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AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF
THE EIGENVALUES OF A 3 BY 3 WISHART MATRIX!

By CHRISTOPHER BINGHAM
University of Chicago

A parametrization of the rotation group O+*(p) of p by p orthogonal
matrices with determinant 41 in terms of their skew symmetric parts is
“used to derive, for p = 3, an explicit expansion for oFy(?(Z, Q), a hyper-
geometric function of two matrix arguments appearing in the distribution
of the eigenvalues of a p by p Wishart matrix. On the basis of a numerically
derived simplification of the low order terms of this series, an asymptotic
expansion of ¢Fo'® in terms of products of ordinary confluent hypergeo-
metric series is conjectured. Limited numerical exploration indicates the
new series to be several orders of magnitude more accurate than the series
from which it was derived.

0. Summary. Anderson (1965) derived an expression to order n~* for a hyper-
geometric function of two matrix arguments appearing in the distribution of the
eigenvalues of a p by p Wishart matrix [James (1964)] when p = 3 and 4, and
the complete series for p = 2. A novel parametrization of the group of rotation
matrices in terms of their skew symmetric parts is used to derive an explicit
expression for the complete series when p = 3. Numerical methods are used to
simplify the series to usable form through terms in »~%. Examination of these
terms leads to a conjectured representation of the function as a sum of products
of confluent hypergeometric functions. Limited numerical experimentation sug-
gests that this latter representation provides a much better approximation than
any truncation of the asymptotic series. The first term, expressible as a product
of Bessel functions, seems to be sufficiently accurate for many applications.

1. Introduction. Let W be a p by prandom symmetric matrix with the central
Wishart distribution W(n, X), where X is positive definite (see Rao 1965). We
may assume without loss of generality that £ = diag[4,, 4,, - - -, 2,], 4,,; < 4;,
since we are concerned only with the eigenvalues of W. As is well known, W
can be expressed as
(1.1) W ="HSH"
where H e O*(p), the group of p by p rotation matrices (orthogonal with deter-
minant = +1), and § = diag[s,, sy, - - -, 5,], 8;1, < s;, is the diagonal matrix
of the eigenvalues of W. The joint distribution of s,, - - -, s, is [James (1964),
Anderson (1965)]

(1.2) dF(s,, - - -, s,) = const(det §)"7~V/2(det Z) " [,5; (s; — 5;)
X oFy®(27Y, —(nj2)S) ds, - - - ds

»
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where
(1.3) FP(Z, Q) = (2/V,) So+p eXp(tr ZHQH")(dH)

is a generalized hypergeometric function of two p by p matrix arguments [James
(1964)]. The differential form (dH) represents invariant Haar measure on O*(p)
having total content 1¥,. James (1964) has given a power series expansion for
F (.

0t o

(1.4) B2, Q) = T [(1/kY) X, CADCAR)/C(L,)]

where the inner summation is over all partitions £ of k into p or fewer parts, C,
are zonal polynomials, and 7, is the p by p identity matrix. F,® depends only
on the eigenvalues of Z and Q and hence these matrices may be assumed to
have the form Z = diag[(,, - - -, {,], Q = diag[o,, - - -, 0,], with {; < {,,, and
W; = 0.

Anderson’s result is essentially an asymptotic representation of  F,'» valid
as all

(1.3) Ay = (& =)o — o)), i#]j
increase without limit. Thus it is applicable to the current problem for large n,
provided the eigenvalues of ¥ are distinct. Anderson showed that

(1.6) Fo(Z, Q) = 115 T'(j/2) exp(tr ZQ) | F,,

2 (115 00
where N, = p(p — 1)/2, 6,,d,,- - -, 0 is some ordering of A;;and F, = 1 + o(1)
as the ¢’s simultaneously approach +oco. When p = 2, it is known [Anderson
(1965)] that

(1.7) Fo2(Z, Q) = exp(tr ZQ) ,Fy(3; 1; —4,)

where F, is a confluent hypergeometric function [Erdelyi (1953), page 248].
We use Kummer’s notation
(18) qu(a'l, gy =00y O3 ﬁl’ ﬁzs A ﬁq;Z)

= 2iweo [ITF (@) I13=1 (B)i]2* [K!

where (7)o =1, (1) = 7( + D(r + 2)..-(r +k—1). A standard result
[Erdelyi (1953), page 278] yields the asymptotic series, equivalent to that given
by Anderson,

(1.9) F= 14 D2, 0070007 = Filh 507, 6 +oo.
For p = 3 and 4, Anderson derives for F, the series through terms in -2
(1.10)  F, =14 (3) 2: (1/0:) 4 (F2) Zs (1/67) + () hicy 1/(0:05) + -+ -

For p > 4, Anderson confirms the correctness of the term in 6-* and conjectures
that the term in % is also correct. He also conjectures that the remainder in
Equation (1.10) is O(d7?).
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A somewhat different approach from that used by Anderson simplifies the
algebra for finding successive terms in F,. When p = 3, it allows the derivation
of an explicit expression for the term in F, of order r in 6-1.

