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ON THE MULTIPLICITY OF A CLASS OF MULTIVARIATE
RANDOM PROCESSES!

By A. EPHREMIDES AND J. B. THOMAS
University of Maryland and Princeton University

Some properties of the multiplicity of a class of multivariate random
processes are examined with particular emphasis on the derivation of a
necessary and sufficient condition in order that the multiplicity of such a
process be equal to one. Discussion is limited to processes with mutually
orthogonal univariate components, but possible applications of the results
to more general situations are suggested.

1. Introduction. Let C be the class of zero mean, second order, left mean
square continuous random processes. Let x() € C; the closed linear manifold
spanned by x(s), s < ¢, is a separable Hilbert space denoted by H(x, f). Cramér
[4], [5] and Hida [7] have shown that x(f) can be uniquely decomposed into the
orthogonal sum of two random processes u(f) and v(f), such that u(r) is deter-
ministic,’ v(¢) is purely non-deterministic (pnd),® u(r) L v(s), Vs, te R and
H(x, t)y = H(u, t) @ H(v, t), Yte R. Furthermore, the pnd portion v(r) has a
canonical decomposition of the form

wW(t) = 1E, (4. 9.2, 7)dzy(7), VteR
where the z,(z) are mutually orthogonal random processes in C with orthogonal
increments, with E[dz,(7)]* = dF (), and such that

Hw, t) = Hz;, ) ® --- D H(zy, 1), VieR.
It is possible to choose the z,(r) so that the measures F; be finite and form a
chain of absolute continuity (i.e., F, > ... > F,). This is a well-known result

[4]; a proof is also suggested by the construction in Section 2 of this paper.
The number M, which may be any nonnegative integer or oo, is uniquely
determined by the autocovariance of x(r) and is called the multiplicity of the
process.

As Mandrekar and Kallianpur [8], [9] have pointed out, the multiplicity of
such a random process coincides with the spectral multiplicity of a self-adjoint
operator A acting on H(x) and whose resolution of the identity is P, [the family
of projections from H(x) onto H(x, f)]. In other words M is the dimension of a
minimal generating subspace* of 4 [1].
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2 That is, H(u, —o0) = H(u,t), VtER.

3 That is, H(v, — o) =

4 A minimal generating subspace B for a random process x() is any subspace of H(x, oo) with
the property that H(x, A) = Gsca{P(d)[B]}, VA = [s, ).
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Let X(#) = {x(¢), - - -, x,(¢)} be a multivariate random process whose univariate
components x,(f) belong to C. Then H(X, ¢) is defined as the closed linear mani-
fold spanned by x,(s), s < t,and i =1, ..., g. In this paper we shall be con-
cerned with the case where the x,(¢) are mutually orthogonal, so that

H(X, 1) = H(x,, ) @ - - - @ H(x,, 1) -

It is possible, but considerably more difficult, to treat the general case in a
similar way. The process X() has a multiplicity representation of the form

X() = U(t) + V.. G(¢, 7) dZ(7)
where U(?) is a g-vector deterministic process whose components are the de-
terministic parts of the x,(¢), G(¢, ) is a ¢ X M matrix, and Z(r) is an M-vector
process whose components are mutually orthogonal processes in C, each with

orthogonal increments. Obviously the number M of the components of Z(z) is
related to the multiplicities M; of the x;(r). In this paper we shall prove that

max, g, {M;} = M = 211, M,
and then we shall give necessary and sufficient conditions for M to be equal to

unity. First we shall need some intermediate results developed in the next two
sections.

2. Random and abstract measures. Let y(f) € C with orthogonal increments.
It is known [2], [11] that ¢, defined on the semi-algebra of left-closed, right-open
intervals 6 = [s, t) by

$(0) = y(1) — y(s)
is an orthogonal random measure which can be uniquely extended to the
g-algebla of Borel sets <&. For A€ <8, ¢(A) is the lim of ¢(4,) as F[(A ~ d,) U
(0, ~ A)] — 0 (where F(0) = E[¢(0)]*). Furthermore, the Hilbert space H(y, 9)
defined by
H(y, 0) = H(y, 1) © H(y, 5)

is an abstract measure on the same semi-algebra of intervals and can be extended
to Z. For Ae <, H(y, A) is the span G{¢(a)} where a is any Borel subset of
A. The measure properties of H(y, A) follow directly from the fact that

d(A) L p(A)=A, N0 A, =@

for any Borel sets 4, and A,; that is from the fact that ¢ is an orthogonal ran-

dom measure.
An obvious property that will be used later is expressed by the following lemma:

LemMA 1. H(y, A) = 0= ¢(A) =0  forany Aec&.

Proor. If ¢(A4) =0, then ¢(a) = 0 for any Borel set a C 4. Therefore
H(y, A) = 0. Conversely if H(y, A) = 0, ¢(a) =0 for any Borel set & C 4;
consequently ¢(4) = 0. []
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The real o-finite measures on <7 form a lattice ordered by the relation of abso-
lute continuity. Let m, and m, be two such measures. By the Lebesgue decom-
position theorem [12], the measure m, can be written as

my = my + my”

where m,’ € m, and m,” | m, (and consequently m,’ | m,”’). Define M = m, +
m,” and m = m,. Then M = m, V m, and m = m; A m,. This decomposition
holds also for random measures [10] and can be applied to measures ¢ induced
on < by processes y(t) € C with orthogonal increments.

