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SHARP ONE-SIDED CONFIDENCE BOUNDS OVER
POSITIVE REGIONS!

By RoBERT BOHRER AND GEORGE K. FRANCIS
University of Illinois at Urbana-Champaign

The paper develops one-sided analogs to Scheffé’s two-sided confidence
bounds for a function f(x),x€ R». If the domain X* of f is a subset of
R, = {x: x; 20,Vi}, then the upper Scheffé¢ bounds are conservative upper
confidence bounds, which can be sharpened, often to great practical ad-
vantage. This sharpening, accomplished by a non-trivial extension of
Scheffé’s method, is developed by the geometry-probability argument of
Section 2. Section 3 derives coverage probabilities for general 2- and 3-
parameter functions and illustrates savings by the sharp bounds in two
examples.

1. Upper confidence bounds. We consider confidence bounds for a function
f(x; B) = x’B based on statistics (B, S), where B is normal N(B, Bs?) and where
vS?/g? is y*(v) independent of ﬂ The parameters of the n by 1 vector 8 and ¢
are not known, but the elements of the symmetric, positive definite n by n matrix
B are known.

For example, this is the case in the general analysis of variance ([7] Chapter 2),
where ﬂ is the vector of least squares estimators with variance Bos”and S is the
usual unbiased estimator of ¢?.

A coefficient-a upper confidence bound for the function f(x; 8), x € X*, based
on (ﬁ S), is a random function U(x; ﬁ S), x € X*, such that

(1.1) Pty (X B) < Ux: B, S), VxeX}=1—a

holds uniformly over all (8, Bs?). The bound is said to be sharp if equality holds
for the second inequality sign in (1.1) for all (8, Bs?); if for some (8, Bo®) the
inequality is strict, the bound is said to be conservative. Coefficient-a lower con-
fidence bounds L(x; ,§, S) are defined by reversing the interior inequality of (1.1).
Their analysis reverts to that of upper bounds if f is replaced by its negative.
Evidently, if

(1.2)  Pry o (L B, S) S B) S UX B, S), VxeX**) =1 — a,

then every function U, exceeding U on a subset X;* of X* is also a coefficient-a
upper confidence bound on X, *.
Scheffé ([7] Section 3.5) considers two-sided bounds for f over all of n-space
R", of the form U, L = x'ﬂ + ¢SS,, where S,* = Var f(x; ﬁ)/a = x'Bx, which

is proportional to the variance g, of the unbiased estimator f(x; ﬂ) Hence the
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expected excess of an upper bound of this type, E{U(x; /§, S) — f(x; B)}, is propor-
tional to the precision of f(x; B), as measured by o,. Scheffé found that the
value c* = (nF,(n, v))! yields sharp two-sided bounds over R,:

(1.3) P (IX(8 — B)| < c*S(XPX), VxeR}=1—a,

where F,(n, v) is the 100(1 — «) percentile of the F(n, v) distribution.

Surprisingly ([3] Theorem 1), the upper bound U* = x’ﬁ + ¢*SS, is also sharp
as a one-sided bound over R*. This is in striking contrast to the case of bound-
ing f at a single point x,. Then coefficient-a two-sided bounds are xo"é +
S8, (Fo(1,v))}, whereas, for a < 4, the one-sided bounds xo"é + S8y (Fa(l, v))?
are shorter by a factor of (F,,(1, v)/F,(1, v))} < 1.

However, if, as in the case of the two examples we present in Section 3, the
domain X* is a subset of the nonnegative orthant R, = {x: x; = 0, Vi}, then
the value ¢* which gives sharp bounds can be considerably smaller than c*.
Indeed, for the most tractable case of B diagonal and ¢? known, up toa 30 percent
saving was noted in [3]. As we shall see, even greater improvement can obtain
in the more general case considered here.

Note throughout that the case of variance known is obtained as the limit as
v — oo in the present case.

