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ERROR ESTIMATES FOR THE WEAK CONVERGENCE TO
CERTAIN INFINITELY DIVISIBLE LAWS

By THoMAs A. HERN
Bowling Green State University

Let F, denote the distribution function of the nth row sum of a tri-
angular array of infinitesimal, rowwise independent random variables, and
let F* denote the limiting infinitely divisible distribution function. Bounds
are obtained for sup-w<z<w [Fu(x) — F*(x)| in the case that the means are
finite and also for the attraction to a stable law with exponent « < 1. Con-
ditions for convergence of these bounds are given.

1. Introduction. It is well known that a distribution is infinitely divisible (inf.
div.) if and only if it is the limit distribution of the row sums X,, + X, + -+ +
Xnkn — A, ofatriangulararray (X,,)k=1,2,...,k,;n=1,2,... of infinitesimal
random variables which are independent within each row. A subclass of par-
ticular importance, the stable laws, coincides with the set of limit distributions
of normed sums (X, + X, + ... + X,)/B, — 4, of a sequence of independent,
identically distributed random variables (X,). By letting X,, = X,/B,, k = 1,
2,...,nm;n=1,2,..., we see how this becomes a triangular array. The row
sums of this array are the normed sums above. The common distribution of
these variables is said to be in the domain of attraction of the stable law.

It is the purpose of this paper to obtain a bound for sup_., ., <. [F,(x) — F(x)|,
where F, denotes the distribution function of the nth row sum of a triangular
array and F is the limit distribution function.

Shapiro (1955) has obtained a bound in the case that the variances are assumed
to be finite. The canonical representation of the logarithm of an inf. div. charac-
teristic function due to Kolmogorov was used. Boonyasombut and Shapiro
(1970) were able to use the Levy-Khintchine representation to obtain bounds
when the variances need not be finite. It was necessary to truncate the variables
in order to use the previous result.

The representation of Feller (1966) has been used here to treat the more general
case without the complication of truncation. The derivation is very similar to
that of Shapiro (1955), since the kernel of the representation is similar in each
case, but the study of the convergence of these bounds is much different. Slowly
varying functions are used in this study.

2. Preliminaries. The essential facts concerning slowly varying functions can
be found in the papers of J. Karamata (1930), (1933), but the functions there
are continuous. The reader is referred to Feller (1966), De Haan (1970), and
Tucker (1968), where only measurability is assumed.

DEFINITION 2.1. A positive, Borel measurable function L defined on (0, co)
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WEAK CONVERGENCE TO INFINITELY DIVISIBLE LAWS 1593

varies slowly (at infinity) if and only if for each x > 0 L(tx)/L(f) — 1 as t — co.
A function Z varies regularly with exponent 2 if and only if Z(x) = x*L(x),
where —oo < 4 < oo and L varies slowly.

LemMma 2.2. If L is slowly varying, then as x — oo, x*L(x) — 0 if 2 < 0 and
XAL(x) — o0 if 2 > 0.

This lemma follows from the representation theorem (page 274 of Feller
(1966)). The next theorem is a version of a theorem in Feller (1966) (page 275,
see Problem 30, page 279). For a distribution function F(x), denote

U) = §eyrdF(y),  Vi(x) = 2y dF(y).

THEOREM 2.3. If U (x) varies regularly with exponent y and V,(x) exists, then
lim, ., x*="V,(x)/U(x) = r/(¢§ — r — ) exists, provided r < q — y. If U (x) varies
regularly with exponent y and r > q — y, then lim,_ x7="U(x)/U(x) = y/(r —
9+ 7

The rest of the material of this section is based on Chapter XVII of Feller
(1966).

DEFINITION 2.4. A measure M on the real line is called a canonical measure
if and only if it is finite on finite intervals and M*(x) = {= y=2dM and M~(x) =
{==" y=2dM converge for all x > 0.

DEFINITION 2.5. The measures ¢,x* dF,(x) converge properly to the canonical
measure M if and only if for finite intervals of continuity of M, c,x*dF,(x) — M,
and at all continuity points x > 0 of M, c,[1 — F,(x)] - M*(x)and c, F,(—x) —
M~(—x).

THEOREM 2.6. The function ¢(t) is an inf. div. characteristic function if and only
if there is a canonical measure M and a real number b such that ¢(f) = e**) where

itx il
D0 e S el L L 2] VNN

xZ

The measure M is unique.