Let y,(¢) and y,(¢) be two such mutually orthogonal processes. Let ¢, and ¢, be
the corresponding random measures and F;(0) = E[¢,(d)]’, i = 1, 2, the associ-
ated real measures. The measure F, can be written as

F,=F/ +F/, with F, ¢ F, and F,” | F,.

Therefore the real line is the disjoint union of two sets 4 and B such that
F\(B) = 0 and F,”(A) = 0. We shall define now ¢, and ¢,” as follows;

$:/(9) = ¢u(0 N A)
$:"(9) = ¢u(6 N B)

for any d € <. Obviously ¢, and ¢,” are orthogonal random measures with
E[¢,(0)]F = F,'(0) and E[¢,”(0)]* = F,”(9), and in fact
Gy =)' +
is the Lebesgue decomposition of ¢, with respect to ¢,. The measure ¥ defined by
U=¢ +¢"
is the lub of ¢, and ¢, and the measure ¢ defined by
¢ = ¢y
is the glb of ¢, and ¢,. From these two orthogonal measures, which are also

mutually orthogonal, we can form the processes Y() and y(r) with orthogonal
increments by placing

Y(r) = (" W(der) and  y(z) = §5. ¢(dr).

This construction can be applied to the canonical decomposition of x(#) e C
mentioned in the introduction, so that the set of z,(z) obtained has the property
that F, > --- > F,. This is insured by the following lemma.

LEMMA 2. H(y,, ) ® H(y,, t) = H(Y, ) ® H(y, 1), VteR.
Proor. Let uc H(Y, {) @ H(y, 1); that is
u = a¥(9,) + p¢(d,)

for some 4§, 0,€ &% N (—oo, {] and «, Be R. We know that W(d,) = ¢,(d,) +
¢,"(8,) and ¢(0,) = ¢,/(3,). But ¢;/(3,) = ¢(0, N A) and $,"(6,) = ¢,(0, 0 B);

and
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therefore
U= a(0) + adyd, N B) + BP0 N A);

that is u € H(y,, t) @ H(y,, t). Conversely let u € H(y,, t) @ H(y,, t); that is,

u = agy(0,) + BPs(d,)

for some 0,,d,€ F N (—co, t] and a, B R. We have ¢,(d,) = ¢,(6, N A) =
W0, N A) and ¢,(0,) = ¢(3, N A) + $y(0, N B) = ¢,/(0,n A) + W(3,n B). Therefore

u=aW¥@o,n A) + Y0, N B) + BY(d, N A)
that isue H(Y, t) @ H(y, 1). [
3. Principal results and proofs. The multiplicity M of X(#) = {x,(?), - - -, x,(1)}

is evidently the least number of mutually orthogonal z;(r) with orthogonal incre-
ments required in order that

H(X,t) = H(z,, ) D - -« @ H(zy, 1) VteR.

Since M, is the least number of such z,(z) required for H(x,, ) and since by
hypothesis H(X, 1) = H(x, t) ® - - - ® H(x,, t), it is obvious that M cannot exceed
314, M,, the latter being clearly sufficient for the decomposition of H(X, r).
This is a property which, by Cramér’s assertion [5], holds for any multivariate
process with components in C. Mandrekar [9] proves it for wide-sense Markov
processes. In the following a rigorous proof of this result will be given for the
restricted class of processes examined in this paper. Furthermore several other
statements concerning the properties of the multiplicity representation will be

proved.
Let us first note that X(#) is pnd if and only if all the multivariate components

x;(t) are pnd. This is the case since
H(X, ) = H(x;, ) ® - - - ® H(x,, 1) , VieR
and therefore
H(X, —c0) = H(x, —0) @ - -+ @ H(x,, —o0).
Then the following theorem is true.

THEOREM 1. Let X(t) = {x,(¢), - - -, x,(£)} with x,(t), x;(t) mutually orthogonal
for i j and with x,(t)eC, i=1, --., q. Let M, be the multiplicity of x,(t) and
M be the multiplicity of X(t). Then

max, ., (M} < M < 311, M, .

Proor. Let B be a minimal generating subspace for X(r). Then H(X, A) =
G, u{Px(0)[B]}, YA = [s, f), where P,(d) denotes the projection on H(X, d). But
for the class of processes under consideration H(x,, §) = P,[H(X, d)] where P,
denotes the projection on H(x;). Also P;. Py(0) = P,(d), where P, (0) is the
projection on H(x;, d). Therefore

H(x;, A) = G;4{P; Px(0)[B]} = Gycaf P, (0)[B]} = Gyco{P. (0) - P[B]}.
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This means that B, = P,[B] is a generating subspace for x,(f). The dimension
of B, is certainly less than or equal to M, the dimension of B. Therefore M,,
the dimension of a minimal generating subspace for x,(f), does not exceed M
either; and since this is true Vi, we have

) max; ;<. M}=M.