Sharp two-sided bounds over R, " for the case that B = I, the identity matrix,
have been treated in [2]. Sharp one-sided bounds for linear regression over an
interval are treated in [4]. There we also compare the average width of these
bounds, which, being proportional to g, yield hyperbolic confidence bands about
the estimated regression line, with sharp one-sided bounds of constant width.
The question of the optimum shape for this criterion in general regression will
be taken up in a subsequent paper by the first author.

2. Sharp bounds on R,". We define the coverage probability as
2.1) P(¢) = Pr o (XB < X8 + cS(XBx)t, VxeR,"},

where S is a statistic independent of the N(B, Bo?) statistic ﬁ such that v§%/? is
a random variable with a y’(v) distribution, B is a positive definite symmetric »

by n matrix, and R," = {x: x; = 0, i =1, - - -, n} is the nonnegative orthant in
n-space. Let §*~' = {x: ||x|| = 1} be the unit hypersphere. LetV =[v,,v,, ---,v,]
be a square root of B ([1] page 277) with column vectors v,, i.e. B = V'V. Let
W = V""" =[w,W, .., w,] be the transpose inverse of V. For a subset of
indices, P c {1, 2, - - -, n}, let P’ denote the complement of P and card (P) = p,

the number of indices in P. The independent column vectors of ¥ and W deter-
mine the following spherical simplices and associated ratios:

Ap ={y = Xicpa;vi; @, >0 and |ly|| = 1},
(2.2) Ay ={y=— Xicpa;W; a; =0 and |ly|| = 1},

pp = cont (A,)/cont (§771), and

pp = cont (A})/cont (S"~7-1)
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where the content is, respectively, unity, cardinality, length, area, volume, - . -,
of a subset of R™ that is respectively empty, finite, one-, two-, three-, ...,
-dimensional.

THEOREM.
(2.3) F(c) = Lpopep Pr{F(p,v) < p}.

Proor. Let us denote the probability density function for the y*(v) distribu-
tion by f,(s), for the N(B, Bs?) distribution by g, ;»(b) and for the distribution
of the statistic S by #4,(s). Recall that

(2.4) f.(5) = 27¢T(dv) L exp (—4s)st* 1, s=0,
95, 502(b) = (2x)7¥"(det B)™ exp (—3(B — b) BB — b)/a*)o™" .

Let D(s) = {b: x’8 < x'b + cs(x'Bx)}, Vx e R,"}. Then, the coverage probability

is given analytically by

(2.5) '@(C) = ¢ o) 95, 52(b) dbh,(s) ds .

A change of variable, & = W(8 — b)/o, on the inside integral of (2.5) leads
to the identity

(2.6) $oi0) 96, 502(b) db = § 23 90,,(0) 4O

where 1 = cs/o and R(2) = {#:y'6 < A|y||, Yy € VR,"}. The transform of the
integrand follows from (2.4). The transform of the domain of integration follows
from the fact that setting y = ¥'x leads to x'(8 — b)/o = y’8 and cs(x'Bx)}/s =
4]ly||- Hence y’'@ < 4||y|| if and only if X'(8 — b) < es(x'Bx)t.

To calculate the right side of (2.6) we decompose B(4) into a union of subre-
gions with mutually disjoint interiors. For a subset X ¢ R"and 0 < 1 < oo,
denote by X(2) the cone of radius 2 on X, that is ’

X2y ={y:y=1xeX,t=0 and |jy||< 1}.

Given two subsets X, ¥ < R", such that x'y = 0 forallxe Xand y € Y, we shall
set X Y={x+y:xeX, yet}

LEMMA. The region R(4) is the union, of 2" regions with mutually disjoint interiors
given by

Ry(A) = A2 D Ap(o0y, Pc{l,2,---,n.