THEOREM 2.7. A canonical measure M determining a stable law is either concen-
trated at the origin (normal law), or else for x > 0, M[0, x] = Cpx*~¢, M[—x,0] =
Cgx*=*, where 0 < a < 2,p=0,9=0,p+ g=1. The parameter « is called
the exponent of the stable law.

CorOLLARY 2.8. The function ¢(t) is the characteristic function of a stable law

with exponent a, 0 < a < 2, if and only if

log ¢(f) = Cp(2 — a) §7 C = L = i5(%) 4y

x1+a

ite 1 — jts

FEE o(¥) dx 4 ibt
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with 5.(x) = x, a>1,
= sin x, a=1,
=0, a<l.

If @ > 1, then the mean of ¢(t) is b.

The choice of s, in the preceding corollary is preferable, and it is this which
allows us to use the derivations of Shapiro (1955). Motivated by the note on
page 531 of Feller (1966), we can replace the convergence theorems there with
the following theorems. The proofs are straightforward. The apparently restric-
tive hypotheses are satisfied in the case of attraction to a stable law (see next
section).

THEOREM 2.9. If ¢, x*dF (x) — M properly, and if for any ¢ > O there is a
K > 0 such that for all n, c, ¥, ;. |x|dF,(x) <e, then (a) for any a >0,
§ o120 |X| 1AM < 00, and (b) ¢, §=, 2(x) dF ,(x) — (=, 2(x)/x* dM for every con--
tinuous function z(x) such that z(x)/x* is continuous at x = 0 and z(x)/x is bounded.

TueoreM 2.10. If ¢, x*dF,(x) — M properly, and if for any ¢ > O there is a
0> 0 such that for all n, c, ¥, c;|x|dF,(x) <e, then (a) for any a >0,
2, ]X|71dM < oo, and (b) ¢, §=., 2(x) dF,(x) — {2, z(x)/x* dM for every bounded,
continuous function z(x) such that z(x)/x is bounded near zero.

The following convergence theorems for attraction to stable laws are taken in
altered form from Chapter XVII of Feller (1966). For a distribution function
F(x) denote for x > 0, p(x) = {7, y*dF(y), and let ¢(¢) be its characteristic
function.

THEOREM 2.11.

(@) F belongs to the domain of attraction of the normal law if and only if p(x) is
slowly varying.
(b) F belongs to the domain of attraction of a nonnormal stable law if and only if

as x — oo
(2.1) p(x)[(x*=*L(x)) — 1
with L(x) slowly varying, and as x — co

1 — F(x)
2.2 —p,
(2:2) 1 — F(x) + F(—x) P

F(—

=0 .

1 — F(x) + F(—x)
where 0 < a < 2, and p =0, 9 =0, p+ g = 1. If this happens, F belongs to the
domain of attraction of the law determined by the canonical measure M[0, x] =

Cpx*=¢, M[—x, 0] = Cpx*~* and the constant C and the norming constants B, may
be chosen such that as n — oo

(2.3) nB,~*L(B,) — C..
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THEOREM 2.12. Suppose F satisfies conditions (2.1) and (2.2); and if a > 1,
assume F has mean p. Let 8, = 0if a < 1,8, = /B, if « > 1, and let B, — oo
satisfy (2.3). Then

[(1/B,)e]" — $*(1)
as n — oo, and nx* dF(B,x) — M properly, where for x > 0, M[0, x] = Cpx*~* and
M[—x, 0] = Cgx*=*. The limit ¢*(t) has the form of Corollary 2.8.

We will also need the following result which is Lemma 5 of Tucker (1968),
and the next inequality.

THEOREM 2.13. If F is in the domain of attraction of a stable law with exponent
a, 0 < a < 2, and if B, is a sequence of normalizing coefficients for F; then there
is a measurable, slowly varying function L such that B, = n**L(n).

LemMMA 2.14. If z, and z, are complex numbers such that 0 < |z,| < 1 and 0 <
lz)) < 1, then |z, — z,| < |log z;, — log z,].

Throughout this paper F,, and ¢, will denote the distribution and characteris-
tic functions of the random variables X,, of a triangular array, F, and ¢, those
of the row sums, while F* and ¢* will denote the limit functions. F and ¢ will
be reserved for distributions attracted to a stable law.

