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FELLER’S PARAMETRIC EQUATIONS FOR LAWS
OF THE ITERATED LOGARITHM

By HowARD H. STRATTON'
Institute for Defense Analyses and SUNY, Albany

In this paper the author considers the two methods that Feller discusses
in [3] and [4] which find a sequence b, so that lim sup Su(bnsx)~1 =1 a.s.
where S, = 7_, X; and X; are independent random variables with EX =0,
EX? < oo and E[exp(hX:)] < oo for all h < 0. The more elementary and
general method, which is not developed by Feller in [3], is used in a most
elementary manner to derive a theorem general enough to include: (I(n) =
(2Ininsy)t).

(A) Kolmogorov’s classical law of the iterated logarithm and the
result of Egorov [2]: X’s bounded and sup (X;)l(n)s.—! = O(1) implies 0 <
lim sup Sn(l(n)sn)—1 < oo.

(B) A slightly different version of a result of Feller [3]: X; bounded
above, sup (X;)l(n)/s» = O(1) and two other conditions then

0 < lim sup Sa(l(n)sa)—* < oo
(the “slightly different version” is to replace one of the ‘‘two other con-
ditions’’> with a different condition).

(C) A generalization of a Thompson [5]: X = a; Y;, where Y;’s are
identically distributed with common negative exponential distribution,
then a; l(n)/s» = O(1) implies lim sup Sy (s» {(n))~1 = 1 (the generalization is
to require only that Y;’s be identically distributed with E[exp (hY:)] < oo
for all # > 0). Also under these conditions the theorem includes:

a1 l(n)/sn = O(1) implies 0 < lim sup Sn(sal(n))~! < oo .

1. Introduction. Let {X;} be a sequence of independent random variables for
which:

(*) EXz =0 s 0',52 = Var(Xi) < o0, an = ., 0.7;2 —, ©,
@, ,(h) = E(exp(s,hX;)) < oo forall /> 0;
and let S, = Y7, X;. In two papers ([3], [4]) Feller discusses two methods (to

be known here as M, and M,) for the finding of a sequence b, —, oo so that
lim sup S,(b,s,)"* = 1 a.s. when {X;} satisfies the additional hypothesis

(") Spi1/S, < (log s,)”
for some P > 0. These two methods consist of:
(i) finding a sequence h,, if possible, to solve the parametric equation
(k) = b, W, (k) — ¥, (h,) = Clnlns,

where
(P.M)) ¥ (h) = 21, log @, (k)
(PMZ) 1Ir'n(h) = ?:1 ((D'L,n(h) - 1) >
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(ii) verifying that
(R.M,) b, W, (h,) = 0(2,(h,))
R.M;) A 3, O ()@ (B)[ Py (hy) — 1] = o(W, (1))
(R.M,) B: forall e > 0,
2= V&, X€MTF(dX) = o(¥,'(h,))
where F, is the distribution function of X,
(R.M,) C: there is a ¢ > 0, such that

ch, W, '(h,) < 2,(h,) < h, VW, (h,),
and

(iii) setting b, = CW'(h,).

(Feller actually works with C = 1. However his proof that either method, if it
can be completed, will produce the desired b, (Section 2, [4]), holds for more
general C.)

(P.M,) looks easier to deal with than (P.M,), and in fact Feller shows (page 7
[3]) that if (P.M,) has a solution, then so.does (P.M,). (A simple example of a
solution existing for (P.M,) but not for (P.M,) is furnished by X; = +a; with
probability £ each, where {a,} is any sequence so that exp(e”) = o(a,). A simple
calculation shows that for (P.M,), 4,(k) < n for all &, and thus the parametric
equation has no solution. However for (P.M,), 4,(k) T oo for each n and thus
because 2,(0) = 0 and 4,(%) is continuous, we see the parametric equation does
have a solution.) This may help explain why Feller in [3] abandons M, and only
develops techniques for solving (P.M,) and estimating the ¥, ’(h,) associated with
M,. On the other hand, note how vastly easier (R.M,) is to work with than
(R.M,), and in fact as Feller notes on page 5 [3], (R.M,) is indeed a more general
condition than (R.M,).

REMARK. Indeed the solution of (P.M,) itself has more general aspect, in that
such a solution is alone enough to guarantee lim sup S,(¥,’(%,)s,)™* < C a.s.
This is seen by an investigation of Feller’s proof that M,, if it can be completed,
produces the desired b,.

Finally M, is more attractive than M, because the proof that it works is much
more elementary and elegant than the proof for M,.

The purpose of this paper is to show a case of how the generality and sim-
plicity of M, can in a very elementary manner lead to a theorem of some scope
in relation to laws of the iterated logarithm.