ProOF. Thematrix W'V, being positive definite, has positive principal minors.
Hence ([6] page 807) the column vectors of ¥ and — W comprise a special case
of a “partition” ([6] page 805) of R*. That is, the 2" cones A,{cod @ A}, (oo,
P c{1,2, ..., n}, have mutually disjoint interiors and their union fills out R".
Thus, for a vector @ there is a P> {1,2,...,n}, with 6 =8, + 8, ¢
Apoo) @ Ap{oo). If @ € Ry(%) then ||@,|| < 4. So for every y e VR,",

Y0 =y0, < |lylll6:l < Ayl
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and @ € R(4). Conversely, if 8 € R(1), choose y = §,€ VR,”. Then ||0,|> =
y'8 < Aly|| = 4/|8,|]. So 8, A (i) and @ € R,(4). The lemma is proved. []
As a consequence of this lemma and (2.4), we have
(2.7) e 9o,,(0) dé = Zp SRP(X) 9o, 1(0) de , where
SRP(Z) 90,,(0) d6 = SAPO) go,zp(ap) de , SAQD,@o) Qo,zp«(o;") ae;, .
To evaluate the first factor integral in (2.7) we change to p-dimensional polar
coordinates ([8] page 53f.), setting r = ||@,|| and dQ = the area density on S7~*.
Thus we have
(2.8) $apcrs 00,1 (0,) 40, = (27)74 (femd"rr=2dr §,  dQ .
Since §,,dQ = cont(4,) = p,cont (§?7') = p,2I'(p)~'x?, changing variable
to ¢ = r}, we obtain
(2.8) = 20T () §i* edrpr =t dpup,, = p,, §3° f,(r) dr
A similar argument for the second factor integral in (2.7) leads to its value of
op. Collecting, we have that (2.5) is

(2.9) D) = Tp 050 57§ f(r) drhy(s) ds .
We complete the argument as follows. Let X* denote a y*(p) random variable
that is independent of S%. The iterated integral in (2.9), is, as a function of p,
Pr {X? < ¢*$?/0’} =
X2/p CZ }
Pr{_—s_ — Pr{F(o,v) < ¢*/p}.
S S 5t = PrlFe ) = ¢lp) i
Having completed the proof of the theorem, we next consider the limiting
cases ¢ = 0; ¢ = co; B=1I; v = c0; B=Iand v = co. Note that the ratios p,
and p}, are functions of Bonly. Let 1 — a, = p}, be the ratio corresponding to
Al where ¢ is the empty subset of {1, 2, ..., n}. (Geometrically, this hyper-
spherical (n — 1)-simplex is the reflection in the origin of the polar simplex to
the fundamental simplex Clos A, ... ,, = 8" N VR,™)

COROLLARY 1.

(@) F(0)=1— a(B)>0;

(b) F(oc0) = Xpppop =13

© Fe)= L2 Q) Pri{F(p,v) =¢p},  if B=1;

(dy FL(c) = Xpppop Priy(p) <%, if v = oo (variance known) ;

(e) Fe)=2"3", () Pr{X(p) <, if B=1TIandv = co.
Proor. Setting ¢ = 0 in (2.1) leads to 2 = 0 in (2.6). Hence R(0) = {@:

y0 <0,ye VR, "} = A} (co). Thus we have directly that
F(0) = §¢ S e 90,1(0) dOh(s) ds
= SA;&«» 90,,(0) dOh,(s)ds = o}, \T h(s)ds = 1 — «.
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So (a) holds. For ¢ — oo in (2.3) we have the rest of the identity (b). If
B=1TIthen A, = S,»"'and A},, = —S," 7?7, where §,»~' = S§*~' n R,". Since
cont (S,77")/cont (S~') = 277, and we may collect together those partitions of
equal cardinality to arrive at (c). Since pF(p, oo) has the distribution of y*(p),
we have (d). As a consequence of (c) and (d) we have (e), which was previously
obtained in [3]. [J

The F(p, v) densities involved in (2.3) are continuous and positive for ¢ posi-
tive; their coefficients are also positive. Hence .Z°(c) is a continuously increasing
function of ¢ from 1 — a,to 1. Consequently, for every sufficiently large coverage
probability 1 — a, a unique value ¢* of ¢ will yield sharp bounds (2.1). By
formula (a) in the preceding corollary, there is a nonzero lower limit 1 — «, for
the coverage probability, which depends only on the covariance matrix B.

