive. For proving the coding
theorem, it is often sufficient to define it on a smaller space X, C X, which is
usually specified by a given constraint on the input function. When such a
definition is used we specify X; on which v is asymptotically input-memoryless.
We say v is asymptotically output-memoryless if for a given ¢ > 0 there exists
(e; 5, ) such that B, e &(—oo,s], Bye H(t, 00) and 1 — s = ¢ imply |1 —
(B, By; x)[v(By; x)v(B,; x)| < ¢ for any x, B, and B,. This is similar to the strong
mixing condition. If v is stationary then z is independent of sand r. We say v is
asymptotically memoryless if it is asymptotically input- and output-memoryless.

Let <Z(s, 1] be the o-field generated by the class of all cylinder sets of the form
{(yra, <yt) —ys)=b,i=1,...,n}, s<t; <t where a, b,, t; and n are
arbitrary. Then we can define incremental stationarity, incremental asymptotic input-
memorylessness and incremental asymptotic output-memolylessness by simply placing
“”” on the symbol <7 in the preceding definitions.



CODING THEOREM FOR CONTINUOUS-TIME CHANNELS 1605

Let P, be a probability measure defined on .%{(—o0, 0). Define P,, on
(— 00, 0) X Z(— 00, 0) by Pyy(A4 X B) = §,v(B; x)P,(dx), P, on &B(— o,
o0) by Py(B) = Pyy(X X B), and P,,, on 9(—oco, 00) X &(— o0, 00) by
Py,.y(A X B) = Py(A)P,(B), where Ae 7(— o0, oo) and Be & (— o0, co) are
arbitrary [7]. Let.%”" and <% be sub o¢-fields of 97— o0, o0) and £&(— o0, o0)
respectively, and P,y . and P, ., ., the restrictions of P,, and P, , re-
spectively to %" X <. Then the mutual information between the input and the
output on . X <% is given by

I, 5= SXXY log fyxg(x’ y)PXY(d(x’ y))
if Pyy, . «., is absolutely continuous with respect to Py, y x5 »

= oo otherwise ,

where [, denotes the Radon-Nikodym derivative of P, , ., with respect
to PX XY | X"

Denote by .7, the class of P, such that (i) P,((r_, 4;) = [[7-_, Px(4;) for
any A, e AT, (i + DT], i =0, =1, -, +n, and any n, (i) Py(S.,; 4) =
P4(A,) for any n and Ay A0, T, (iii) ®,(x) < 1 for almost every x with
respect to P, where .7 denotes a standard extension of .5/ (see the Remarks
after the theorems) and @, is a nonnegative /0, T]-measurable functional. In
other words, .54, is the class of periodic and periodically independent measures
with period T which satisfy the “® -constraint”.

CoDING THEOREM. Let v be a casual, stationary, asymptotically memoryless,
continuous-time channel. Put

. 1
C = limsup, .. SUPp ey - I3 0.1 o -

For any e > 0 and R < C, there exitst a set of {x,(1),0 < t<b},i=1,..-,m,
satisfying
2) Dyx) =1, i=1,....m; b6>0,

and a (0, bl-measurable m-partition (B,, - - -, B,) of Y such that

3) SUP 4, (0), —ecezy Y(Bi% X;) = €, i=1,...,m.
for some b and m satisfying

“4) (logm)/b = R,

where B;° denotes the complement of B;.

In the case where v is only incrementally stationary and asymptotically memo-
ryless, the assertion holds if “~” is placed on the symbol <.

CONVERSE THEOREM. For any {x,(1),0 <t < b}, i =1, ..., m, satisfying (2)
and any Z5(0, b]-measurable m-partition (B,, - - -, B,) of Y, if

(log m)/b = R > C,
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then there exists ¢(C, R) > 0 such that
V(B x;) > ¢
for some {x,(1), —oo < t < O} for some i, | <i < m.