To arrive at this theorem, we first consider a condition that guarantees solu-
tions of both (P.M,) and (P.M,). To this end we apply the “General Mean Value
Theorem” to h~24,(n) and the “Mean Value Theorem” to W,’(%), and see that
there exists 4, h,, 0 < h,, h, < h, so that

(k) = (h/2)¥,"(h)  and  W.[/(h) = hW"(hy).
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Thus
(B[2)L,(h) = A,(h) = (B[2)U, (k)  and kL, (h) = ¥,'(h) < hU,(h)
where
L,(h) = inf,, po, ¥,"(H) and Un(h) = suPgp nsn ¥ (H) -
Therefore, the condition
() 0 < L = liminf L, ((2Inlns,)t) < U = lim sup U,((2Inlns,)}) < oo
guarantees that for C = L and n sufficiently large (P.M,) and (P.M,) have the
solution
h, = (2C, Inlns,)} where L/U < liminfC, < limsupC, <1
and for this solution:
(i) ¥,(k,) = (2D, !nlns,)t where L?/U < lim inf D, < limsup D, < U? and
(ii) limsup ¥,”(h,) < U < oo.
So by the definition of 4,(k), we see that if (*+) holds then
2,(h,) < B, W(h,) < Uh,(Inins,):

which combined with (ii) means (R.M,) holds! Thus the more general nature
of (R.M,) and the above Remark show without any further considerations that

THEOREM. If {X;} is a sequence of independent random variables so that (*) and
(*+) holds then
lim sup S,(2s,%nlns,)"* < UL .
If (*) also holds then
L*|U% < lim sup S,(2s,2Inlns,)~* < UL .

In the rest of this paper, we will consider X;’s of the form a,Y;, with the
requirement that for some K e (0, o), r = max, ., a;(Inlns,)/s, < K for n suf-
ficiently large. Under this restriction, we will consider some of the many situ-
ations (see (A)—(D) below) where (*+) holds, and thereby indicate some of the
scope of the theorem.

Regarding the conditions (*) and (*) we only remark:

1. that since r, = O(l) implies a,,,/s,,,— 0 and since 1 = (s,%/si,, +
EY}, al,,/si.,), (*) clearly holds if sup; EY;* < oo (this is pertinent to (A), (B),
and (C) below), and

2. that (*) is clearly satisfied if the X;’s are bounded above (this is pertinent
to (A) and (B)).

We will show using further elementary techniques that (**) holds:

(A) if X;’s are bounded random variables where a; = sup |X;|. Thus the
theorem contains a result of Egorov (Theorem 4, [2]). (His proof is different
and not as elementary.) We will further see that r, = o(1) implies U = L = 1
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and so the theorem contains Kolmogorov’s classical “Law of the Iterated
Logarithm.”

(B) if the X;’s are (i) bounded above with a; = sup(X;), (ii) X}1-, a.2E(Y,;*?)/5,> >
d > 0 for all n, and (iii) there is an ¢, and 8 > 0 so that for » sufficiently large,
EXY,*)[E(Y,**) > e~** implies E[X, "Iy -.4]/EX,” > B. Thus the theorem con-
tains a slightly different version of a result of Feller (Section 10 [3]), which says
that if r, = O(1) and (i), (ii) and (iii)

Yiex, EY?—,0 where K, ={k < n: P[|Y,| > ea,] > ¢},

are satisfied, then 0 < lim sup S,(2s,%nlns,)"* < oo.
(C) if Y}’s are identically distributed and satisfy (*).

We further show that r, = o(1) implies U = L = 1 and thus the theorem con-
tains a result of Thompson [5] which only deals with the special case of Y,’s
being negatively exponential.

(D) if Y;’s satisfy (*), max, ¢,(k) < oo for all # (where ¢, (k) = E[exp(hY,)]),

(a) the Y.’s are symmetric, (this gives 0 < L); and
(b) EYP(E(Y?) < ¢ < oo forall ior ¥""(h) < O for all & (this give U < o).

(Note: EY* > (E(Y?) is of course always true.)

2. Proof of A—D. For convenience we let ¢,(h) = log ¢,(h), F,(x) be the
distribution function of Y;, and when no confusion can arise we suppress the i.
Throughout the rest of this paper we will need to keep in mind the following
relations:

(R.T) 5,0 = 2t a’EY?,

(R.2) W) = T, a2, ah)s,)

(R.3) Wk = (" (p(h) — (P (WYJ(h)

R.4) ¢ B (h) = § y* exp(hy)F(dy) for k=0,1,2,....

Without loss of generality we will assume a, 1 co.