3. Derivation of the bound in the finite mean case. In this section we consider
arrays with finite mean. Our main interest is in the domain of attraction of a
stable law with exponent a > 1, i.e. with finite mean. Motivated by the next
theorem, we assume that for any ¢ > 0 there is a K > 0 such that for any n

(3.1) 2 Sioisx [X[AF (%) < e

THEOREM 3.1. If Fisattracted to a stable law with 1 < a < 2, norming constants
B,, then for any ¢ > O there isa K > 0 such that for any n; n §,,-  |x| dF(B, x) < e.

Proor. We use Theorem 2.3 with g = 2and r = 1. By Theorem 2.11 p(x) =
Uy(x) varies regularly with exponent 2 — @, and by Theorem 2.9 V(x) exists;
hence as n — oo, since B, — oo, we get for x > 0

an§m>m”|)’| dF(y) N 2—«a _ 2 —a or
#(an) ‘ 1—2+a a — 1
nxs|ﬂ|>z[y] dF(Bny)_) 2'—‘a .
(n/B'n2)/’l(an) a — 1

But nB, (B, x) — Cx*~*because of proper convergence, so we get as n— oo that

nx §,y15, |7 dF(B, y) > c(2 - ‘;)xz-a or
a

2 —
nSIu|>z|yldF(Bny)—>C<a c;)_xl—a'

Since 1 — @ < 0, choose K such that K'-¢ < ¢(a — 1)/(2 — a)C; we get for
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n > N, that the left-hand side is less than ¢. Then choose K larger still so that
since F has first moment, n §,,.. |y| dF(B,y) < e forn =1,2, ..., N, as well.

The derivation here is similar to that of Shapiro (1955) for the case of finite
variance. We will assume that the inf. div. law F* is represented by
(3.2) log $*(1) = §°u %ﬂ aM
where M is the canonical measure determining F*. This alternative to the form
of Feller in Theorem 2.6 is permissible due to Theorem 2.9, under assumption
(3.1), and the fact that |ei** — 1 — izx| < 2|tx|. Thus since the integrand is the
same for both this representation and that of Kolmogorov, the method of Shapiro
can be applied with minor changes in the derivation.

For K, —K continuity points of M, and 6 > 0 given, let —x; < x, =0 <
x, < .-+ < x, = K be such that fori = 0, 1, .., m, —x; and x; are continuity
points of M, and max,, |x; — x;_,| < d. If 0 is a continuity point we let
x, = 0. For each i let y, be such that x;_, < y, < x,. Let

k2

g(n, m(K, 9)) = [4 § .12k [X| Xkny dF () + 4§02 1/|X] dM]E
+ [4 Zhey (EIX)) 4 D [M(xo, x;) — §5 %" 2in, dF, (%)
+ 2y [M(—x;, xp) — §70,, x* 3gn, dF,(X)|P
+ [BO[§ %5 x* Xk, dF,i(x) + M(—K, K)]J}
and let T = 1/g(n, m(K, 9)) for fixed n, K, and 9.

LemMA 3.2. If(X,,) is a triangular array of infinitesimal random variables which
satisfies (3.1), then as n — co, max,g,<, E|X,,[— 0.

Proor. For any ¢ > 0 choose K so that (3.1) holds, then for I < k < k,,
EIXnkI = SlzlzK + SE<|x|<K + Slxlés |X| ank(x) é € + KP{ankl > 8} + €. SO

max, .o, E|X,| £ 2e 4+ max,g.q, KP{|X,,] > ¢} < 3e,
for n large since the X, are infinitesimal.

We now come to the first main theorem.

THEOREM 3.3. Let F* be an inf. div. distribution function which has the represen-
tation (3.2). Let (X,,) be a triangular array of infinitesimal random variables which are
independent within each row. Assume also that the X,, have finite mean 1, that
(3.1) is satisfied, max, g, <, E|X,,| < %, F*' exists, and that |[F*'(x)] = B < oo for
all x. Let A, = Yk», p,,.. Then

SUP_cocyceo [Fo(X) — F*(x)] = k(B)g(n, m(K, 9))
where k(B) is a constant depending only on B.

The following lemma will be used later, as well as in the proof of Theorem
3.3. Its proof is straightforward.
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LemMa 3.4. If |t] < 1/(2E|X,,|), then
| Xkny log 6,,(1) — Lkea [Bue(r) — 11| = 41 ke (E|X,40) -

Proofr oF THEOREM 3.3. A method similar to that of Shapiro (1955), using
Lemmas 2.14 and 3.4, shows that

i, M)I_Tw.(l' dt < g(n, m(K, 3)) .

