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LIKELIHOOD RATIO TESTS FOR SEQUENTIAL
k-DECISION PROBLEMS

BY GARY LORDEN

California Institute of Technology

Sequential tests of separated hypotheses concerning the parameter ¢ of
a Koopman-Darmois family are studied from the point of view of mini-
mizing expected sample sizes pointwise in ¢ subject to error probability
bounds. Sequential versions of the (generalized) likelihood ratio test are
shown to exceed the minimum expected sample sizes by at most M log log a~!
uniformly in ¢, where a is the smallest error probability bound. The proof
considers the likelihood ratio tests as ensembles of sequential probability
ratio tests and compares them with alternative procedures by constructing
alternative ensembles, applying a simple inequality of Wald and a new
inequality of similar type. A heuristic approximation is given for the error
probabilities of likelihood ratio tests, which provides an upper bound in
the case of a normal mean.

1. Introduction. Sequential tests based on the generalized likelihood ratio ap-
peared in a striking way in the (1962) paper of G. Schwarz. He showed in the
context of Koopman-Darmois families that Bayes procedures for testing two hy-
potheses separated by an indifference zone have continuation regions in the plane
of n, S, (the cumulative sum sufficient statistic) which when scaled down by the
log of 1/c, ¢ being the cost per observation, approach a limiting region as ¢ — 0.
This limiting region, scaled up by the factor log ¢72, is given by the rule: stop
when the maximum likelihood in either of the hypotheses is less than ¢ times
the unrestricted maximum likelihood. Schwarz also showed how the boundaries
of the likelihood ratio test regions can be computed explicitly. These results
strongly suggest the use of sequential likelihood ratio tests in applications and
raise the question of how close to optimal is their performance. The paper of
Wong (1968) demonstrated two forms of asymptotic optimality. The first is the
asymptotic Bayes property: the integrated risk of the likelihood ratio procedure
is asymptotic to the Bayes risk as ¢ — 0. The second is reminiscent of the opti-
mality property of the SPRT. The expected sample size of the likelihood ratio
test at every point in the indifference interval was shown to be asymptotically
minimum as ¢ — 0 compared to tests whose error probabilities at the endpoints
of the indifference interval are not larger and which also satisfy a restriction on
the growth of the expected sample size at the endpoints as ¢ — 0. The present
paper is concerned with a strengthening of this result and the extension to k-
decision problems.

Specialized to the two-decision problem of Schwarz and Wong, the main
theorem together with Remark 3 following it establishes the following result.
Among all tests with error probabilities less than a prescribed a > 0 at the
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SEQUENTIAL k-DECISION PROBLEMS 1413

endpoints of the indifference interval, the likelihood ratio test with c=a/Dloga~!
exceeds the minimum expected sample size by at most M log log a~* uniformly
over compact subintervals of the natural parameter space (and uniformly over
the entire space in the case of normal, binomial, exponential and other families
of distributions satisfying assumption III). Since the minimum expected sample
sizes are of order log a~' for small a, the excess sampling required by the likeli-
hood ratio test is at most a constant times the log of the minimum, uniformly
over compact subintervals. Explicit values of D and M can be computed from
the proof, but are too large to be of practical use. More refined methods of ob-
taining bounds for specific families are under investigation. Another possibility
is the evaluation of the performance of sequential likelihood ratio tests by Monte
Carlo methods and comparison with lower bounds such as those of Hoeffding
(1953, 1960).

Recent work of Schwarz (1969) has interesting parallels with the present inves-
tigation. Considering only the case where the a priori distribution is mutually
absolutely continuous with respect to Lebesgue measure and the loss functions
are bounded above and below wherever positive, Schwarz’s result can be
described as follows. A Bayes solution continues sampling if the generalized
likelihood ratio is greater than M,(X)c(logc=?)” but not if it is less than
My(X)c(log c7*)*~1, where M,, M, are functions of the current sample mean, X.
Schwarz determines p, but not M, and M,, which may play a greater role than
o for moderately small c¢. The closest parallel is with the following version of
the present results (see Theorem 3). Stopping when the likelihood ratio is less
than a/D log a! yields error probabilities less than a, while any procedure with
error probabilities less than «a has expected sample sizes (over a compact sub-
interval) at least as large as the test which stops when the likelihood ratio is
less than M*a.

A difficulty which immediately confronts the statistician who wishes to apply
a sequential likelihood ratio test is how to go about choosing critical values of the
likelihood ratio. Obviously it would be highly desirable to have error probability
approximations like those of Wald for the SPRT. An heuristic approximation is
derived in Section 3 which, based on a result of Lorden (1970), is shown to
provide an upper bound on the error probabilities for testing a normal mean.
In this derivation, as well as in the main theorem, the formulation admits un-
equal upper bounds on error probabilities of different decisions.

2. Main results. Independent and identically distributed random variables
X,, X,, - - - are observed sequentially, having one of the densities

fo(x) = exp(6x — b(0)) , 0<0<0

with respect to a non-degenerate o-finite measure. The function b(+) is neces-
sarily convex and infinitely differentiable on (¢, ), which need not be the entire
natural parameter space of the family. The first derivative, 4'(f), equals E, X



1414 GARY LORDEN

and the second, 6"(0), equals Var, X. LetS, =X, + --- + X,,n=1,2, ...,
and define the log-likelihood function

L,(0) = 6S, — nb(0) .