If B; is a minimal generating subspace for x,(¢), then B, ® ... @ B, is a gener-
ating subspace for X(7), since Py(d) = P, () + --- + P, (). Therefore, as was
stated earlier, M, the dimension of a minimal generating subspace for X(¢), can-
not exceed > 7., M,; that is

(2) M< 3L M,. 0

It is interesting to know under what conditions the equality holds in (1) or in
(2). In the remainder of this paper a necessary and sufficient condition will be
derived in order that M = 1; that is, in order for the equality to hold in (1) for
a particular value of M. The case M = 1, in addition to its theoretical signifi-
cance in the problem of the mathematical representation of random processes
[3], plays an important role in linear estimation and detection as well as in the
modeling of signals by causal and invertible linear systems [6]. Before we pro-
ceed let us mention a corollary of the preceding theorem following directly
from (1).

COROLLARY 1. [In order that X(t) be a pnd process with multiplicity one it is neces-
sary that each x(t), i = 1, - -, q be a pnd process with multiplicity one.

Now suppose that M; =1, i=1,---,¢ and let y,(r) be the corresponding
process with orthogonal increments in the canonical decomposition of each x,(7).
Let F; be its associated real measure [i.e., E[dy,(7)]* = dF,(r)]. Under these
circumstances and provided that the x,(f), and consequently the y;(z), are mutu-
ally orthogonal, the following is true:

THEOREM 2. The multiplicity M of X(f) = {x,(?), - - -, x,(¥)} is equal to unity if
and only if the measures F; are pairwise mutually singular.

Proor. (i) Sufficiency. If F, | F;, i # j, then by successively applying the
construction developed in Section 3 and with the aid of Lemma 2 it is obvious
that M = 1 with y(r) = y,(r) + --- + y,(r). This is the case since y,(r) and
¥:(7) can be replaced by their sum y,(z) 4 y,(r) due to their mutual singularity.
Then the processes yy(z) and y,(r) 4+ y,(r) can be replaced by their sum, etc.
Lemma 2 ensures that

H(y,7) = H(y,, t)® « -+ @ H(y, 7) -

(ii) Necessity. If M = 1, let y(r) be the unique component in the canonical
decomposition of X(¢). Since H(y,t) = H(X, t) = H(y,, ) D - -+ @ H(yy, 1), it
follows that ¢; € ¢, Vi by Lemma 1. Furthermore it follows [8] that each ¢;
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has a Radon-Nikodym derivative with respect to ¢, that is
$:(A) = §.4 0:0)p(dr) , i=1,- 9
for any Borel set 4. Since the ¢; are mutually orthogonal we have
E[pi(A)¢ ()] = §49:(2)9;()F(dr) = 0
for i # j and every A € &Z; therefore
9:()9;(r) =0 a.e. [F]
which implies that ¢, and ¢; have disjoint supports, that is
Fi LF;. L
Alternatively, it is possible to note that F; € F and then define
Gi(A) = V4 loi(2) (e
where p,(t) = dF(r)/dF(z). Then, for the process y;(r) defined by
Fir) = §2e Gi(dr)
E[dy, ()] = dF(z) .

we have

Therefore up to an isomorphism the processes y;(r) can be considered as com-
ponents in the canonical decomposition of X(f). By the mutual orthogonality
of the univariate components it follows that
E[g(A)Pi(4)] =0 Ae B, i+

and, therefore, that the functions p,(r) have disjoint supports (i.e., that F; | F;,
i) 0

4. A generalization. Clearly all of the preceding results are true in a more
general context, namely whenever a random process X{(7) is related to the pro-
cesses x;(f) in such a way that H(X, t) = H(x,, ) ® - - - @ H(x,, #). In order for
this to be the case it is not necessary that X(7) be a multivariate, “vector” pro-
cess. For example, it is possible to have X(7) = x,(f) 4 - - - + x,(f). In particular
consider the case

X(1) = x(1) + x(1)

where X(¢) is interpreted as some observation process in a signal transmission
situation, x,(7) being the signal and x,(f) some form of uncorrelated noise. If
the basic relationship expressed by H(X, f) = H(x,, t) ® H(x,, t) is assumed to
be true, then some important statements can be deduced from the preceding
results. A broad sufficient condition for the applicability of the prewhitening
method in linear, least-mean square estimation is known to be that the obser-
vation process’s multiplicity be one [6]. But then it follows that both the signal
and noise processes must have unit multiplicity and, if they have, a necessary
and sufficient condition for the observation to have M = 1 is that the random
measures spanning signal and noise spaces respectively be mutually singular.
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Certainly the estimation problem described is rather severely restricted, since

the

relation H(X, f) = H(x,, t) ® H(x,, t), Yt e R, implies that zero-error esti-

mation of the signal is possible. It indicates, however, that the multiplicity
properties discussed earlier are valid in a more general context than the one of
multivariate random processes with mutually orthogonal univariate components.
Furthermore, it may be conjectured that some of these properties may hold even
when the orthogonality assumption is relaxed.
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