SHARP ONE-SIDED CONFIDENCE BOUNDS OVER POSITIVE REGIONS¹

By Robert Bohrer and George K. Francis

University of Illinois at Urbana-Champaign

The paper develops one-sided analogs to Scheffé's two-sided confidence bounds for a function $f(\mathbf{x}), \mathbf{x} \in R^n$. If the domain X^* of f is a subset of $R_+^n = \{\mathbf{x}: x_i \geq 0, \forall i\}$, then the upper Scheffé bounds are conservative upper confidence bounds, which can be sharpened, often to great practical advantage. This sharpening, accomplished by a non-trivial extension of Scheffé's method, is developed by the geometry-probability argument of Section 2. Section 3 derives coverage probabilities for general 2- and 3-parameter functions and illustrates savings by the sharp bounds in two examples.

1. Upper confidence bounds. We consider confidence bounds for a function $f(\mathbf{x}; \boldsymbol{\beta}) = \mathbf{x}' \boldsymbol{\beta}$ based on statistics $(\hat{\boldsymbol{\beta}}, S)$, where $\hat{\boldsymbol{\beta}}$ is normal $N(\boldsymbol{\beta}, B\sigma^2)$ and where $\nu S^2/\sigma^2$ is $\chi^2(\nu)$ independent of $\hat{\boldsymbol{\beta}}$. The parameters of the *n* by 1 vector $\boldsymbol{\beta}$ and σ^2 are not known, but the elements of the symmetric, positive definite *n* by *n* matrix *B* are known.

For example, this is the case in the general analysis of variance ([7] Chapter 2), where $\hat{\beta}$ is the vector of least squares estimators with variance $B\sigma^2$ and S^2 is the usual unbiased estimator of σ^2 .

A coefficient- α upper confidence bound for the function $f(\mathbf{x}; \boldsymbol{\beta})$, $\mathbf{x} \in X^*$, based on $(\hat{\boldsymbol{\beta}}, S)$, is a random function $U(\mathbf{x}; \hat{\boldsymbol{\beta}}, S)$, $\mathbf{x} \in X^*$, such that

(1.1)
$$\Pr_{(\boldsymbol{\beta},\sigma^2)} \{ f(\mathbf{x}; \boldsymbol{\beta}) \leq U(\mathbf{x}; \hat{\boldsymbol{\beta}}, S), \ \forall \mathbf{x} \in X \} \geq 1 - \alpha$$

holds uniformly over all $(\beta, B\sigma^2)$. The bound is said to be *sharp* if equality holds for the second inequality sign in (1.1) for all $(\beta, B\sigma^2)$; if for some $(\beta, B\sigma^2)$ the inequality is strict, the bound is said to be *conservative*. Coefficient- α lower confidence bounds $L(\mathbf{x}; \hat{\beta}, S)$ are defined by reversing the interior inequality of (1.1). Their analysis reverts to that of upper bounds if f is replaced by its negative. Evidently, if

$$(1.2) \qquad \Pr_{(\boldsymbol{\beta}, \sigma^2)} \left\{ L(\mathbf{x}; \, \hat{\boldsymbol{\beta}}, \, S) \leq f(\mathbf{x}; \, \boldsymbol{\beta}) \leq U(\mathbf{x}; \, \hat{\boldsymbol{\beta}}, \, S), \, \, \, \forall \, \mathbf{x} \in X^{**} \right\} \geq 1 - \alpha \,,$$

then every function U_1 exceeding U on a subset X_1^* of X^* is also a coefficient- α upper confidence bound on X_1^* .

Scheffé ([7] Section 3.5) considers two-sided bounds for f over all of n-space R^n , of the form $U, L = \mathbf{x}'\hat{\boldsymbol{\beta}} \pm cSS_{\mathbf{x}}$, where $S_{\mathbf{x}^2} = \operatorname{Var} f(\mathbf{x}; \hat{\boldsymbol{\beta}})/\sigma^2 = \mathbf{x}'B\mathbf{x}$, which is proportional to the variance $\sigma_{\mathbf{x}^2}$ of the unbiased estimator $f(\mathbf{x}; \hat{\boldsymbol{\beta}})$. Hence the

Received March 26, 1971; revised January 20, 1972.

¹ Supported partially by NSF grants 23835 and 13145.