For any n, S, the log-likelihood is a strictly concave function of # and hence is
either monotonic over (6, ) or else has a unique maximum at 4, the maximum
likelihood estimate of 6. In the latter case b'(f) = S,/n. If the likelihood func-
tion is monotonic on (¢, (7), set = Gor ¢ according to whether it is increasing or
decreasing. In any case denote the supremum of L,(6) for § < 6 < 6 by L,(6).

The statistical problem is specified by s + 1 (s = 2) intervals, H, = (6,, 4,],
H,=1[6,,0,],---, H,, =[0,,0,,), where § = 0, < 0, <-..<0,,, =0, together
with k > 2 decisions and the requirement

€] Py(jth decision) < a;; forall feH,
(l: la "'7S+ 1;]: 17 ""k),

where the a;;’s belong to (0, 1] and satisfy the following assumptions. (See
Remarks 1 and 3 for alternative formulations.)

— 1 1
I. a=mina; <},
II. max; min(a;;, a;,q;) = 1 for i=1,...,s.

Assumption I is merely a convenience which makes log log a=! = log log 3 > 0.
Assumption II is a ““separation of hypotheses” type of condition ensuring that
adjacent H;’s have at least one “correct” decision in common.

Define

& = max{a;; |a;; < 1} and r=logalloga > 1.

The bounds obtained in the proof of the theorem can be chosen to depend on the
values of the a;;’s < 1 only through « and r, or, equivalently, @ and r. Since
log log @~ = log log a=* — log r, the bound in (17) of Theorem 1 can be written
in the apparently stronger form M,(r) log log @~* under the restriction @ < 1.

To obtain bounds in the theorem which are uniform on (¢, ) it is necessary
that, for example, in a one-sided SPRT of 6, versus a ¢ near @ the extra sampling
due to “‘excess over the boundary” be bounded uniformly in 6. A sufficient
condition to meet requirements of this.type is the following assumption.

III. (@ — 0,)°6"(0)/[(6 — 0,)6'(0) — (b(#) — b(0,))]* is bounded above
as @ —0,0.
It is readily verified that III is equivalent to any condition of the same form
with 6, replaced by another point in (6, 6).
For 6,0’ € (9, (7) define the information number
(2) 10, 0') = Ey1og (fo(X)[fo (X)) = (0 — 0")6'(6) — (b(9) — b(0"))

and note also that

) Var, log (fy(X)/f,(X)) = (0 — 06" (0) ,
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so that III concerns the ratio of the variance of log f,((X)/f, (X)) to the square
of its mean when @ is true. Since the ratio is continuous, III is implied by

IIr. 6 and @ belong to the interior of the natural parameter space
of the Koopman-Darmois family.

If 6 is the mean of normally distributed variables with known variance, then I1I
is satisfied with § = — oo, § = +oco. Also, assumption III holds with (¢, 6)
taken as the full natural parameter space in the case of normal scale parameter,
Bernoulli, Poisson, and negative exponential distributions.

Before stating the theorem, it is necessary to define the likelihood ratio tests
and examine their structure. For specified r,;’s € (0, 1] satisfying assumptions
I and II, the likelihood ratio test (N, J) consists of a terminal decision rule d
and a stopping time N = min; max; N,;, where N,; is the smallest n (or oo if
there is no n) such that

(4) Ln(é) g Supll n(e) + IOg Tw 4

and d is the smallest j such that N = max; N;; (see Remark 2 for a slightly dif-
ferent formulation). Note that for fixed j, values of i such that y,; = 1 play no
role since (4) always holds. Also, by the concavity of L,(+), either 6 e H; and
hence sup,, L,(0) = L .(0), or else the supremum of L,(+) on H, is attained at
the point closest to 4, evidently an endpoint.

The structure and performance of likelihood ratio tests is illuminated by in-
vestigating the asymptotic behavior of E,N as y = min y,; — 0 in the case where
the 7,,’s less than one are equal (applicable to the testing problem in the case
where a = a). Fix @ belonging to the interior of H,. It is clear from (4) and
the remarks following that in any case N stops no later than the first time that
for some j with 7, =1

(5) L,(0) = max,, .. [L.(p:) + log i’

where ¢, is the endpoint of H, closer to #. Now, in case the y;;’s appearing in
(5) are all equal to y, Theorem 3.3 of [5] implies that

(6) I0)E, N < log ;™ + O((log ;™) as 70,
where ‘
) 1(0) = max;, .., mini:m<1 10, ¢,)

J— 1 ’
= max;, ._,ming;, .., Sup,.z, 10,60 .

If 6 is the common endpoint of H,, and H,,,, the above remarks apply with (5)
and (7) restricted to j such that 7,,; = 7(,41; = 1. Note that by assumption II
there is for each ¢ a j such that the closest to # of the §,’s does not occur as a
¢; in (5) or (7). Therefore,

I = minﬁ«,(gl(ﬁ) >0.