COROLLARY 2. For each a and v, 1 —ay(B)<1 —a<1land 1 <v < oo,
there exists a unique ¢t = c¥(a, B, v) such that F(¢*) = 1 — a.

We next investigate the range of the coverage probability over all covariance
matrices.

COROLLARY 3.
(2.10) sup, Z(c) = L + L Pr{F(1,v) < ¢%}.
Proor. Note that for any x’e VR,
F(c) = Pr{x' < cS||x||/o, Vx e VR, "}
< Pr(x/0 < cS|ix,||/o} = (2.10);
the first line follows by using (2.6) in (2.5). This limiting case can in fact be
approximated arbitrarily closely by those cases in which the covariance matrix
is B, = J + el, where J is the matrix of all unit entries, ¢ > 0 and ¢ — 0. Note
that Jx = (3] x;)1, where 1 is the vector all of whose components are equal to
one. Hence J* = nJ. It is easy to check that V, = [(¢ + n)} + &t]"'J + ¢tlis a
square root of B, and that VR " tends to the ray through 1 as ¢ — 0. Setting
x, = 1 above, we have (2.10). []

Note that every region R(4) in the proof of the Theorem properly contains
the radius-4 ball S(2) = {€: ||@|| < 4}. The coverage probability .7°(c) therefore
exceeds the coverage probability of the 4-ball, which is Pr {F(n, v) < ¢*/n}. In
other words, the Scheffé upper confidence bound ¢* = (nF,(n, v))* discussed in
Section 1, exceeds the sharp bound ¢* over R, for all covariances B. We
therefore express the relative savings of sharp bounds over Scheffé bounds by

COROLLARY 4.
supy (c*fc*) <1, andfor a <%,
infy (ct/c*) = (Fou(1, v)/nF (n, v))t, and

limn—ooo limu—'oo infB (n&c#/c*) = (X%a(”)i °
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Thus, unlike the case considered in [3], the length of the ¢* bounds relative to
the Scheffé bounds can be arbitrarily close to zero for large n.

We close with a general observation on the sharpness of our bounds over a
proper subset X* — R,". The inequality in (2.1) is homogeneous in the vector
x and persists in the limit for any convergent sequence of rays through points
x, in X*. Hence, we have

COROLLARY 5. U(x; ﬂ S) = x’,é + *S(x'Bx)! is a sharp coefficient-a upper con-
fidence bound for f(x; B) = xX'B8 on X* C R," if and only if the cone X*{co) is dense
in R "

3. Use and efficiency of sharp bounds. In the case » = 2 and 3, we compute
the ratios p, and p},, to obtain explicit formulas (3.1) and (3.2) for (2.3). With
n = 2, the region R(1) defined after (2.6) decomposes as illustrated in Fig. 1.
For P = {1, 2}, P’ is empty, so o, = 1. A, is the arc between v, and v, on
the circle, with content equal to the angle in radian measure. We have that
arclength (A,) = arccos (v,'v,/||v,|| ||v||) = arc cos (B,,/( By, By,)}), since B= V'V =
[v.'v;]. S0 p,,, = arc cos (B,,/(B,, By,))/2x. The case P = ¢, hence P’ = {l, 2},
is analogous, and yields p, = 1and pj;, = arc cos (B"/(B"B*)})/2x, where B™' =
[B¥]. For P={i},i=1,2, p, = p} = }, since A;, = {v;/||v;||}, whereas S° =
{—1, +1}. Collecting, the coverage probability is

V2

FiGc. 1.



ONE-SIDED CONFIDENCE BOUNDS 1547

(3.1) P(c) = arc cos (B¥/(BUB®)})2r + 3{Pr F(1, ) < ¢}
+ arc cos (By/(By By)?) P {F(2, v) < ¢/2}/2x .

Observe that the leading term is the residual 1 — ay(B).