AMS subject classifications. Primary 6240, 6256; Secondary 1570, 5040.

expected excess of an upper bound of this type, $E\{U(\mathbf{x}; \hat{\boldsymbol{\beta}}, S) - f(\mathbf{x}; \boldsymbol{\beta})\}$, is proportional to the precision of $f(\mathbf{x}; \hat{\boldsymbol{\beta}})$, as measured by $\sigma_{\mathbf{x}}$. Scheffé found that the value $c^* = (nF_{\alpha}(n, \nu))^{\frac{1}{2}}$ yields sharp two-sided bounds over R_n :

$$(1.3) \qquad \operatorname{Pr}_{(\boldsymbol{\beta},\sigma^2)}\left\{|\mathbf{x}'(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})| \leq c^*S(\mathbf{x}'\boldsymbol{\beta}\mathbf{x})^{\frac{1}{2}}, \ \forall \mathbf{x} \in \mathbb{R}^n\right\} = 1 - \alpha ,$$

where $F_{\alpha}(n, \nu)$ is the $100(1 - \alpha)$ percentile of the $F(n, \nu)$ distribution.

Surprisingly ([3] Theorem 1), the upper bound $U^* = \mathbf{x}'\hat{\boldsymbol{\beta}} + c^*SS_{\mathbf{x}}$ is also sharp as a one-sided bound over R^n . This is in striking contrast to the case of bounding f at a single point \mathbf{x}_0 . Then coefficient- α two-sided bounds are $\mathbf{x}_0'\hat{\boldsymbol{\beta}} \pm SS_{\mathbf{x}_0}(F_{\alpha}(1,\nu))^{\frac{1}{2}}$, whereas, for $\alpha \leq \frac{1}{2}$, the one-sided bounds $\mathbf{x}_0'\hat{\boldsymbol{\beta}} + SS_{\mathbf{x}_0}(F_{2\alpha}(1,\nu))^{\frac{1}{2}}$ are shorter by a factor of $(F_{2\alpha}(1,\nu)/F_{\alpha}(1,\nu))^{\frac{1}{2}} < 1$.

However, if, as in the case of the two examples we present in Section 3, the domain X^* is a subset of the nonnegative orthant $R_+^n = \{\mathbf{x} : x_i \geq 0, \forall i\}$, then the value c^* which gives sharp bounds can be considerably smaller than c^* . Indeed, for the most tractable case of B diagonal and σ^2 known, up to a 30 percent saving was noted in [3]. As we shall see, even greater improvement can obtain in the more general case considered here.

Note throughout that the case of variance known is obtained as the limit as $\nu \to \infty$ in the present case.

Sharp two-sided bounds over R_+^n for the case that B=I, the identity matrix, have been treated in [2]. Sharp one-sided bounds for linear regression over an interval are treated in [4]. There we also compare the average width of these bounds, which, being proportional to σ_x , yield hyperbolic confidence bands about the estimated regression line, with sharp one-sided bounds of constant width. The question of the optimum shape for this criterion in general regression will be taken up in a subsequent paper by the first author.

2. Sharp bounds on R_{+}^{n} . We define the coverage probability as

$$(2.1) \mathscr{P}(c) = \Pr_{(\boldsymbol{\beta}, \sigma^2)} \{ \mathbf{x}' \boldsymbol{\beta} \leq \mathbf{x}' \hat{\boldsymbol{\beta}} + c S(\mathbf{x}' \mathbf{B} \mathbf{x})^{\frac{1}{2}}, \ \forall \mathbf{x} \in R_+^n \},$$

where S is a statistic independent of the $N(\beta, B\sigma^2)$ statistic $\hat{\beta}$ such that $\nu S^2/\sigma^2$ is a random variable with a $\chi^2(\nu)$ distribution, B is a positive definite symmetric n by n matrix, and $R_+^n = \{\mathbf{x} : x_i \geq 0, i = 1, \dots, n\}$ is the nonnegative orthant in n-space. Let $S^{n-1} = \{\mathbf{x} : ||\mathbf{x}|| = 1\}$ be the unit hypersphere. Let $V = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ be a square root of B([1] page 277) with column vectors \mathbf{v}_i , i.e. B = V'V. Let $W = V'^{-1} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$ be the transpose inverse of V. For a subset of indices, $P \subset \{1, 2, \dots, n\}$, let P' denote the complement of P and card (P) = p, the number of indices in P. The independent column vectors of V and W determine the following spherical simplices and associated ratios:

(2.2)
$$\Delta_P = \{ \mathbf{y} = \sum_{i \in P} \alpha_i \mathbf{v}_i; \ \alpha_i > 0 \text{ and } ||\mathbf{y}|| = 1 \},$$

$$\Delta'_{P'} = \{ \mathbf{y} = -\sum_{i \in P'} \alpha_i \mathbf{w}_i; \ \alpha_i \ge 0 \text{ and } ||\mathbf{y}|| = 1 \},$$

$$\rho_P = \operatorname{cont}(\Delta_P)/\operatorname{cont}(S^{p-1}), \quad \text{and}$$

$$\rho'_{P'} = \operatorname{cont}(\Delta'_{P'})/\operatorname{cont}(S^{n-p-1}),$$

where the content is, respectively, unity, cardinality, length, area, volume, \cdots , of a subset of R^n that is respectively empty, finite, one-, two-, three-, \cdots , -dimensional.