But then applying Esséen’s theorem (page 196 of Gnedenko and Kolmogorov
(1954), page 512 of Feller (1966)), we get |F,(x) — F*(x)| < a(2x)~'g(n, m(K, 0)) +
c(a)B|T = [a(27)~* + c(a)Blg(n, m(K, 9)), which is the result.

We now restate the theorem in terms of a law F which is in the domain of
attraction of a stable law F* with exponent a, 1 < @ < 2. Let X have the
common distribution of the X,. Rewriting g we get

[ 4C2 — a) 4n 4
9(n, m(K, 9)) = [(af——l)K‘H + B, §iziz5,x [X] dF(x)]
4n(E|X|) e cn
+ [ 4BV 2w jpre — et ar(8, )

2 51, [Cgri= — {2, nx* dF(B, )] |
+ [20[CK?*~* + (X, nx*dF(B, OE .

COROLLARY 3.5. Let F* be a stable distribution function with mean zero and
exponent 1 < a < 2 which has the representation of Corollary 2.8. Let (X,) be a
sequence of independent random variables with distribution F, mean p, and moment
E|X|. Let F, denote the distribution function of the sum

X1+Xz++Xn_’ilf
B B

n n

>

and assume that B, > 2E|X|. Let a bound for F*' be B. Then
SUP_co oo [Fu(X) — FX(x)] = k(B)g(n, m(K, 0))

where k(B) is a constant depending only on B. If we also assume that F has mean
zero, then k(B) = (1 + 24B)/x.

It is interesting to note that in case @ = 2, n/B,* does not necessarily converge
to zero. In fact if F is in the domain of normal attraction of the normal law,
i.e., B, = nt, then n/B,> = 1, so the bound cannot converge. Shapiro’s result
covers this case.

4. Convergence of the bound in the finite mean case. We now investigate under
what conditions these bounds converge to zero. The key criterion is given by
the following theorem from which several more specific corollaries will follow,
including one for stable laws.
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THEOREM 4.1.

(@) If (X,,) is a triangular array of infinitesimal, rowwise independent random
variables with finite mean which satisfy condition (3.1) and max,g,<, E|X,,| < 3,

(b) X kn, x*dF,,(x) — M properly, and

(¢) ke, (E|X,,|)* — 0, (n > co), then

(i) F, — F* as n— oo where log ¢*(t) is given by (3.2),
(i) for any ¢ > O there is a K > 0 (continuity point of M), a 6 > 0, and an N,
such that for n = Ny, g(n, m(K, 9)) < e.

Proor.
(i) By Theorem 2.9., (b) implies

. ite 1 _ 't
2k [Par(?) — 1 —itp,,] — §% e—_’_de )

x2
By Lemma 3.4 and (c)

it i
Sie, 10 ) — itpe] - §2 S =,
and hence by the continuity theorem, F, — F*.

(ii) Choose K which satisfies (3.1) with ¢ small. By Theorem 2.9 we can
choose K still larger so that §,, .. 1/|x| dM is small; so the first term of g can
be made arbitrarily small. Now for this fixed K, by the proper convergence,
§ %, x* Ykn, dF,,(x) is bounded, so d can be chosen so that the last term of g is
arbitrarily small. With this K and ¢ and any fixed corresponding choice of the
x;, the proper convergence and (c) imply that the second term can be made
arbitrarily small for n sufficiently large, and hence g will be small, which is
what we set out to prove.

COROLLARY 4.2. Under the conditions of Theorem 4.1, there are sequences (K,)
and (9,) such that as n — oo, g(n, m(K,, d,)) — 0.

ProOF. As above for any K and ¢ the second term of g converges to 0 as
n— oo. So letting ¢,” — 0, ¢,’ > 0, we can choose K,’ and 4," such that the first
and last terms of ¢ are less than ¢,’/3, and n, such that for n > n, the middle
term is less than ¢,//3 (wologn, < n,,, for any k). Hence for any n letting
e, =¢/, K, = K,, and 3, = 3,/ where n, < n < n,,,, we get that

g(n’ m(Kn’ 57»)) é € 0 *

COROLLARY 4.3. The condition (a) of Theorem 4.1 and any one of the following
conditions are sufficient for the conclusions of Theorem 4.1 and Corollary 4.2 to hold.