2. Parametrization of a rotation matrix in terms of its skew symmetric part. Let
H=U+ VeO*(p), where U = 4(H + H") and V = L(H — H") are the sym-
metric and skew symmetric parts of H, respectively. Then it can be shown
[Bingham (1972)] that H can be represented as

(2.1) H=V+ b))V, m=[p-1)2],

where the A’s satisfy

(2.2) X (=1YR"(0)o,¥ = e(1 — 02},  k=1,2,---, m=][p]2],
hy'P(p) =1, when p=2m+1;

p; =sinr;,, j=1,...,m, are the eigenvalues of i. V' and the r;e(—m, +

are the angles of rotation induced by H in its eigen planes. ¢; is defined by

¢;(1 — p,;*) = cosr;. The sum in (2.1) is an expression for the appropriate sym-
metric matrix symbolized by U = (I, + V?*)!. In the neighborhood of 7, € O*(p)
defined by {H||r;| < /2, j=1, -+, m}, e, =+1,j=1,...,m,and H can be
expressed as a convergent power series in V:

(2.3) H=V+ Xp, (V.

Forp=2,m =0, m=1, and
v=[0 -0,
op 0
By (2.2), h®(p) = &(1 — p,?)* and

H=V+4 ¢l — plz)il2 = [CPS ry —smn rljl )
sin r, cos r,

Forp=3,m=1,

0 Vg Vg 0 z, —z,
(2.4) V=|—v, 0 vy|=]|—2z 0 z 1,
— Uy —Vy 0 |, zZ, —z, 0
and p* = 33,z By (2.1)and (2.2),
(2.5) H=V+ 1+ h®)V?
where
(2.6) hO(p) = [1 — e(1 — p2)i]fo* = [1 + &(1 — ).

Here ¢, = 4-1 is equivalent to tr H = 3 — 20,2h,%(p) > 1.
It is shown in Bingham (1972) that invariant (Haar) measure (dH) on O*(p)
can be expressed as a differential form in the elements of ¥ as follows:

(2.7) (dH) = [94(0)9:(0)/9:(0)] I12<; dv;;
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where
90) = Tl (1 — o)t p=2m
= 2L [ — sl = o)1 — p)H], p=2m 4 1
9ip) = 2" II7 el — p2) — (1 — )T
9:0) = i< (0" — 047 p=2m
= I 02 I17<k (07 — 043 p=2m+1.
In that neighborhood of 7, in which all¢; = + 1, one can readily express (2.7) as
(2'8) (dH) = gn=d ?:1 T(loi’ IOJ) Hf’<k dvlk ’
whered = 2m + 1 — p, p, = 0, and T(o;s p;) = 2[(1 — p®)F + (1 — 05
For p = 2,
y=[0 5],
o, 0

(dH) = T(p,, p,) dp, = (1 — p,*)~*dp,. For p = 3 and V as in (2.4),
(2.9 (@dH) = T(0, p))T(py, p,) dz,dz,dz, = 2 (p)(1 — p;’)~* dz,dz,dz, .

3. Asymptotic expansion when p = 3. The results summarized in Section 2 can
be exploited to develop a formal asymptotic series to represent F, in a manner
analogous to that used by Anderson (1965). With about the same degree of
algebraic effort the O(3-!) term in (1.10) can be verified. For arbitrary p com-
putation of higher order terms is still formidable and has not been attempted.
However, separating out the skew symmetric part of H does seem to simplify
things and in fact permits the development of an explicit form for the term of
O(07") when p = 3.

Consider the exponent tr ZHQH? in the integrand of (1.3). Letting H = U +
V as in Section 2, tr ZHQHT — tr Z(V + U)Q(—V + U) = —tr ZVQVv —
2tr ZUQV + tr ZUQU. This can be simplified by the following.