REMARKS. {x;(1),0 <t < b},i=1, ..., m, represent code words of length
b, and (2) is the ®,-constraint on them. The <Z(0, b]-measurable partition
(B, - -+, B,) represents the decoding rule (based on observing y during (0, b])
corresponding to the code {x,(#),0 <t <b,i=1,...,m}, in the sense that
{¥(1), 0 < t < b} is decoded as {x,(r), 0 < t < b} if ye B;,. Thus »(B;; x;) is the
probability of decoding error corresponding to x;, and Sup,, ) —w<.zo Y(B: X;)
is the least upper bound over all the possible code words used previously. R
signifies a lower bound on the rate of information transmission. Thus, the
coding theorem states that for any R less than C there are a code and its de-
coding rule such that, regardless of all the code words used previously, the
decoding-error probability for each code word can be made arbitrarily small
while maintaining the rate (log m)/b above the given level R. If the channel v
is asymptotically input-memoryless only on a set X; of all x such that ®,(x) < 1
for any T, then (3) must be modified as follows:

SUP (1), —co<t0)ia;c 1, (B x) < e, i=1,....,m.

Two typical examples of ®,-constraint are (i) the average-power constraint
where @ ,(x) = T-* {J x*(t) dt and (ii) the peak-power constraint where @,(x) =
SUpy<,<r X(7). In both cases (i) and (ii), @, is not .2/(0, T']-measurable. For this
reason we have introduced the standard extension &7(0, T]of 27(0, T]. Namely,
J:/(O, T is the o-field generated by the class of sets 4 of the form 4 = 4, X, +
A (X — X)) where 4, and 4, are in .>7(0, T] and X, C X ([2], [1]). In case (i)
X, = {x: {I x*(t)dt < T} and in case (ii) X; = {x: sup,., <, x(f) < 1}. Depend-
ing on the choice of @,, C may be finite or infinite. If it is infinite, there is no
limitation on the rate in order to achieve an arbitrarily small decoding-error
probability.

On the other hand, the converse theorem states that if R is greater than C
then there is no code and the corresponding rule such that the decoding-error
probability for each code word can be made arbitrarily small regardless of all
the preceding code words, while maintaining the rate (log m)/b above the given
level R. In fact we prove a stronger version. Namely, if R > C then there is
no code and the decoding-rule such that the decoding-error probability averaged
over all the preceding code words can be made arbitrarily small, regardless of
the probability measure for the preceding code words which belongs to the class
24, while maintaining the rate above the given level.

As a result of the coding theorem and the converse, C is the capacity of the
causal, stationary, asymptotically memoryless, continuous-time channel with
the @ -constraint. It should be noted that this capacity takes into account the
effect of intersymbol interference from the preceding code words.
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3. Proof of Coding Theorem.

(a) Suppose C < co. From the definition of C, R < C implies the existence
of some T and P, € &7 such that

1
5 R < 13 o .
(5) < T Vs

Using such a T, define
Sy = AT, (i + VT], 28, = AGT, (i + )T, i=0,1,...,
S = Vel o B = N1zl B, n=1,2,....

We prove in Appendix I that P, is strongly mixing relative to { &/ X <%}, and
in Appendix II that n=*/ ). ,m is a nondecreasing function of n. Then, from
the definition of C and the assumption C < oo, lim,_, 171 ,(n). ) €Xists and
is finite, and we denote it by /. The strong mixing of P,, and / < oo satisfy the
conditions of the information-stability theorem in [9], page 117, which asserts
that n=*1og f ), ,m converges to I in probability with respect to P,,. Then
we can choose m and n which simultaneously satisfy

(6) 717: logm = R,
(7) exp[—n(I — d) + logm] < % ,
1 3
) Py ({5901 108 fomeamte ) < T = a}) < £

for some 6 > 0. For example, take § = (I — RT)/3 and choose n sufficiently
large so that nd > 1 and exp(—nd) < ¢/4 and (8) holds. Note d > 0 because
nI . ,m is non-decreasing and / ). , > RT from (5). With such a choice
of 0 and n, the left-hand side of (7) becomes exp(—nRT — 2n + log m), which
can be made less than exp(—nd) by taking m such that nRT < log m < nRT +
nd. This choice of m obviously satisfies (6). Now, with (7) and (8), Feinstein’s
lemma [5] asserts the existence of %, - - -, %, and a <4(0, nT ]-measurable m-
partition (8,, - -, B,) of Y such that' (B %,) < ¢/2,i =1, ..., m. %, - -, %,
can be chosen to satisfy

D, (S.ipx) <1, i=1,....,m; j=0,+1,...,

since P, €../;. Because v is causal and asymptotically input-memoryless, there
exists an integer / > 0 such that |u(.’/3’f; %) — (B %,)| < ¢/2 for any X, which
satisfies #,(r) = %,(r), —IT < t < nT. Hence, forsuch %, - .., %,, w(B %,) < e,
i=1,...,m. Then put x;, = S, %, and B, =S, B;,, i=1,...,m, and b =
(I + n)T. This proves the theorem.