(@) Xk, (E|X, ) > 0 and F, — F*,

(b) ks, E|X,,| is bounded and F, — F*,

(¢) Xkn, x*dF,,(x) — M properly, and M{0} = 0,

(d) F,—F*,b,, =0/ seeSectionl, Chapter XVII of Feller (1966)), and M{0}=0.
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Proor. In each case we show that the conditions of Theorem 4.1 are implied.
(a) By Lemma 3.4, (a) implies

Zird[fur(r) — 1 — itp,, ] — log ¢%(1)
so by Theorem 2.9 with z(x) = x — sin x and the theorem on page 528 of Feller
(1966) we get the proper convergence.
(b) implies (a) by Lemma 3.2.
(c) We must show that > %=, (E|X,,|)? — 0. We have for any ¢ > 0 that

2ama [Siaizs X1 dF (%) + §1<o [X] dF, 0 (X) ]
= 3(max,g,gp, E[Xol) Zkn1 §inzs [X] dF (%)

+ Zin [$a1<o [X dF (0T -

By Lemma 2.9 applied to {|x| = 6}, and z(x) = |x| on this set, we have that
Dikny §12125 |X] dF (%) is bounded, and so by Lemma 3.2 the first term converges
to zero for any 6 as n — oo. Holder’s inequality and the proper convergence
imply that the second term converges to M(—d, d). Hence for any ¢ > 0, choose
0 such that M(—d, 0) < ¢, then for n large the last term is less than ¢, and for
this ¢ the first term will be less than ¢ for n larger still.

(d) By the criterion of Section 8, Chapter XVII of Feller (1966), we have the
proper convergence and so (d) implies (¢). This completes the proof.

The next corollary shows the behavior of the bound for the stable case.

CoROLLARY 4.4. If the distribution function F satisfies Theorem 2.12 with 1 <
a < 2, then F is attracted to the stable law F* which is given in Corollary 3.5; and
forany e > 0 thereisa K > 0, a6 > 0, and an N, such that for n = N,,

g(n, m(K, 0)) < e.
Moreover there exist sequences (K,) and (0,) such that
g(n, m(K,, d,)) —0 as n— oo.

Proor. By Theorem 2.12 nx*dF(B, x) — M properly and F, — F*. Hence
since a < 2, M{0} = 0, and so by Corollary 4.3 (c) the conclusion follows.

5. Derivation of the bound for attraction to a stable law with « < 1. In this
section we derive bounds for the case when the limit law does not have finite
mean. The derivation is similar to that of the last section, except that lower
order moments are used. However the methods used to investigate the behavior
of these bounds involve use of slowly varying functions, and for this reason
they only apply when the limit law is stable.

As before F will denote a distribution function attracted to a stable law F*,
and we will assume that F* has the representation of Corollary 2.8 with & = 0.
Denote the rth moment of F by E|X|", which exists if 7 < a by Lemma 2 on
page 545 of Feller (1966). We will also use the inequality |et* — 1] < 2|u|” for
0<rgl.
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Choose K, d, x;, y;, i =1,2, ..., m, as in Section 3, except that x, = 0.
Define

g:(n, r, m(K, 9))

[l 4 A0 T wa e
rB, *"'®

Ha — K= rB

+ [4 Ym ., | §% nx dF (B, x) — CP(2 @)

+4xn,|§, nxdF(B,x) — %a_)xl ; ]
—

+ [35[ng n|x| dF(B, x) + ﬂ%ﬂ

We now state the main theorem for a < 1.

THEOREM 5.1. Let F* be a stable distribution with exponent a < 1 which has the
representation of Corollary 2.8 with b = 0. Let (X,) be a sequence of independent
random variables with distribution function F, and moment E|X|", 0 < r < 1. Let
F, denote the distribution function of the sum (X, + X, + --- + X,)/B,. Assume
that B, > 4V (E|X|")" and |F*'| < B. Then

SUP o<z <o |[Fu(X) — F*(X)| = k(B)gy(n, 7, m(K, 5))
where k(B) is a constant depending only on B.

The proof of this theorem is similar to the one in Section 3. Lemma 2.4 is
replaced by the next lemma. In the rest of the proof (¢’* — 1)/x is used in place
of (¢ — 1 — itx)/x*. The extra 1/x is incorporated into the measures. The
essential change is that

2. &i’ < 28
0x X -

replaces the similar bound used by Shapiro.

LEMMA 5.2. ForO<r<a <1,
t t < Atn(E|X]7)
| ) = — ) =1 _
niogs () = |8 () 1] =

provided |t| < B, 4~Y7(E|X|")~V".