LEMMA. Let B = [b,;] be a p by p matrix such that b} = b3, all i and j. Then
tr ZBQB" = —y1v . A ;b + tr ZQBRB”, where Z — diag[{;], Q = diag[w,] and
A;; is as in (1.5).

PROOF. tr ZBQB" — PimGiw; b = 2P (Lo + Cw)bl + S Cw, b =

(e R

— 2l Aubl + Xk Gop + G )by + Y Lo = —¥r AL b +
Zf,j:lciwibgj- 0

Since both U= U? and V = _ypT satisfy the conditions of the lemma
tr ZHQH" = — Y2 A vi — 2tr ZUQYV — Db Ayul 4 tr ZQ(— V2 4 U,

Now —V* 4+ U* = HH” = I, and tr ZUQV = 2bim Goju v, = — 32 (Co, —
Cjw)u,;v,;,. Thus

3.1 tr ZHQH" = tr ZQ — 2 A, .02, 4 2 2h Dyuvy — e A ul

i<j =i Yig 15 *ig Yig i3 %ig
where
(32) Fij ={w;, — Cjwi .

)
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Defining #% by V* = [##], (2.1) and (2.3) imply

(3:3) u; = i 1" (0)15

(3-4) = 2imo (=D (=2)u/kD15

Either (3.3) or (3.4) may be used to develop tr ZHQH” — tr ZQ as a power series
in the v,;.

When p = 3, using z;, i = 1, 2, 3, defined by (2.4) and A(p) = h,¥(p) given in
(2.6), (3.3) yields u,; = h(p)z;z, and hence

(3.5) tr ZHQH" = tr ZQ — 33_, 0,22 + 2G(0)h(p)z, 2,2,
— W(p)z’z,’z* 318, 0,2,

where

(3.6) Goy=I,—-T,;+T,

and

(3.7) 0, = A, d, = Ay, 0, = A, .
Anderson (1965) gives the identity

(3.8) G*(0) = 252,07 — 2 333, 0,0, .

Following Anderson (1965), we note that tr ZHQH is unchanged by multi-
plication of H by any of the orthogonal matrices of the form diag[+1, +1, +1]
of which the four with an even number of —1’s are in O*(3). Thus we can
replace the domain of integration in (1.3) by a region D containing the identity
matrix, provided we multiply by a factor of 4. Since ¥, = 16z [James (1954)],
using (2.9) and (3.5),

FoO(Z, Q) = Jrt exp(tr ZQ) {55, fexp(— 3, 6,2,
(3.9) X exp[2G(d)h(p)z, 2,2, — H(p)z,’z;'z, 25210;2;77
X 2h(p)(1 — )4} dz, dz, dz, .
The exact boundaries of D need not be specified since the integrand is highly
concentrated around the origin (z;, = 0, i =1, 2, 3) as 0; — co. In fact, this
implies that asymptotically we can replace D by the smaller neighborhood of I,
D*, defined by H > 1 (equivalent to specifying ¢, = +1 and p* < 1 in (2.6)).
This is permissible since D* is disjoint from its images under multiplication by
diag[1, —1, —1], diag[—1, 1, —1] and diag[—1, —1, 1]. We obtain the re-
quired expansion by expanding exp[2G(d)h(0)z, 2,2z, — h¥(p)z 2,2z, Y3 1 0,;2,7°] X
[2h(p)(1 — p*)~*] in a power series in the z’s, replacing the finite region D* by
all of 3-space (E;), and integrating term by term. Terms of odd order in the z’s
make no contribution. Thus
24(G*(9))' (= D)F
i) k!
(3.10) X §§800 OXP(— Doy 82 (P (2) Py¥(2)2h( o)+ 2
X (1 — )4} dz, dz, d,

(2, Q) = Jm7t exp(tr ZQ) T Do
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where P\(2) = z,%z,%z,2, Py(z) = P,(z) 3., 0,z,~%. Define coefficients a,” b
1 1 <243 2 1 1Y%

(3.11) 2 (P)(1 — o) = Do,
By (2.6), 2h(0)(1 — p*)7 = p7%(1 — 0*)7F — 1) = 2 27, [($)uss/(k + 1)!]0* and
(h(p)* = p~(2 — 0* — 21 — o)) = Eio[()sr/(k + 2)!]o%. Successive power
series multiplications yield the recurrence relations for a,
(3.12) a, =23/ + !
' = 3o ((3)in/( + 2)Haim3V .