A and B. In both cases Y; < 1, thussince ¢(k) = 1 for all & we have by (R.3),
Y'(h) < ¢"'(h) £ EY %" and thus by (R.2) and (R.1)

W, (2Unlns,)t) < [ D1 (@PEY 25, exp(K) = exp(K)
for all n sufficiently large, and so U < exp(K) < oo.
(R.3) and (R.4) show for ¢ = 0
() $(k) = §"(Rer — (SHEY* — e E(Y iy - coe™

(12) $:"(h) = V(Z*) + V(Z7) + 2EZ*EZ"
= E(Y"—I[Yr«])E(Yﬁ)e"‘(“c)
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where Z is a random variable whose distribution is given by em dFy (y)[$:(h)
and ¥ means the variance.

Let v, = EXY,*)/EY}?, and v,* = E¥Y;*)/E(Y,*?),

(A): (R.4) further shows ¢ (k) = e *EY;? and so (I,) with ¢ = 1 becomes
%) V() 2 [(e* — ey, ]EY e

By hypothesis, EY;* = EY;~, and so taking ¢ = 1 in (/;) we have
(%) V."(h) = v; EY 2e=™ .

Now if v, < e, then use (I'), and if v, > e~*¥ use (I,/) to obtain for suf-
ficiently large n:

L,((2nlns,)t) = min((e™* — (eX — e ¥)le 2K)e~2K ¢~1K)
= v(K) .

Thus L = »(K) > 0.

If r; = 0 (1), then one can take K as close to 0 as desired and we see by the
upper and lower limits of U and L that U = L = 1.

(B): (R.4) show that (/,) with ¢ = 0 becomes
(L") W) = (1 — (v, + eby)eBE(Y,)
Letting e = ¢, from (iii) of the hypothesis, we see (,) becomes
(") if v >e,  W(h) = BetretCHOE(Y, ),
We now proceed as in (A), i.e., if v,* < e~ we use (/") and if v,* > e we

use (/") to obtain by hypothesis (ii): L,((2Inlns,)?) = a min((1 — e*¥)e—?%,
pe~**) = v > 0 for n sufficiently large. Thus L > v > 0.

(C) Note (R.1) and (R.3) show since ¢’ is continuous,
0 <inf,., ¢"(h) = L < U < sup,, ¢"(h) < oo .
Further note that if r, = o(1), then K is as close to 0 as desired and so since
¢"(0) =1wehave L=U = 1.
(D) (a) By (R.1) and (R.2) we see that in order to show L > 0, it suffices to

show (m) ¢"'(h) = EY?[$*(h). (This need not be true if Y, is not symmetric, and
in fact is clearly false if EY;? = ¢""(0) < 0.)

We will need the following lemma.

LemMA. Let f'(y) = O for all y = 0, then for all x,y = 0, xf(x) + yf(y) =
Y + Xf(y)-

Proor. Without loss of generality let ¢(0) = 0 and x > z. Holding x fixed
we allow z to run between 0 and x. Let g(z) = xf(x) + zf(z) — zf(x) — xf(z) for
0 <z =< x. Noteg'(z) = f(z) — f(x) + f'(z) (z — x) < Osince f'(x) = Oand x = z,
i.e., g(z) is monotone between 0 and x. But g(0) = xf(x) > 0 and g(x) = 0 and
thus g(z) = 0 for x > z, and the proof of the lemma is complete.
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Since Y, is symmetric, we see

6(k) = 2 {7 cosh (hy)F(dy)
and thus
z2(h) = ¢"(R)p(h) — (§'(h))* = 4 §7 §5 v(h, x, y)F(dx)F(dy)
where
v(h, x, y) = (x* + y*) cosh hx cosh hy — 2xy sinh hy - sinh Ax .

It will suffice to show ¥'(k, x, y) = O (" means derivative with respect to ) since
it implies z’(h) = 0 and this combined with z(0) = EY* establishes (m).

Now

V'(h, 5, y) = k= cosh hy cosh hx[(hz)’f(hz)* + (hy)*f(hy)?
— (byyf(hxy* — (hx)f(Ry)T

where f(z) = z tanh z¢. Noting f’(z) = tanh z¢ 4 (}z)} sech’z = 0 for z = 0 we
have appealing to our lemma the desired fact that v'(%, x, y) = 0.

(b) The first condition implies U < oo by noting that by Schwarz’s inequality

¢"(h) < ¢"(h) = (EY*)}g4(2h) < (EY?)[$(2h)]*

and then appealing to (R.2). The second condition implies U < oo by noting
¥”(0) = EY? < oo, and W' (h) is continuous at 0.

FINAL REMARK. Itshould be noted that under M,, ¥,"(h) = 37_, 5,79, (hs,™")
and so since ¢,”(h) increases in & and ¢,”(0) = EX,?, we have ¢,"(h) = 1 for all
k; i.e., the lower bound of (*+) is always true for M,. However (R.M,) seems
to obscure any advantage this might afford. (The upper bound seem as tractable
in one method as the other.)
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