The minimum is attained by virtue of the continuity of /(., 6,) foreachi=1,...,s



1416 GARY LORDEN

and the obvious fact that /(6) is decreasing on H, and increasing on H,,,. The
determination of / in a specific problem is straightforward since /(9) is alter-
nately increasing and decreasing, with local extrema at values of # such that

10, ¢:,) = 16, ¢3,) »
where i, and i, are minimizing choices of i in (7) for different j’s. Note that the
last relation is equivalent to

b'(0) = (b(%l) - b(%z))/(%l - %2) .

As a consequence of the proof of the theorem, obtained by choosing (N, d)
to be (]\7, J), the inequality (6) is actually an equality, in the case of equal error
probability bounds. Note, however, that the square root term in (6) is of larger
order of magnitude than the difference between E, N and the minimum attainable.

It is well known in the case s = 2 (e.g. [8], [11]) that sequential likelihood
ratio tests are truncated and this result is true in the present context by virtue
of the semi-indifference assumption II. In fact,

(8) N <[I"'logy] 4 1 with probability one,
where [x] denotes the greatest integer < x. To verify (8), note that if 6 e H, for
n=[I"'log 7] 4+ 1 and j* is a minimizing j in (7), then S, = nb'(f) (as shown
above) and hence for all 6 e U H; (i: 7, < 1)
©) Lo(0) — Lo(0) = n[(@ — 0)'(0) — (5(0) — b(0)]
= nl(0, 0) = ni(f) = nl > logy*,

which implies (4) for all i such that y;;. < 1. If 6 =6 for n = [I"log 1+ L
then S, < nb'(6,), whence L,(0,) — L,(0) = nl(0,,0) > log y~* for § > 0, as in
(9), and (4) is satisfied as above. The case 6 = 6 is similar.

The proof of the theorem relies on two simple inequalities. The first is a slight
modification of Wald’s lower bound ([10], page 197) on the expected sample

sizes of competitors of the SPRT. A full proof is given so that parts of the
argument can be applied conveniently in the proof of Lemma 2.

LemMA 1. Suppose N, and N, are (possibly infinite) stopping times for X;, X,, - - -
such that
Py(N; < o) Za < 1 and PN, < o) =B < 1.
If 16, 0") = E, log (f,(X)/fs(X) > O, then
(10) 16, 0")E, min(N,, N;) = (1 — B)loga™ — log?2.

PrOOF. Assume E, min(N,, N,) is finite (otherwise (10) is trivial). Wald’s equa-
tion for the expected value of a stopped sum [1] applies with S, = log (f,(X)) - - -

S XD fo(XD) -+ [5(X2)) = 108 (foulforn) and stopping time min(N;, N,) to yield
(11) I8, 0)E, min(N;, Ny)
= Siwy<ny 108 (fow /forn) APy + §inznymen) 108 (fony/forw,) APy -
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Adopting the cnovention that 0 log a/b = 0 for all a, b6 > 0, the estimate

P,(N, N.
(12 Sunyeny 199U ffon) 4Py 2 PN, < Ny log JATS )
for the first term on the right-hand side of (11) isderived from Jensen’s inequality,
dP,
§iv<ny (= log (fy:w,/fon,) m

dp,

2 —10g Suvcvy Fomlfon) 5525
o\\V1 2

and the relation

dpP, .t dpP,
S(N1<N2) (fﬂ’Nl/fﬁNl) ———PH(NI < N, = 2 S(Nl=n<N2) (fﬂ'n/fﬂn) Mpﬂ(Nl <N,
APy _ Py(N, < Ny

= Z::l S(N1=n<N2)

Py(N, < N;) Py(Ny < N)

assuming Py(N;, < N,) > 0 (otherwise (12) holds by the convention stated).
The second term on the right-hand side of (11) is estimated similarly, whence

(11) implies

Py(N; < N,)

Py (N < Ny)

Py(N, = N, # o)

Pﬂ'(Nl =N, + 00)

> P,(N, < N,) log (P, (N, < Ny))™ — log 2,

10, 60)E, min(N,, N;) = P,(N, < N,) log

(13) + Py(N, = N, # oo) log

since log(P, (N, = N, # o))" = 0 and plogp + (1 — p)log(l — p) = —log2
forall pin [0, 1]and for p = Py(N, < N,) = 1 — Py(N, = N, # o) in particular.
The bounds Py(N, < N)) =1 — P(N; = N, £ 0) =1 — Py(N, < 0) =1 — B
and P, (N; < N,) £ Py (N, < o0) < o combined with (13) yield (10).

The second key inequality is needed in cases where (6, ') is small.