THEOREM.

$$\mathscr{P}(c) = \sum_{P} \rho_{P} \rho_{P'} \Pr \left\{ F(p, \nu) \le c^{2}/p \right\}.$$

PROOF. Let us denote the probability density function for the $\chi^2(\nu)$ distribution by $f_{\nu}(s)$, for the $N(\beta, B\sigma^2)$ distribution by $g_{\beta, B\sigma^2}(\mathbf{b})$ and for the distribution of the statistic S by $h_{\sigma}(s)$. Recall that

$$\begin{array}{ll} (2.4) & f_{\nu}(s) = 2^{-\frac{1}{2}\nu}\Gamma(\frac{1}{2}\nu)^{-1}\exp{(-\frac{1}{2}s)s^{\frac{1}{2}\nu-1}}\,, & s \geqq 0\,, \\ g_{\beta,B\sigma^2}(\mathbf{b}) = (2\pi)^{-\frac{1}{2}n}(\det{B})^{-\frac{1}{2}}\exp{(-\frac{1}{2}(\boldsymbol{\beta}-\mathbf{b})'B^{-1}(\boldsymbol{\beta}-\mathbf{b})/\sigma^2)\sigma^{-n}}\,. & \end{array}$$

Let $D(s) = \{\mathbf{b} : \mathbf{x}'\boldsymbol{\beta} \leq \mathbf{x}'\mathbf{b} + cs(\mathbf{x}'B\mathbf{x})^{\frac{1}{2}}, \, \forall \, \mathbf{x} \in R_{+}^{n} \}$. Then, the coverage probability is given analytically by

$$\mathscr{P}(c) = \int_0^\infty \int_{D(s)} g_{\theta,Ba^2}(\mathbf{b}) d\mathbf{b} h_a(s) ds.$$

A change of variable, $\theta = W(\beta - \mathbf{b})/\sigma$, on the inside integral of (2.5) leads to the identity

$$(2.6) \qquad \qquad \int_{D(s)} g_{\theta, Bq^2}(\mathbf{b}) d\mathbf{b} = \int_{R(\lambda)} g_{\mathbf{0}, I}(\boldsymbol{\theta}) d\boldsymbol{\theta} ,$$

where $\lambda = cs/\sigma$ and $R(\lambda) = \{\theta : \mathbf{y}'\boldsymbol{\theta} \leq \lambda||\mathbf{y}||, \ \forall \mathbf{y} \in VR_+^n\}$. The transform of the integrand follows from (2.4). The transform of the domain of integration follows from the fact that setting $\mathbf{y} = V\mathbf{x}$ leads to $\mathbf{x}'(\boldsymbol{\beta} - \mathbf{b})/\sigma = \mathbf{y}'\boldsymbol{\theta}$ and $cs(\mathbf{x}'B\mathbf{x})^{\frac{1}{2}}/\sigma = \lambda||\mathbf{y}||$. Hence $\mathbf{y}'\boldsymbol{\theta} \leq \lambda||\mathbf{y}||$ if and only if $\mathbf{x}'(\boldsymbol{\beta} - \mathbf{b}) \leq cs(\mathbf{x}'B\mathbf{x})^{\frac{1}{2}}$.

To calculate the right side of (2.6) we decompose $B(\lambda)$ into a union of subregions with mutually disjoint interiors. For a subset $X \subset \mathbb{R}^n$ and $0 \le \lambda \le \infty$, denote by $X(\lambda)$ the *cone* of radius λ on X, that is

$$X\langle\lambda\rangle = \{\mathbf{y} : \mathbf{y} = t\mathbf{x}, \ \mathbf{x} \in X, \ t \ge 0 \ \text{and} \ ||\mathbf{y}|| \le \lambda\}.$$

Given two subsets X, $Y \subset \mathbb{R}^n$, such that $\mathbf{x}'\mathbf{y} = 0$ for all $\mathbf{x} \in X$ and $\mathbf{y} \in Y$, we shall set $X \oplus Y = {\mathbf{x} + \mathbf{y} : \mathbf{x} \in X, \mathbf{y} \in Y}$.