Much of the proof of Theorem 5.1 is valid when &« = 1. However the rep-
resentation is different. We must use something like sin x. Our derivations
depend on the form of the integrand. For a > 1 Shapiro’s form will work, for
a <1 a similar method works; but for « = 1, sin x solves the convergence
problem, but it creates another in trying to get a bound for

0 (e“" — 1 —irsin x

ax x? )
which involves a single power of |¢|. This complication can be avoided by
assuming that F and F* are symmetric. Since the only known stable law with
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a = 1 is the Cauchy law, which is symmetric, this is not a severe restriction.
If we assume that J < r < 1, Theorem 5.1 holds for « = 1 if we replace g, with
9s(n, r, m(K, 0))
4n 4C jll/(r+l) I: 16n(E|X|r)2 jll/(1+2r)
= | — x|" dF(x - -~ 17
| S B R0 4 e AT [1SCLY
+ [2 21 Cx; — n §5i x* dF (B, x)| ]}
+ [30[§ % nx* dF(B, x) + CK]Jt .
6. Convergence of the bound for attraction to a stable law with o < 1. To investi-
gate the convergence of the bound of the last section, we need two lemmas.

LeEMMA 6.1. IfF, — F*, thenfora/2 <r<a <lasn— oo, nB, (E|X|")* -0.

Proor. For 0 < r < a, E|X|" exists, so we must show that n/B,* — 0, as
n — oo. By Theorem 2.13 there is a slowly varying function L such that B, =
n'*L(n), so nB,~ = n(n"*L(n))~* = n'=*/*(L(n))~*. Now L% varies slowly,
so since a/2 < r implies 1 — 2r/a < 0, we have by Lemma 2.2 that this con-
verges to 0.

LEMMA 6.2. If F satisfies Theorem 2.12 with0 < r < a < 1, then for anye > 0
there is a K > 0 such that for all n

nB,~" S|x|g3nx |x|" dF(x) < .

Proor. We use Theorem 2.3 with ¢ = 2. By Theorem 2.11 U, varies regu-
larly with exponent 2 — a, and ¥, exists for r < a by Lemma 2 on page 545 of
Feller (1966). Hence since B, — oo and r < a we get for x > 0 as n — oo

B 'K § 4125,k |X]7 dF(X) 2 —« 2 _«
n . _ )
S|z|<BnKx2dF(x) 2—r—(2_a) o —r
Theorem 2.12 implies that nB,?u(B,K) — C(2 — a)K*~%, so as n — oo

nB,~" S|z|;3nx |x|” dF(x) — C(a — r)' K=,

Choose K such that K™« < ¢(a — r)C~?, since r — a < 0, and we get that the
left side is less than ¢ for n > N,. Choose K still larger so that this is true for
n=1,2, ..., N,, since the rth moment exists, and the result follows.

We now come to the convergence theorems for the bounds.

THEOREM 6.3. If the distibution F satisfies Theorem 2.12 with 0 < a < 1, then
F, — F* in Theorem 5.1. Let 0 < af2 < r < a < 1. Then foranye > O there is

aK > 0and ad > 0 such that for n = N,, g,(n, r, m(K, 0)) < e. Moreover there
exist sequences (K,) and (0,) such that g,(n, r, m(K,, 6,)) — 0 as n — oo.

ProOOF. An argument similar to the one in Theorem 3.1, using the second
part of Theorem 2.3, shows that the hypothesis of Theorem 2.10 is satisfied.
Applied first to (—K, K) and to z(x) = |x| for |x| < K, we get, for fixed K, that

n 5y x| dF(B, x) — %, L am = €2 = O gia
| x| l —a
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And similarly applied to [0, x;) and (—x;, 0] with z(x) = x on these sets, i =
1, ..., m, we have

{2 nx dF(B, x) — ____CI;(Z — ) e
—

0., nx dF(B, x) — _qu(z__a) X

—

By Lemma 6.2 and since r < a, the first term of g can be made arbitrarily small.
With this K fixed, n {*, |x| dF(B, x) is bounded, so § can be chosen so that the
last term is small. With this K and ¢ and a fixed corresponding choice of x;,
i=1, ..., m the third term converges to 0, and by Lemma 6.1 the second
does also. The rest is the same as before.

If we assume that F is symmetric, Theorem 6.3 holds for « = 1 as well with
g, in place of g,. The only difference is that only the proper convergence is
needed for the third term.
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