For n =3 and P = {1, 2, 3}, P’ = ¢, hence p},,,, = 1. To evaluate g,
we use Euler’s theorem in spherical trigonometry ([8] page 66). A, is the
spherical triangle with vertices v,/||v;||. Hence Area (A, ,,) = X}, ¢; — 7, where
the ¢, are the angles at the vertices of the triangle. Equivalently, ¢, = 7 — ¢,*,
where ¢,* is the arc length of the corresponding side of the polar triangle with
vertices w;/||w;||. Since Area (S?) = 4r, it follows that p; , 5, = (47)7 [ Xic; (7 —
arc cos (wy'w,/|[w| [[W;]]) — =] = } — (47)™ L., arc cos (BY/(B#Bi%)}). Simi-
larly, for P = ¢, p, = 1, and p),, = } — (4x)~" arc cos (B;;/(B;; B;;)}). Partitions
P = {i, j} and P = {k} are evaluated as in the case n = 2, leading to the final
formula

F(c) = § — (4n)7! X, arc cos (B;;/(Bi;B;;)!)
(3.2) + (4n)7 3, ., arc cos (B /(B B¥)t) Pr {F(1, v) < %}
+ (47)" T, arc cos (By/(BiiBj;)) Pr{F(2, v) < ¢2}
+ [3 — (4m)7* T., arc cos (B /(B¥ Bii))] Pr {F(3, v) < ¢/3}.

Evaluation of ¢! = c¥(a, B, v) requires in practice evaluation of (3.1) or (3.2)
for various values of ¢ to find that for which Z(c) = | — a. Tabulation of ¢*
is impractical, because of the large number of parameters on which it depends.
The search for ¢* may, however, be relegated to a digital computer. A program
usable on any computer that accepts BASIC FORTRAN is available from the
authors.

For n > 3, the general problem of expressing the ratios p, and p}. of (2.3) as
explicit functions of the entries of B is beyond practical scope. According to
[5], the computation of the content of hyperspherical simplices of dimension
exceeding 2 involves the evaluation of a sequence of recursively defined integrals.
If, however, the p, and o)}, are known, as for example in cases (c) and (e) of
Corollary 1, the solution to the equation (c*) = 1 — «a is easily programmable.

We next describe the improvement of the sharp upper bounds over R.® as
compared to Scheffé upper bounds in the following two examples:

ExAMPLE 1. On the basis of past observations {¥(#): t = —1, ..., =T} of a
time series of economic gains Y(#), with expectations
(3.3) E{Y()} = B + But + A0

we seek a lower bound on the expected future gain. Here x’ = (1, ¢, ), f(x; B) =
x'8 = E{Y(t)} and X* = {x(f): t = 0} is a curve in R ®.

Sharpening, as measured by c*/c*, is greatest when ¢? is unknown and must
be estimated from few observations. Here, savings reach 559, for T = 5; they
decrease to the case for known variance, where savings are still about 25-—409%,
for reasonable « values. Since the corresponding maximal savings are 13—209,
for diagonal B and known variance, as shown in [3], this example suggests that
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TABLE 1
ck/c*
l -« .90 .95 .99 .90 .95 .99
T
5 .442 .453 .469 .578 .653 142
o 515 .677 .760 .615 .677 .760
variance unknown variance known

there are cases of even more practical interest to which the present work gives
even better savings than were obtained in [3]. See Table I.

ExampLE 2. Let Y(I, l,) denote the response of an individual to /; units of
medication i, i = 1, 2, with expectation

(3-4) E{Y(L, L)} = B + Boh + Bl

We seek an upper bound on the dose-response function f(x; 8) = x'8 =
E{Y(l, 1,)} where X’ = (1, /;, ). Since dosage is nonnegative, X* = {x: x;, = 1,
Xy, X, = 0} € R,* Note that in this case, X,* is dense in S, *and so, by Corollary 5,
the bounds ¢* are sharp here too. In Table II we present an abstract of the
computations for this example based on the usual analysis of variance applied
to{Y(,L):1,l,=0,1,...,D}, D=2,...,10 and D = co. See Table II.

TABLE 1I
c¥/c*
l —«a .90 .95 .99 .90 .95 .99

D

3 .895 .904 915 .914 .928 .947
0o .904 .920 .940 .904 .920 .940

variance unknown variance known
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