LEMMA 2. If Pj(N < o0) < a < 1 and I(0, 6") > 0, then for all ¢ > 0
E,loga™ — (1(8,0") + e)N)* < 'e‘1 + (2¢)7' Var, log (f3(X1)/fo(X1) >
where e = 2.718 .. ..
Proor. Let m = (loga=")/(I(6, ") + ¢). Clearly
§ <o 1B (fonlforw) APy — §iwem) (10, 0") + )N dP,
(14) < Epsup,=o (108 (fou/forn) — n(1(0 ') + ¢))
= (2e)7" Var, log (fu(X)/fo (X)) »

the last inequality by Kingman’s (1962) result that a random walk with negative
mean has expected supremum at most one-half the ratio of its variance to the
absolute value of its mean. (Howard Taylor has informed the author that
Kingman’s proof goes through only if the third moment is finite, but that the
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general case follows by a truncation argument; in the present context of Koop-
man-Darmois families the moment generating function exists, hence all moments
are finite.)

The estimate

(15) §iv<m 108 (fon/forw) APy = Py(N < m)log PN < m)

P, (N < m)
for the first term on the left-hand side of (14) is derived exactly like (12). Since
plogp = —e*forallpin[0, 1]1and P,(N < m) £ P, (N < o0) < a, (15) implies
$ivem 108 (fon/forw) dPy = Py(N < m)log a™* — e
= Y wem loga=tdP, — e,
which combines with (14) to prove the lemma.

THEOREM 1. There is a D = 1 such that the sequential likelihood ratio test
(N, d) with

(16) 7i; = a;;/Dlog a™! if a; <1, =1 if a;=1

satisfies (1) whenever the a;’s satisfy 1 and I1. Denote by n(6) the infimum of E,N
overall tests (N, d) for which (1) holds. Under assumptions 1—III there is an increas-
ing function M(+) on [1, o) such that

(17) E,N — n(0) < M(r)logloga=  forall 6¢(4,08),
where r = log a/log &.

ProOF. A crude estimate of the error probabilities of (N, d) will suffice.
Wald’s upper bound [10] for SPRT error probabilities yields for any fixed n

(18) Py (foin = 1fon) = Po(fo,m = 7fom forsome m=1) <y
for 0 <r<1.
Therefore, for @ > 6, (i =1, ---, %)
log7=' ,  b(d) — b(0,)
19 P,<Sn2 g7 z)g .
() W\ Sy T g, )T
Now '
. log 7~ | b(8) — b(b;)
20 P,(S f [ g7 >g
(20) 0, O > Iy, 0_0i+” 64—, =7

since a sequence of §’s approximating the infimum can be chosen so as to express
the left-hand side as the limit of probabilities in (19). Rewriting the left-hand
side of (20),

(21) Py (L, () > L,(0;) + logy™* and 6 >0,) <7,
and, letting y | 7,;,
(22) Po(Lo(0) = Ly(0:) + log 75} and 6> 0) <7, .
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Since every S, is stochastically smaller for § < 6,, evidently

(23)  PfL,0) = L,0) +1logyi} and  G>0)<y, for 0<0,
and, similarly, for i > 1

(24)  P(L,0) = L,0,.) +logy;} and <6, )<y, for 6>0,,.
Fix i # 1, s + 1 and consider j such that 7:; < 1. Evidently (4) cannot be satis-

fied unless one of the events in (23) and (24) occurs. Hence, for 6 € H; = [0,_,, 8,],
i+=1,5s4+1,

(25) PyN,; =n) <27, .

Since the choices of y;; in (16) result in y = miny,; < a < 4, log y=* is greater
than 1 and, by (8),

(26) N< (7' + 1)logy.

Therefore d = j only if N;; < (I7* + 1) log 7', whence by (25)

(27) Pyd =j) < 2(I7 + Iy logy  for feH,,

i#1,s4 1. Incase i = 1 or s 4+ 1, (27) holds without the factor of 2, since
only one side need be considered in the above argument. (Wong ([11]) has shown
that in the case where all y,;’s < 1 are equal the error probabilities are of some
smaller order of magnitude than the bounds (27) as y — 0. Also, the heuristics
and the results for the normal case in Section 3 suggest bounds of order
y(log y~"), at least when (¢, (7) is a compact subinterval of the natural parameter
space. However, the order of magnitude of the bound loglog @~ in (17) is
unaffected if the factor log 7~ in (27) is replaced by any positive root of log y=1.)

By (27), the choices of y;;’s in (16) are sufficient for (1) if D is chosen to satisfy

2(I7' 4 1)D~'log(Da~'log a™') < log a™.
Routine calculation shows that, for example, D > e satisfying D/log D >
6(17' + 1) is sufficient.
Fix 0 € (6, 6) and let J = {/|a;; =1 for all i such that 6 ¢ H,} (6 may be an
endpoint of two H;’s). For jeJ, define N;; = 1 if a,; = 1, and if a; < 1let
N;; be the smallest n (or oo if there is ho n) such that

(28) L,(0) = L.(¢;) + logrii',
where ¢, is the endpoint of H, closer to §. A comparison of definitions using
(28) and (4), establishes that N;; > N, for alljeJ,i=1, --., s+ 1, so that

(29) N = min; max; N;; < max;N,;, forall jel.