Also define
(3.13) K(j, k, I, 0)

= G¥(0)(8,8,8,)'nF §§1 5, eXp(— Yoy 0,22 P7(2) P, (2)p" dz, dz, dz, .
Then, formally, as 4, — + oo, i = 1, 2, 3, we have

. —1)* .
oF(Z, Q) = drtexp(tr ZQ) TT3., 0,7 5 200 Xy et zg—)“j—,)—k—, K(j, k, I; 0) .
2)5 ) K-
We can evaluate K(J, k, /; 6) as follows:
K(j, k, 15 9)
= G*(0)n=4(0,0,0,)* §§§ 5, exp(— 21 6, 2){(z7%2,2,) *
X (Xi=1 02,7 ) Xy 2.7} dz, dz, dz,

. Kl
= G¥(9) Zk1+k2+k3=k le+l2+l3:l[k1' AV ARANARA i
VRVEN LT L)

0;%1(0,0,0,)}(w°)~*

X 8§V ey {exp(— 2320 0:27) [1io (27744 Hitli} dz, d, d23:| .

We evaluate the integral using the standard identity (d/z)} §* exp(—dz%)z dz =
(3),07" obtaining
(3.14)  K(j ks 130) = G¥(0)(3,0,0,) 77 Xy ke Dtretystye

X AR L0 [y, 075715 LT}
K(Jj, k, I; 9) is a symmetric function of ' of total degree —2j -+ 3(j + k) —
2k +1=j+ k + 1 in 07" since G*(9) is of degree —2 in d~'. We can thus col-
lect all terms of order r as

(3.15) T,0) = T jsrimr (= 1K(, k. 1 3)/[(3), ] K] -
Since Ty(0) = 1, the desired asymptotic series for (F,® is
(3.16)  GFN(Z, Q) = dr* exp(tr ZQ)(0,3,0) 1 + N7, T,(0)]

where 7, is given by (3.15), (3.14) and (3.11).

4. Numerical simplification of low order terms. It is desirable to simplify (3.16).
T,(0) is symmetric in the §’s and Anderson’s result, Equation (1.10), suggests
the conjecture that 7,(d) is also a polynomial in 6,7%, i = 1, 2, 3. I have been
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unable to prove this conjecture. However, assuming its truth, the following
numerical method of simplification can be used. For a particular value of r, a
sufficiently large sample of triples (d,, d,, d,) is chosen randomly and Y = T,(9)
computed using (3.12), (3.14) and (3.15). For the same values of 6 a complete

set X, , - - -, X, of symmetric polynomials of degree r in 6~ is computed, indexed
by the partitions «; of r into 3 or fewer parts. Such a set is
(4 1) ) X(7'17'27'3)(5) = Zilqtjg#:j;.;:&jl 2=1 61:;”

where the sum is over all distinct terms. The least squares regression of ¥ on
the X’s (omitting, of course, a constant term) can be then computed. Ideally, if
the conjecture is true, the fit should be perfect and the “regression” coefficients
provide the desired simplification. In practice, rounding error prevents an exact
fit and the coefficients are approximate.

This procedure has been carried out for » < 8 using double precision arith-
metic. The fit was almost perfect (1 — R* ~ 107") confirming the conjecture.
In Table 1 are hypothesized rational forms for the desired coefficients. A con-
jecture yielding these coefficients is given in Section 5. For r = 1 and 2 these
are known to be correct (Equation (1.10)). For 3 < r < 7, the calculated
coefficients multiplied by the hypothesized denominators yield the hypothesized
integer numerators to within 2 x 10-¢ absolute error. For r = 8, the absolute
error in the computed numerators was less than 2.7 (6 out of 10 were accurate
to the nearest integer), with maximum relative error of 6.5 x 1077. I believe
that it can be taken as established that the rational coefficients are those in Table
1. Note that for 1 < r < 8 the coefficients of }%_, 9,7 have the form (1),%/r!
as conjectured by Anderson (1965).