Lemma. The region $R(\lambda)$ is the union of 2^n regions with mutually disjoint interiors given by

$$R_P(\lambda) = \Delta_P \langle \lambda \rangle \oplus \Delta'_{P'} \langle \infty \rangle, \qquad P \subset \{1, 2, \dots, n\}.$$

PROOF. The matrix $W^{-1}V$, being positive definite, has positive principal minors. Hence ([6] page 807) the column vectors of V and -W comprise a special case of a "partition" ([6] page 805) of R^n . That is, the 2^n cones $\Delta_P \langle \infty \rangle \oplus \Delta'_{P'} \langle \infty \rangle$, $P \subset \{1, 2, \dots, n\}$, have mutually disjoint interiors and their union fills out R^n . Thus, for a vector $\boldsymbol{\theta}$ there is a $P \supset \{1, 2, \dots, n\}$, with $\boldsymbol{\theta} = \boldsymbol{\theta}_P + \boldsymbol{\theta}'_{P'} \in \Delta_P \langle \infty \rangle \oplus \Delta'_{P'} \langle \infty \rangle$. If $\boldsymbol{\theta} \in R_P(\lambda)$ then $||\boldsymbol{\theta}_P|| \leq \lambda$. So for every $\mathbf{y} \in VR_+^n$,

$$\mathbf{y}'\boldsymbol{\theta} = \mathbf{y}'\boldsymbol{\theta}_P \leq ||\mathbf{y}|| ||\boldsymbol{\theta}_P|| \leq \lambda ||\mathbf{y}||$$

and $\boldsymbol{\theta} \in R(\lambda)$. Conversely, if $\boldsymbol{\theta} \in R(\lambda)$, choose $\mathbf{y} = \boldsymbol{\theta}_P \in VR_+^n$. Then $||\boldsymbol{\theta}_P||^2 = \mathbf{y}'\boldsymbol{\theta} \leq \lambda||\mathbf{y}|| = \lambda||\boldsymbol{\theta}_P||$. So $\boldsymbol{\theta}_P \in \Delta_P \langle \lambda \rangle$ and $\boldsymbol{\theta} \in R_P(\lambda)$. The lemma is proved. \square As a consequence of this lemma and (2.4), we have

(2.7)
$$\int_{R(\lambda)} g_{\mathbf{0},I}(\boldsymbol{\theta}) d\boldsymbol{\theta} = \sum_{P} \int_{R_{P}(\lambda)} g_{\mathbf{0},I}(\boldsymbol{\theta}) d\boldsymbol{\theta} , \qquad \text{where}$$

$$\int_{R_{P}(\lambda)} g_{\mathbf{0},I}(\boldsymbol{\theta}) d\boldsymbol{\theta} = \int_{\Delta_{P}(\lambda)} g_{\mathbf{0},I_{P}}(\boldsymbol{\theta}_{P}) d\boldsymbol{\theta}_{P} \int_{\Delta_{P}'(\infty)} g_{\mathbf{0},I_{P}'}(\boldsymbol{\theta}'_{P'}) d\boldsymbol{\theta}'_{P'} .$$

To evaluate the first factor integral in (2.7) we change to *p*-dimensional polar coordinates ([8] page 53f.), setting $r = ||\boldsymbol{\theta}_P||$ and $d\Omega =$ the area density on S^{p-1} . Thus we have

$$(2.8) \qquad \int_{\Delta_P(\lambda)} g_{\mathbf{0},I_P}(\boldsymbol{\theta}_P) d\boldsymbol{\theta}_P = (2\pi)^{-\frac{1}{2}p} \int_0^{\lambda} e^{-\frac{1}{2}r^2} r^{p-1} dr \int_{\Delta_P} d\Omega.$$

Since $\int_{\Delta_P} d\Omega = \cot(\Delta_P) = \rho_P \cot(S^{p-1}) = \rho_P 2\Gamma(\frac{1}{2}p)^{-1}\pi^{\frac{1}{2}p}$, changing variable to $\mu = r^{\frac{1}{2}}$, we obtain

$$(2.8) = 2^{-\frac{1}{2}p} \Gamma(\frac{1}{2}p)^{-1} \int_0^{\lambda^2} e^{-\frac{1}{2}\mu} \mu^{\frac{1}{2}p-1} d\mu \rho_P = \rho_P \int_0^{\lambda^2} f_p(r) dr.$$

A similar argument for the second factor integral in (2.7) leads to its value of $\rho'_{P'}$. Collecting, we have that (2.5) is