Given a fixed procedure (N, d) satisfying (1), the choice of which may depend
on @, define

(30) N, = min(N,;, N{d = j or dgJ})

forjeJ,i=1,...,5s+ 1, where the second term of the minimum equals N if
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d =jor d¢J and equals 4 oo otherwise. Now, for some je J the event {d =
j or dgJ} occurs, whence N;; < N for all i by (30). For the same jeJ, (29)
yields N < N,; for some i; hence,

(31) N—-N<N,; — N, forsome i,

N and N,; being finite with probability one for all . Therefore,

(32) , N—NZY,,:(N; —N;)as. for all @,

since the summands are nonnegative. Taking expectations,

(33) EBN - EﬁN é Zjé.l,i (EONij - EﬂNij) *

To estimate the summands in (33), first fix j € J and note that for i such that
a;; = 1 both expectations are zero by definition. Thus, consider only i such
that a;; < 1. Apply Wald’s lower bound (10) to E,N,; with ' = ¢;, N, =
min(N,;, Md = j}), N, = N{d¢ J}. Now

P(pi(Nl < o0) = Pgai(Nij < o0) + P%(d =/)=Sr;ta; = zaij >

iy =
since (N, d) satisfies (1) and the usual error probability bound applies to the
one-sided SPRT N,;.
Also, since decisions outside J are “incorrect” for 4,
Py(N, < o0) < k& = ka'" < kaly ,
where r = log a/log &, so that by Lemma 1

10, gai)E”N“ = (1 — kal) log(2a;;)™" — log 2
(34) = (1 — ka¥)yrlog a;;'m — 2 log 2
= log a;}! — kre™* — log 4,
since x log x™! < e
Applying Wald’s equation to obtain the expected sample size of a one-sided
SPRT,
(0, ¢)E,N;; = log yi} + A,

where A is expected excess over the boundary, which by Theorem 1 of [6] is at
most E,Z*|E,Z, where Z = log(fy(X)/f,(X)). Therefore,

(35)  E,N,, < (I(0, ;) *(log a;} + loglog a=' + log D) + 1 + p(0, ¢,) ,
where

0(0, 0;) = (0 — @) (0)/((0 — ¢:)b'(0) — (b(0) — b(p,)))* -
Combining (34) and (35),
(36) E,N;; — E,N;; < (I(0, ¢;))"(kre™* + log 4D + log log a™)

+ 14+ 000, ¢)) -

Adding estimates of the form (36) for jeJ and i such that a;; < 1 and using
the fact that log log a=' > log log 3 it follows from (33) that

(37) E,N — E,N < M,(r)logloga™*.
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Now, ris fixed and M,(r) is bounded above uniformly on any subset of (4, §)
where max; p(0, ¢;) and max; (/(6, ¢;))~" are bounded, the maximum being taken
over i such that a;; < 1 for some jeJ. Let V;, - -, V,, denote disjoint deleted
neighborhoods of ¢,, -- ., 4., respectively (i.e., 6, ¢ V;), to be chosen later. If
the endpoints of V', and V, are in the natural parameter space, then continuity
considerations and assumption IIT imply that p(f, ¢;) and max,(I(d, ¢;))~* are
bounded above uniformly on the complement of |J, ;. Therefore, there is an
M(r) such that

(38) E,N — E,N < M(r)logloga=  for fe(0,0) — U,V,.

Now consider a fixed ¢ belonging to V,, m =1, ...,s. Let J = {jla,; =
Amen; = 1} Define N;; as before, but change the definition of N, (30), to
(39) Ni; = min(Ny;, Md = j}) .

In case d € J, (32) holds by an argument similar to the one above and, hence,
(40) N-N< 2iiesi (Niyj — Nij) + (I 4 1)log = — NMdegJh*
since all terms are nonnegative and since the final term suffices in case d ¢ J by
virtue of (8).

To estimate E,N,; — E,N,;, note that Lemma 1 applies with N, = o0, § = 0,
and N, = N,; to yield
(41) 10, 9)E, N,y = log (4a;;)™",
by virtue of P, (N, < o) < 2a;; as before. Using the upper bound (35) on E, N;,
(42)  E,Ny; — E,N;; < (I(6, ¢,)X(log 4D + log log a™) + 1 + p(0, ¢,) -

Now, # eV, and, by the definition of J, ¢, does not occur as a ¢, for any
a;; < 1. Hence, max;(I(0, ¢;))~* and max; p(f, ¢,) occurring in (42) are bounded
above uniformly on {J; ¥;, and by (40) there is an M(r) such that for 6 e J ¥,

(43) E,N — E,N < M(r)log log a=* + E,((I"* + lylog y=t — N{d ¢ J})* .
An upper bound on the last term in (43) is obtained by applying Lemma 2
with 8’ =0, N=N,, and a« = ka'V" = ka = P, (Nd¢J} < oo). Noting that
log y=' = log(a~'loga™) + log D < (1 + e77) log a= + log D
since log x < x' for x > 1, the above choice of « leads to
(I 4+ 1)log y* < Aloga™' + B, where
A=r(1 + eI+ 1) and B = (I""+ l)(log D + r(1 + e~") log k) .
Thus
(44)  E ((I"* + 1)log ;' — N{d ¢ J})* < Ej(Aloga~ + B — N{d ¢ J})*
< B+ AE,(loga™ — A'N{d ¢ J})* .
If V,, ..., V, are chosen so that, say,
(45) 10,0,) < A~ for 6eV,, m=1,...,s,
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then applying Lemma 2 with ¢ = 4™ — (4, 6,,) to the last term in (44) and
using (45) yields