(b) Suppose C = oo. From the definitions of C and asymptotic output-
memorylessness, for any R < co and & > 0 there exist some 7" and Py e ./},
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such that

1
R < 57—1 1&)/(0,T]-¢/i'(0,7‘] )

) [ — v(By By; X)[v(By; X)u(By; X)| < ¢

for any B, € ©8(—oo0, 1], Bye <4(t + T, o) and an arbitrary . Substituting (9)
into (12) in Appendix I and following the deduction thereafter, we can establish
that

(10) [1 — Pey(TA) Py (T)Pry(N)] < €

forany I' e /(—o0, t] X < (—c0,t],Ae. v/ (t + T, 0) X 2(t + T, c0). Now
with the above choice of T, define

= SAQIT, 2 + DT], B = ST, 2i + HT], i=0,1,...,
S = Vol O B =N 2B n=0,1,....

Observe that the proofs of Appendices I and II can be used to establish that P,
is strongly mixing relative to {‘,'57/,. X .’;2} and n='I3 .5 m is a non-decreasing
function of n. By using (10) we prove in Appendix III that lim, #7155 m <
co. The remaider of the proof is identical to the case (a), with T replaced by 2T.

ProoF oF CONVERSE THEOREM. Let x;, i =1, ..., m, be any m elements in X
satisfying (2). Denote by .~} the class of P, € ..} such that P,(A) is equal to the
reciprocal of the number of x;’s belonging to 4. Put

9(B; x)) = E((By; )| .0, b])

=z; ?
=T,

where the conditional expectation is with respect to some P, J;%. Define

P,= L s o xy,
m

7 m 1 ') . 9 . m ] 's)
1> 001000, = Zi,j=lz (B;; x;) log I:”(Bj’ X)) 20 - o(B;; Xk)] s

An(p) = plog(m — 1) —plogp — (1 —p)log(l —p), O0=p=1.
Then, by following the proof in [3], pages 78-79, it is straightforward to show
that S
An(P) Zlogm — I3, 04 -
Observe that for any P, e .J; and any m-partition (A4,, -- -, 4,) of X such that
x,€ A;and x; ¢ A, j + I,
I atom = Dlimr Pur(A; X Bj) 10g[Pyi(A; X B})[Pyy(A; X B))]
= AT EIRT
Hence, it follows from .&; C ., and the definition of C and Appendix II that
i»‘}(o,b]ua‘(o,b] S SUPp ey L7001 sy = OC .

Then,
4,(P) = logm — bC = (1 — C/R) log m .
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Now «,(p) is a positive, concave function of p, 0 < p < 1, vanishing at
p =0, max,, ., £,(0) =logm at p = (m — 1)/m, «,(1) = log(m — 1) ([3],
page 78). Define the inverse £,,7'(¢), 0 < o < log m, as the smaller of the two
solutions p, and p, of £,(0) = ¢. Then

P, > £, (1 — C/R)logm).

Note £,,7'((1 — C/R)logm) > «, (1 — C/R)log(m — 1)), and £,,"%((1 — C/R) X
log(m — 1)) is in (0, 1 — C/R) and is an increasing function of m, and «£,,~%(s)
is a decreasing function of m. Hence P, > ¢ where ¢ = £,7((1 — C/R) log 2).
Then it follows from the definition of P, that o(B;*; x;) = ¢ for some i, | < i > m.
Similarly, it follows from the definitions of (B;’; x;) and é%, and from P, ¢ éﬁ
that v(B;*; x;) = ¢ for some {x,(f), —co < ¢t < 0}, forsome i, 1 <i < m.