(2.9)
$$\mathscr{S}(c) = \sum_{P} \rho_{P} \rho'_{P}, \int_{0}^{\infty} \int_{0}^{c^{2}s^{2}/\sigma^{2}} f_{p}(r) dr h_{\sigma}(s) ds.$$

We complete the argument as follows. Let X^2 denote a $\chi^2(p)$ random variable that is independent of S^2 . The iterated integral in (2.9), is, as a function of p,

$$\Pr\left\{X^2 \le c^2 S^2/\sigma^2\right\} =$$
 $\Pr\left\{\frac{X^2/p}{(\nu S^2/\sigma^2)/
u} \le \frac{c^2}{p}\right\} = \Pr\left\{F(
ho,
u) \le c^2/p\right\}.$

Having completed the proof of the theorem, we next consider the limiting cases c=0; $c=\infty$; B=I; $\nu=\infty$; B=I and $\nu=\infty$. Note that the ratios ρ_P and ρ_P' are functions of B only. Let $1-\alpha_0=\rho_{\phi'}'$ be the ratio corresponding to $\Delta_{\phi'}'$ where ϕ is the empty subset of $\{1,2,\ldots,n\}$. (Geometrically, this hyperspherical (n-1)-simplex is the reflection in the origin of the polar simplex to the fundamental simplex $\text{Clos }\Delta_{\{1,2,\ldots,n\}}=S^{n-1}\cap VR_+^n$.)

COROLLARY 1.

(a)
$$\mathscr{P}(0) = 1 - \alpha_0(B) > 0$$
;

(b)
$$\mathscr{S}(\infty) = \sum_{P} \rho_{P} \rho'_{P'} = 1$$
;

(c)
$$\mathscr{S}(c) = \sum_{p=0}^{n} 2^{-n} \binom{n}{p} \Pr \{F(p, \nu) \leq c^2/p\}, \quad if \quad B = I;$$

(d)
$$\mathscr{P}(c) = \sum_{P} \rho_{P} \rho'_{P'} \Pr \{ \chi^{2}(p) \leq c^{2} \}, \quad if \quad \nu = \infty \text{ (variance known) };$$

(e)
$$\mathscr{S}(c) = 2^{-n} \sum_{n=0}^{n} \binom{n}{n} \Pr \left\{ \chi^2(p) \leq c^2 \right\}, \quad \text{if} \quad B = I \text{ and } \nu = \infty.$$

PROOF. Setting c=0 in (2.1) leads to $\lambda=0$ in (2.6). Hence $R(0)=\{\theta: \mathbf{y}'\theta \leq 0, \mathbf{y} \in VR_+^n\} = \Delta_{\phi'}'\langle \infty \rangle$. Thus we have directly that

$$\mathcal{P}(0) = \int_0^\infty \int_{R(0)} g_{0,I}(\boldsymbol{\theta}) d\boldsymbol{\theta} h_{\sigma}(s) ds$$

= $\int_0^\infty \int_{\Delta'_{\phi'}(\infty)} g_{0,I}(\boldsymbol{\theta}) d\boldsymbol{\theta} h_{\sigma}(s) ds = \rho'_{\phi'} \int_0^\infty h_{\sigma}(s) ds = 1 - \alpha_0.$

So (a) holds. For $c \to \infty$ in (2.3) we have the rest of the identity (b). If B = I then $\Delta_P = S_+^{p-1}$ and $\Delta'_{P'} = -S_+^{n-p-1}$, where $S_+^{p-1} = S_-^{p-1} \cap R_+^n$. Since cont $(S_+^{p-1})/(\cot(S_-^{p-1})) = 2^{-p}$, and we may collect together those partitions of equal cardinality to arrive at (c). Since $pF(p, \infty)$ has the distribution of $\chi^2(p)$, we have (d). As a consequence of (c) and (d) we have (e), which was previously obtained in [3]. \square

The $F(p, \nu)$ densities involved in (2.3) are continuous and positive for c positive; their coefficients are also positive. Hence $\mathscr{P}(c)$ is a continuously increasing function of c from $1-\alpha_0$ to 1. Consequently, for every sufficiently large coverage probability $1-\alpha$, a unique value c^{\dagger} of c will yield sharp bounds (2.1). By formula (a) in the preceding corollary, there is a nonzero lower limit $1-\alpha_0$ for the coverage probability, which depends only on the covariance matrix B.

COROLLARY 2. For each α and ν , $1 - \alpha_0(B) \leq 1 - \alpha \leq 1$ and $1 \leq \nu \leq \infty$, there exists a unique $c^* = c^*(\alpha, B, \nu)$ such that $\mathcal{P}(c^*) = 1 - \alpha$.