(46) E ((I7' + I)logy — N{deJ})* = B+ Ae' + A(0 — 0,)" (),

using (3) for the variance term in Lemma 2. If ¥, and V, are chosen so that
their endpoints are interior to the natural parameter space, then the last term
in (46) is uniformly bounded by virtue of the continuity of 6”. Choose V;, - - -,
V, to satisfy this last requirement and (45). By (43) and (46), and the fact that
log log a~* > log log 3, there is an M’(r) such that

(47) E,N — E,2N < M(r)logloga=*  for felJ,V;.

Since the larger of M'(r) in (47) and M(r) in (38) suffices for all ¢ € (0, ) and
(N, d) may be chosen differently for different §’s, (17) is proved.

The following remarks deal with modifications of the above formulations and
other refinements.

REMARK 1. Note that the proof goes through (with slightly larger bounds) if
the restriction on (N, d) is weakened by multiplying all «;;’s less than one by
k, with the choice of (N, J) unchanged. This observation suffices to show that a
similar theorem holds if the testing problem is reformulated with (1) replaced by

(1) Dies,; Po(jth decision) < a; forall #eH,, i=1,.---,s+1,

where J; is the subset of decisions “incorrect” for H, (corresponding to the set
of j’s with a;; < 1 in the original formulation), because (1)’ is stronger than (1)
with a;; = a, for jeJ;, = 1 for j¢J;, but is weaker than (1) with a;; = a,/k
for jeJ;,, =1 for jgJ;. Of course, in the case s = 2 considered by Schwarz
and Wong the two formulations are identical.

REMARK 2. A natural alternative definition of N is the smallest n such that,
for some j, (4) holds for all i. This “memoryless” version of N requires (pos-
sibly) more sampling, since (4) may not hold for all i simultaneously at time
n = max, N,;; however, unlike the original N, it makes the decision to stop on
the basis of the sufficient statistic (n, S,) only. The theorem holds for this modi-
fication of N, but an additional estimate is needed to bound the expected time
required, after N, stops, for the “memoryless” version of N, (defined by (5)) to
stop. Evidently this is no larger than the time required for L,(¢) to increase by

at least Y relative to every L,(¢;) such that a;; < 1 for some je J, where
Y = 5 [L,0) — Li(9) — (Lyy(0) — Lyy(0:))]" -

Given Y, the (conditional) expected time required for this increase is bounded
by 2Y min, (/(0, ¢;))"* + B (where B can be calculated by applying Theorem 1
of [6] for 6 < 6,, & > 6,, and Theorem 3.3 of [5] for §, =0 = 8,). Clearly,
each term in Y is stochastically smaller than —inf,,,[L,(6) — L.(¢;)], whose
expectation is bounded above by 6"(6)(6 — ¢.)*/21(0, ¢;) by applying Kingman’s
bound, used for (12). Thus the expectation of the extra time is bounded above
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by s times b"(6) max; (60 — ¢,;)*/(min; I(6, ¢;))* + B, which is easily seen to be
bounded uniformly in § by virtue of assumption III. Adding this bound in the
derivations of (38) and (47) is the only change in the proof required to handle
the “memoryless” N. Once again, the discussion does not apply to the case
s = 2 where the two versions of N are identical.

REMARK 3. Another alternative to the error probability formulation (1) is
(" P, (jth decision) < «a;; i=1,--,5; i=1,-..,k),

which does not restrict the probabilities of the decisions when ¢ *0,---,0,.
The theorem holds provided N is changed by defining N,; as the smallest n such
that .
L,(0) = L.(0:) + log 737’ -

The proof goes through with obvious modifications if J = {1, -.., k} for § ¢
(0, 8) — U: V; (V; contains 6,) and J = {j|a,,; = 1} for 6 € V,, (the chief modi-
fications being the use of (11) rather than (10) in the first case and the obvious
redefining of /(#), 7, and D). Such an N may differ markedly from those defined
above, or may be identical, depending on the a;;’s. One can, for example, make
a decision incorrect for 6,, 6, when 8 ¢ (6,, 0,). In the case s = 2, one can ‘“‘re-
ject the hypothesis # < 6,” in favor of “4 > 6,” when 6 < 6,! However, it is
easily seen that the two versions of N are identical if & and a are equal (or
sufficiently close) and if (1)" is equivalent to the restriction of (1) to 6 = 4,, - - -,
0,. An example of this is Wong’s formulation of the s = 2 case, wherein a = a.
In this case, or anytime the new N is identical with the original formulation,
one obtains a “bonus”: the theorem holds with the class of competitors, (N, d),
enlarged to include all those tests satisfying the restrictionof (1) to ¢ =6,,- - -, 0,.