5. Approximations and conjectures. It can be verified that when the asymptotic
series formally expressed as

(5.1) Fy = TEa LFGs 3 070] — () Tz L@ 35 0:7)/(20))]

+ @I [3.F4(3, 85 0,7)/(49.%)]
is expanded in terms of the symmetric polynomials X, (Equation (4.1)), it has
coefficients that are identical through order 8 in 9-' to the hypothesized coeffi-
cients for F, given in Table 1. By standard formulae [Erdelyi (1953), page 278],
asymptotically as z — oo
(5:2)  ®EG+ 51 —2) = (=1 Q)7 Fld b+ )
Substitution of (5.2) in (5.1), together with bold extrapolation from the form
of the constants, yields the conjecture
(5:3)  oFU(Z, Q) = (3r) exp(tr ZQ) T {[G) M T LEG + 55 15 —d)]}-

(5.3) yields the correct asymptotic series up to order 8 in 6-'. However, for
Z=9Q =0, F,® =1, while the right-hand side of (5.3) diverges to infinity.
Thus, at best, (5.3) holds in an asymptotic sense.
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Limited numerical experimentation indicates that (5.3) is a vast improvement
over the direct use of (3.16). Values of F,®(Z, Q) were computed using the
direct power series expansion (Equation (1.4)) for Z = diag[0, 1, 2] and Q =
diag[0, », 2w] for v = 2.5, 3.0, 3.5, and 4.0. These were compared with values
computed from (3.16) and (5.3), truncated at various points. Table 2 gives the
relative error ([approx. — exact]/exact) for various truncations of (3.16), and
Table 3 gives relative errors for (5.3). Clearly for these values of Z and Q, (3.16)
can provide only two to three significant figures, while (5.3) yields five or more.
The j = 0 term alone is probably accurate enough for many purposes. This cor-
responds to the approximation

(5.4) JFoP(Z, Q) = (3m) exp(tr ZQ) [T, [exp(—40,)14(10,)]

where we have used ,F\(}; 15 —0) = exp(—40)/y(30) [Erdelyi (1953), Equation
(10), page 265]. Apparently, the confluent hypergeometric functions in (5.3)
are summing substantial parts of the asymptotic series in (3.16).

TABLE 1
Coefficients B« of the elementary symmetric functions in
the expansion T, = 3« BxXx(0) (see Equation (3.16))

rook B roox Bx roor B
I (1) 1/22 5 (312) —3.52.11/21 7  (512)  —35.5.72.19)217
2 (2 3225 (221)  —35.5/212 (421)  —38.52.72.31/218
15 1 6 © 30.5.70.112/218 (321)  —32.55.7/216
(322)  —34.52.7.11/217
(51)  35.5.72215
30 e 42)  38.50.7218 8 (8)  36.5.7.112.13%2%
@l 32 ¢
by (37 32.5u (1) 34.5.7.112.132/22%
(412) 3250722 (62)  36.5-72.11222
4 @ 3572 (321)  —30.5%.23/21 (53)  36.5%.7%2%0
31)  3-52/29 (2 —34.5-43/215 (4 32.54.74)22
22 34/210 (612)  —34.5.72.112.23/220
221)2) _/32,7/29 7 34.5.7-112. 133218 (521) —38.5.72.13/220

(61)  34.5.72.112/218

431)  —3.50.72.47/2
5 () 35.5.72/218 (52)  37.5.7%/218 2422)) —34~52-72-61;221
41)  3.52.72)21 (43) 325177218 (322)  —34.54.7/219

(32)  38.5y2n2

TABLE 2
Relative error of Equation (3.16) truncated after the O(5-7) term,
evaluated at Z = diag|0, 1, 2], Q = diag|0, w, 20]

)
r 2.5 3.0 3.5 4.0
1 —9.7 x 10-2 —8.7 x 102 —7.4 x 102 —6.1 x 102
2 —1.7 x 102 —9.0 x 10-3 —3.2 x 10~ —2.7 x 102
3 4.6 x 102 4.7 x 10-2 —5.0 x 103 —9.4 x 10-3
4 1.2 x 101 1.8 x 10! 1.6 x 102 3.4 x 108
5 1.6 x 102
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TABLE 3
Relative error of Equation (5.3) truncated after the jth term,
evaluated at Z = diag[0, 1, 2], Q = diag|0, o, 20]

(1]

[2]
(3]

(4]
[5]

(6]

w
J 2.5 3.0 3.5 4.0
0 5.4 x 104 9.9 x 104 9.7 x 10 7.9 x 10
1 —5.3 x 104 —1.7 x 104 —3.7 x 10-5 —1.7 x 106
2 1.8 x 105 —1.7 x 10-5 —1.6 x 10-¢ 3.8 x 106
3 1.1 x 105 —2.1 x 10-5 —1.1 x 10-5 —3.4 x 10
4 —2.0 x 10-% —1.6 x 105 —3.4 x 10-¢ —8.0 x 107
5 7.2 x 10-5 6.1 x 10-¢ —2.6 x 10-¢ —8.0 x 107
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