We next investigate the range of the coverage probability over all covariance matrices.

COROLLARY 3.

(2.10)
$$\sup_{B} \mathscr{P}(c) = \frac{1}{2} + \frac{1}{2} \Pr \{ F(1, \nu) \le c^{2} \}.$$

PROOF. Note that for any $\mathbf{x}^0 \in VR_+^n$

$$\mathscr{P}(c) = \Pr \left\{ \mathbf{x}' \boldsymbol{\theta} \le c S||\mathbf{x}||/\sigma, \, \forall \, \mathbf{x} \in V R_{+}^{n} \right\}$$

$$\le \Pr \left\{ \mathbf{x}_{0}' \boldsymbol{\theta} \le c S||\mathbf{x}_{0}||/\sigma \right\} = (2.10);$$

the first line follows by using (2.6) in (2.5). This limiting case can in fact be approximated arbitrarily closely by those cases in which the covariance matrix is $B_{\varepsilon} = J + \varepsilon I$, where J is the matrix of all unit entries, $\varepsilon > 0$ and $\varepsilon \to 0$. Note that $J\mathbf{x} = (\sum x_j)\mathbf{1}$, where $\mathbf{1}$ is the vector all of whose components are equal to one. Hence $J^2 = nJ$. It is easy to check that $V_{\varepsilon} = [(\varepsilon + n)^{\frac{1}{2}} + \varepsilon^{\frac{1}{2}}]^{-1}J + \varepsilon^{\frac{1}{2}}I$ is a square root of B_{ε} and that $V_{\varepsilon}R_{+}^{n}$ tends to the ray through $\mathbf{1}$ as $\varepsilon \to 0$. Setting $\mathbf{x}_0 = \mathbf{1}$ above, we have (2.10). \square

Note that every region $R(\lambda)$ in the proof of the Theorem properly contains the radius- λ ball $S(\lambda) = \{\theta : ||\theta|| \le \lambda\}$. The coverage probability $\mathcal{P}(c)$ therefore exceeds the coverage probability of the λ -ball, which is $\Pr\{F(n, \nu) \le c^2/n\}$. In other words, the Scheffé upper confidence bound $c^* = (nF_\alpha(n, \nu))^{\frac{1}{2}}$ discussed in Section 1, exceeds the sharp bound c^* over R_+^n for all covariances B. We therefore express the relative savings of sharp bounds over Scheffé bounds by

COROLLARY 4.

$$\sup_{B} (c^{\sharp}/c^{*}) \leq 1, \quad and \ for \quad \alpha \leq \frac{1}{2},$$

$$\inf_{B} (c^{\sharp}/c^{*}) = (F_{2\alpha}(1, \nu)/nF_{\alpha}(n, \nu))^{\frac{1}{2}}, \quad and$$

$$\lim_{n \to \infty} \lim_{\nu \to \infty} \inf_{B} (n^{\frac{1}{2}}c^{\sharp}/c^{*}) = (\chi_{2\alpha}^{2}(1))^{\frac{1}{2}}.$$

Thus, unlike the case considered in [3], the length of the c^* bounds relative to the Scheffé bounds can be arbitrarily close to zero for large n.

We close with a general observation on the sharpness of our bounds over a proper subset $X^* \subset R_+^n$. The inequality in (2.1) is homogeneous in the vector \mathbf{x} and persists in the limit for any convergent sequence of rays through points \mathbf{x}_n in X^* . Hence, we have

COROLLARY 5. $U(\mathbf{x}; \hat{\boldsymbol{\beta}}; S) = \mathbf{x}'\hat{\boldsymbol{\beta}} + c^*S(\mathbf{x}'B\mathbf{x})^{\frac{1}{2}}$ is a sharp coefficient- α upper confidence bound for $f(\mathbf{x}; \boldsymbol{\beta}) = \mathbf{x}'\boldsymbol{\beta}$ on $X^* \subset R_+^n$ if and only if the cone $X^*\langle \infty \rangle$ is dense in R_+^n .