REMARK 4. Several refinements in the derivation of bounds can be made in
case @ = a. The easiest one is based on the observation that the concavity of
L,(+) implies that for fixed ¢ and j only two values of i are needed to determine
max; N;;: those corresponding to the closest ¢, to the right of ¢ and the closest
¢, to the left. Thus in relations like (32) and (33), and throughout the proof,
one need consider only (one or) two values of i for each je J.

Another refinement of the proof of the theorem leads to the result

THEOREM 2. Under assumptions 1 and 11, for every 0 ¢ (6, f) there is an M,
such that
(48) I(0)(E,N — n(0)) < logloga™ + M, - (log log a™)t,
provided & = «a.

Proor. The basic idea, which can be applied also in the general case where
& # a, is to consider an N, defined like N, but with «a,;’s in place of y,;’s. The

derivation of (37), applied with N,’ in place of N,, leads to a bound M, (r equals
one), omitting the factor log log a~'. The same result holds for the “memoryless”
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version of N, if the M,’s are increased by a suitable constant M, by virtue of
the argument in Remark 2. Hence, (48) follows from

(49) I(O)E,(Ny — Ny') < loglog a™ + M, - (log log a™)*,

where N,, N,/ denote memoryless versions. To derive (49), first consider the
expected wait after N,’ stops for (5) to hold for some j attaining the maximum in
the definition of 1(9), (7). Either the wait is zero or else, for some ¢, with
10, 40,) < I10),

(50) Ly, (0) — Ly,(0,) = loga™!

in order that (5) holds for a non-maximizing j’. Choose a maximizing j and

note that (5) holds for this j as soon as L,(f) increases relative to each L,(¢;)
for this j by Y, where
Y = Nilloga™ — (Lyy(0) — Ly (@) = Zim [Lay(9:) = Ly (0)]”
< Xim SUPazi (L) — Lo(0,))*
using (50), with m ranging over those values 1, - -, s such that /(¢, ¢,,) < 1(6).
Since E,(L,(¢;) — L,(0,)) equals 1(0, 6,,) — I(6, ¢;), which is negative, Kingman’s
bound and an argument like the one in Remark 2 show that the expected wait
for the required increase in bounded by M,’ (say) independent of . To prove
(49), then, it evidently suffices to show that after (5) holds for a maximizing j
the expected wait for N, satisfies a bound like (49). Theorem 3.3 of [5] suffices
for this task, since the minimum value of /(¢, ¢;) under consideration is /(9)
and log(D log a~) is the required increase in L,(#) relative to each L,(¢;). In
fact the square-root term in (48) and (49) can be replaced by a constant in case
I(0) is attained by a unique j.
The following result generalizes a claim made in the introduction.

THEOREM 3. Under assumptions 1, 11, III', there is an M*(r) such that any pro-
cedure satisfying (1) has expected sample sizes for all 6 € (9, ) which are larger than
the likelihood ratio test with y,; = M*(r)a;; when a;; < 1, = 1 when a;; = 1.

Proor. Define N, like N, in the proof of Theorem 1, but with «,;’s in place
of 7,;’s. It will first be shown that there is an M(r) such that
(51) E,N,/ — n(0) < M(r)
for all #e(d,8). LetV,, ---, V, be the deleted neighborhoods of 4,, -- -, 0,
chosen in the proof of Theorem 1. The derivation of (38), with N, in place of
N,, leads to (51) for 8 ¢ (@, 0) — U;V;. For 6 e, V;, the argument used to
derive (47) applies with log y~* replaced by log a™?, N replaced by N,’, and other
obvious changes to yield a bound of the form (51) for 6 € U, V;, hence for all
0 (9, 0).

Now let N,”” denote the modification of N,’ obtained by replacing the a;;’s < 1
by M*(r)a;;. The theorem follows from (51) if M*(r) can be chosen so that

(52) E, N, — N,y > M(r)  forall 6¢c(,?b).
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After N, stops, the expected wait for N,/ to stop is at least the time for L,(8)
to increase relative to a certain 6, (say, the smallest #,, involved in an N} deter-
mining N,”) by log M*(r) — W, where W is the excess over the boundary for
L,(9)— L,(0,). Given W, the conditional expectation of the wait is by Wald’s
equation at least (log M*(r) — W)/max,, 1(¢, 6,). Hence

(53) E,N, — N,y = (log M*(r) — E,W)/max,, (6, 6,,) .

Since I(., ¢,) is continuous on the natural parameter space, max,, /(-, 8,,) is
bounded above on (¢, §) under assumption III'. Therefore, the proof is complete
once it is shown that £, is bounded above uniformly in 8, since M*(r) can
then be chosen large enough to make the right-hand side of (53) larger than
M(r). Applying Theorem 1 of [6],

(0 — 0,)"0"(9)

(54) EW Sk B Cgms

where only 6,,’s occurring as ¢,’s in the definition of N,” are included in the
sum. This proviso insures that /(¢, ¢,,) is bounded below uniformly since 6 ¢ V,,
implies that 6, is excluded from the sum. The factor of k in (54) takes into
account the possibility that a ¢, may occur as a ¢, for more than one value of
Jj, with different a;;’s. Since the numerators (¢ — 6,,)’6"(9) in (54) are bounded
above by virtue of assumption III’, E,W is bounded above uniformly and the
proof is complete.