7

APPENDICES

I. Py, is strongly mixing relative to { %, X <4}, i.e.,
(1 1) lim, ., PXY(FSnT A) = PXY(F)PXY(A)
for any I', A e &7, X 25,

Proor. For simplicity, put 4, = S,, 4, B, =S,,B, n=20,1, ..., for any
Ae o7, Be 2, Then, from the definition of 5 and the assumptions on v,
for any P, € & and any A4, A’ ¢ &7 and B, B' € &3,

[Prr((4 X B)(A4," X B,)) — Pyy(A4 X B)Pyy(4," X B,)|
= [§x <44, (X)(BB,'; X)Py(dx)

(12) — Pyy(4 X B) {4 %An’(x)u(Bn’; x)Py(dx)|
= i au, () (BB,"; x) — w(B; x)u(B,”; X)|Py(dx)

+ §x gAAn'(X)V(B; X)[¥(B,'5 X) — viu_1yr(B,'; X)|Py(dx)

+ Pyy(4 X B) § %An’(x)|y(n—l)T(Bn,; x) — v(B,'; x)|Py(dx),
which vanishes as n — oo, where we have used

i 2 (U(B; X yr(B5 X)P(d)

= Yy CU(X)(B; X)P(dx) § &?An’(x)u(n—l)(Bn,; x)Py(dx)
which follows from the definition of v, _;,,. Hence (11) holds when I" and A
are rectangles. Then, since any element of the field .5 of all rectangles 4 x B,
Ae .7y, Be #, can be expressed as a finite union of disjoint rectangles, (11)
holds for any I', A € 4. Finally, that (11) holds for arbitrary I', A € .9, X 2%,
is seen from the fact that (i) given I' e . X <4, and ¢ > 0 there exists ['e &7
such that P, (I' A I') < ¢ ([4] page 56), and (ii)

|PXY(FSnT A) - PXY(F)PXY(A)|
= [Pey(TSur A) = Poy(D8,, )] + |Py(TS,, A) — Pry(D)P1y (D)
+ Per(D)Pry(R) — Pry(D)Pry(A)]

where ', A e &,
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II. n=1 ()., is non-decreasing.
Proor. Since I ). is non-decreasing in n, it suffices to show that
I, .. m is convex. For notational convenience, we write /(X,'Y,', Y,") for

l l n
LV ERRISRIRY. SPRIS (C. O £ | Y, for Tt a0 OV 90 IV e €
where the second is the conditional information of Vi_,, , .%; and Vi_, , &7,
given V7_ ., <%, as defined in [6]. Then, with the use of Kolmogorov’s identity

[9], page 31; [6]
I(Xy" Yo" = I(X" 8 Y") + (X, Y | XY
— I(Xon—l’ Yon—l) + [(Xon—l’ X:—1| Yon—l) + I(Xf_l, Xon—lYOn)
- I(Xon_l’ Yon_l) + I(Xon_lyon_]’ X#—IY;—I) + [(X:—v Yf-l)
— (Y"1, Yr)
where I(X;""', X7 ;) = 0 has been used. Thus, using the stationarity of P,
relative to { v, X <5},
(13) (X", Yo — (X YY)
= I(Xol’ Yol) + [(X2n+lYEn+1’ XOIYOI) - [(Y2n+1’ Yol) .
Hence
1(X0n+1,Y07L+1) _ [(Xo’n, Yo’n) _ [I(Xon’ Yon) _ [(Xon_l$Y0n_l)]
=I(X°, Y%, Xj'Y)y — I(X°, ., Y2, ., Xg'Y) — I(Y?,, Y
+ (Y2, .0 YY)
= I(XZp Y 0, XY X, 0 Y2, L)
- [(Y—_JH’ Yol | Y2n+1)
=0,

where Kolmogorov’s identity is used for the second equality and Jensen’s in-
equality for the last inequality.

II1. limn_,c,o n_ll.?}(n).;’(n) < oo.
Proor. According to the definition of mutual information,

PXY(Fi A])

HXRY 20 XYl) = Supiey Ty Prr(Ti ) log el
xy\*t )t xy\4y;

where the supremum is taken over all rectangular partitions {I';, A;} of X X Y;
e (—oco, =T] X & (—o00, —=T], A; €10, T] x 40, T]. By substi-
tuting (10),

I(XZLY 2L, XYY < log(l + &) < oo .

Again, for notational convenience, we write I(X,'Y,}, ¥,.") for

1[v£;=k+1(‘:"/ixk“;)i)]'(v?=m+1 1},;) » etc.
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Then, from (13),

1 5 5 1 S o 5 . 5. 1 S
o T YY) = - R (X, ¥o') — (X, Y] + PR

o 1 N _ _
= I(X) Yy + o i I(X 2, Y2, XYY
< IRy, V) 4 (X0, V0, XATy) .

Since n~'I(X,", Y¥,") is non-decreasing, lim,_,, n='I(X,", Y,") exists and is finite.
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