3. Use and efficiency of sharp bounds. In the case n=2 and 3, we compute the ratios ρ_P and ρ_P' to obtain explicit formulas (3.1) and (3.2) for (2.3). With n=2, the region R(1) defined after (2.6) decomposes as illustrated in Fig. 1. For $P=\{1,2\}$, P' is empty, so $\rho_{P'}'=1$. $\Delta_{\{1,2\}}$ is the arc between \mathbf{v}_1 and \mathbf{v}_2 on the circle, with content equal to the angle in radian measure. We have that arc length $(\Delta_P)=\arccos{(\mathbf{v}_1'\mathbf{v}_2/||\mathbf{v}_1||\,||\mathbf{v}_2||)}=\arccos{(B_{12}/(B_{11}B_{22})^{\frac{1}{2}})}$, since $B=V'V=[\mathbf{v}_i'\mathbf{v}_j]$. So $\rho_{\{1,2\}}=\arccos{(B_{12}/(B_{11}B_{22})^{\frac{1}{2}})}/2\pi$. The case $P=\phi$, hence $P'=\{1,2\}$, is analogous, and yields $\rho_\phi=1$ and $\rho_{\phi'}'=\arccos{(B^{12}/(B^{11}B^{22})^{\frac{1}{2}})}/2\pi$, where $B^{-1}=[B^{ij}]$. For $P=\{i\}$, i=1,2, $\rho_P=\rho_{P'}'=\frac{1}{2}$, since $\Delta_{\{i\}}=\{\mathbf{v}_i/||\mathbf{v}_i||\}$, whereas $S^0=\{-1,+1\}$. Collecting, the coverage probability is

Fig. 1.

(3.1)
$$\mathscr{P}(c) = \operatorname{arc} \cos (B^{12}/(B^{11}B^{22})^{\frac{1}{2}})/2\pi + \frac{1}{2} \{ \operatorname{Pr} F(1, \nu) \leq c^{2} \}$$

$$+ \operatorname{arc} \cos (B_{12}/(B_{11}B_{22})^{\frac{1}{2}}) \operatorname{Pr} \{ F(2, \nu) \leq c^{2}/2 \} / 2\pi .$$

Observe that the leading term is the residual $1 - \alpha_0(B)$.

For n=3 and $P=\{1,2,3\}$, $P'=\phi$, hence $\rho'_{\{1,2,3\}'}=1$. To evaluate $\rho_{\{1,2,3\}}$ we use Euler's theorem in spherical trigonometry ([8] page 66). $\Delta_{\{1,2,3\}}$ is the spherical triangle with vertices $\mathbf{v}_i/||\mathbf{v}_i||$. Hence Area $(\Delta_{\{1,2,3\}})=\sum_{i=1}^3\varphi_i-\pi$, where the φ_i are the angles at the vertices of the triangle. Equivalently, $\varphi_i=\pi-\varphi_i^*$, where φ_i^* is the arc length of the corresponding side of the polar triangle with vertices $\mathbf{w}_i/||\mathbf{w}_i||$. Since Area $(S^2)=4\pi$, it follows that $\rho_{\{1,2,3\}}=(4\pi)^{-1}[\sum_{i< j}(\pi-\arg\cos(\mathbf{w}_i'\mathbf{w}_j/||\mathbf{w}_i||||\mathbf{w}_j||))-\pi]=\frac{1}{2}-(4\pi)^{-1}\sum_{i< j} \arccos(B^{ij}/(B^{ii}B^{jj})^{\frac{1}{2}})$. Similarly, for $P=\phi$, $\rho_\phi=1$, and $\rho'_{\phi'}=\frac{1}{2}-(4\pi)^{-1}$ arc $\cos(B_{ij}/(B_{ii}B_{jj})^{\frac{1}{2}})$. Partitions $P=\{i,j\}$ and $P=\{k\}$ are evaluated as in the case n=2, leading to the final formula

$$\mathscr{P}(c) = \frac{1}{2} - (4\pi)^{-1} \sum_{i < j} \arccos (B_{ij}/(B_{ii}B_{jj})^{\frac{1}{2}})$$

$$+ (4\pi)^{-1} \sum_{i < j} \arccos (B^{ij}/(B^{ii}B^{jj})^{\frac{1}{2}}) \Pr \{F(1, \nu) \leq c^{2}\}$$

$$+ (4\pi)^{-1} \sum_{i < j} \arccos (B_{ij}/(B_{ii}B_{jj})^{\frac{1}{2}}) \Pr \{F(2, \nu) \leq c^{2}/2\}$$

$$+ \left[\frac{1}{2} - (4\pi)^{-1} \sum_{i < j} \arccos (B^{ij}/(B^{ii}B^{jj})^{\frac{1}{2}})\right] \Pr \{F(3, \nu) \leq c^{2}/3\} .$$

Evaluation of $c^{\sharp}=c^{\sharp}(\alpha,B,\nu)$ requires in practice evaluation of (3.1) or (3.2) for various values of c to find that for which $\mathscr{P}(c)=1-\alpha$. Tabulation of c^{\sharp} is impractical, because of the large number of parameters on which it depends. The search for c^{\sharp} may, however, be relegated to a digital computer. A program usable on any computer that accepts BASIC FORTRAN is available from the authors.