3. Open-ended tests and error probability approximations. The sequential likeli-
hood ratio test for the case s = 2 can be described as follows. Stop and reject
f < 6, the first time

(55) L) = L,(0,)+logr,* and 6 >0,.
and stop and reject # = 0, the first time
(56) L,0) = L,(0,) +logy,™ and  6<0,,

where 7,, 7, are chosen to yield error probabilities less than prescribed «a, 8.
The criterion (55) for rejecting ¢ < 6, exemplifies what H. Robbins has called
an “open-ended test” of the hypothesis # < 6, against the alternative 6 > 6,.
The prototype for open-ended tests is the one-sided SPRT “reject f, when f/f; <
A”. Open-ended sequential likelihood ratio tests are studied in [7]. It should
be noted that, just as an ordinary SPRT is obtained by performing two one-sided
SPRT’s simultaneously, so also the sequential likelihood ratio test for s = 2 is
obtained by performing two open-ended tests; namely, the ones defined by (55)
and (56). In fact, the general k-decision likelihood ratio tests of Section 2 are
equivalent to performing simultaneously & open-ended tests, max; N“. for j =
1, ..+, k, and stopping the first time any one of them stops.

This reduction to open-ended tests is important for two reasons. First, it is
a useful way to set up the application of a sequential likelihood ratio test and
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to compute stopping boundaries. Second, it facilitates the approximation of
error probabilities. In the case of an SPRT, Wald’s approximations of the error
probabilities differ only by factors of (I — ) and (1 — 8) from the error prob-
ability approximations for each of the one-sided SPRT’s involved. This suggests
bounding the error probabilities of sequential likelihood ratio tests in terms of
open-ended tests. From (8), there is an upper bound, M, on the number of
observations. Thus, letting N be the extended stopping variable defined by (55),
the error probability under #, of the test defined by (55) and (56) is at most
P,(N = M). An approach to the problem of approximating probabilities of
this type is the following.

Assume that # belongs to the natural parameter space and (7, 6,) < log ,™".
Let m = 1 be the largest integer such that mI(@, 6,) <logy,~'. For n>m,
define ¢,* as the solution in 6 € (6,, §) of nI(, 6,) = logy,~*. Let N(0) be the
smallest n (or oo if there is no n) such that

(57) L,0)= L,0,) + logr,".
Note that (55) is equivalent to

. [log r,7! b(d) — b(8,)
(58) . 2 infl, oz | BT 4 w20 =00,

and for n > m the infimum is attained at 6,*. From this and the fact that N <
N(@,*) by definition, it follows that N = n > m only if N(6,*) = n. Therefore,

(59) Py (N = n) = P, (N(@,*) = n) for n>m.
If n < m, the infimum in (58) is attained at 4, so that
(60) P, (N < m) = P, (N@) < m).

By the cancellation of densities argument used for Wald’s upper bound on SPRT
error probabilities [10]

(61) P,(N(O) = n) < 1,P(N() = n)  forall n.
By (59)—(61)
(62)  Py(N = M) = 1i(Pg(N(O) = m) + Tilis Py, o(NO,) = 1) .
As shown in [10], when 6,* is true and 7, is small, N(,*) is approximately nor-
mally distributed with mean log y,7'/1(6,*, 6,) = n and variance
(log 1,™") Var,,. (log (fy,(X)/fo,(X))) _ log ™" - (0. — 6,)"(6,%)
(Ey,»10g (f5,(X)[f0, (X)) (16, 6,y

This suggests the approximations

(1(0,*, 6,))}

(63) Pgn*(N(an*) = n) = (07»* — 01)(27'L'b"(0n*) log 7,1—1)5

and
(64) PyN@) = m) = 47, .
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Regarding n as a continuous variable on the interval from (log y,Y)/1(, 6,) to
M, with nl(0,*, 6,) = log y,~', one obtains from (63) and (64) the following
approximation to the upper bound, (62),

i (@,*, 6,))?*
(65) Pol(N =M< in+n S%ogrl—l)/l(ﬂ,é’l) @.% = 01)(27[1)"(0:*) log 7.} dn

Making the change of variable § = 6, * and differentiating the relation defining 4, *,

(0n* — 01)b”(0n*) dﬁ”* = ——log 71_1 = — ([(0”*’ 01))2
dn n* log 7,

and hence

nig @ b7(0) \!
66 Py (NS M) < in log 7,7)* 200.65) “
(66) o (N = M) < 37+ ri(log ™) SaM* <2,r1(0, 01)>

In the case of a normal mean @ (variance one), (66) becomes

(67) P, (reject 6 < 0,) < 7 [ + oi(log 1Y) log ‘910 }

It is shown in [7] that inequality does hold in (67). The numerical examples in
that paper indicate that choosing 7 equal to or not much larger than 6, signifi-
cantly reduces the error probability. In case s > 2, approximations similar to
(66) can be derived by considering, for example, the probability under 6, that
(55) holds for some n in a restricted range [M,, M,] and transforming sums like
the one in (62) into integrals like the one in (66).
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