For n > 3, the general problem of expressing the ratios ρ_P and $\rho'_{P'}$ of (2.3) as explicit functions of the entries of B is beyond practical scope. According to [5], the computation of the content of hyperspherical simplices of dimension exceeding 2 involves the evaluation of a sequence of recursively defined integrals. If, however, the ρ_P and $\rho'_{P'}$ are known, as for example in cases (c) and (e) of Corollary 1, the solution to the equation $\mathscr{P}(c^{\sharp}) = 1 - \alpha$ is easily programmable.

We next describe the improvement of the sharp upper bounds over R_{+}^{3} as compared to Scheffé upper bounds in the following two examples:

Example 1. On the basis of past observations $\{Y(t): t = -1, \dots, -T\}$ of a time series of economic gains Y(t), with expectations

(3.3)
$$E\{Y(t)\} = \beta_1 + \beta_2 t + \beta_3 t^2,$$

we seek a lower bound on the expected future gain. Here $\mathbf{x}' = (1, t, t^2), f(\mathbf{x}; \boldsymbol{\beta}) = \mathbf{x}' \boldsymbol{\beta} = E\{Y(t)\}$ and $X^* = \{\mathbf{x}(t): t \ge 0\}$ is a curve in R_+^3 .

Sharpening, as measured by c^{\sharp}/c^{*} , is greatest when σ^{2} is unknown and must be estimated from few observations. Here, savings reach 55% for T=5; they decrease to the case for known variance, where savings are still about 25—40% for reasonable α values. Since the corresponding maximal savings are 13—20% for diagonal B and known variance, as shown in [3], this example suggests that

		TABLE I	
		c^{\sharp}/c^{*}	
`	0.5	00	

$1-\alpha$.90	.95	.99	.90	.95	.99
T						
5	. 442	.453	.469	.578	.653	.742
∞	.515	.677	. 760	.615	.677	.760

there are cases of even more practical interest to which the present work gives even better savings than were obtained in [3]. See Table I.

Example 2. Let $Y(l_1, l_2)$ denote the response of an individual to l_i units of medication i, i = 1, 2, with expectation

(3.4)
$$E\{Y(l_1, l_2)\} = \beta_1 + \beta_2 l_1 + \beta_3 l_2.$$

We seek an upper bound on the dose-response function $f(\mathbf{x}; \boldsymbol{\beta}) = \mathbf{x}'\boldsymbol{\beta} = E\{Y(l_1, l_2)\}$ where $\mathbf{x}' = (1, l_1, l_2)$. Since dosage is nonnegative, $X^* = \{\mathbf{x}: x_1 = 1, x_2, x_3 \ge 0\} \subset R_+^3$. Note that in this case, X_1^* is dense in S_+^2 and so, by Corollary 5, the bounds c^* are sharp here too. In Table II we present an abstract of the computations for this example based on the usual analysis of variance applied to $\{Y(l_1, l_2): l_1, l_2 = 0, 1, \dots, D\}$, $D = 2, \dots$, 10 and $D = \infty$. See Table II.

TABLE II

			C "/C			
$1-\alpha$.90	.95	.99	.90	.95	.99
D						
3	.895	.904	.915	.914	.928	.947
∞	.904	.920	.940	.904	.920	.940

REFERENCES

- [1] BIRKHOFF, G. and MacLane, S. (1953). A Survey of Modern Algebra. MacMillan, New York.
- [2] Bohrer, R. (1967). On sharpening Scheffé bounds. J. Roy. Statist. Soc. B 29 110-114.
- [3] BOHRER, R. (1969). On one-sided confidence bounds for response surfaces. *Bull. Internat. Statist. Inst.* 43 255-257.
- [4] BOHRER, R. and FRANCIS, G. (1972). Sharp one-sided confidence bounds for linear regression over an interval. *Biometrika* 59 No. 1.
- [5] MÖLLER, H. (1967). Beiträge zur Integration der Schläflischen Differentialform für Simplexinhalte in nichteuklidischen Räumen höherer Dimension. Bonner Mathematische Schriften, No. 29.
- [6] SAMELSON, H., THRALL, R. M. and WESLER, O. (1958). A partition theorem for Euclidean *n*-space. *Proc. Amer. Math. Soc.* **9** 805-807.
- [7] Scheffé, H. (1959). The Analysis of Variance. Wiley, New York.
- [8] VAN DER WAERDEN, B. L. (1969). Mathematical Statistics. Springer, New York.

MATH INSTITUTE
UNIVERSITY OF KENT
CANTERBURY, ENGLAND