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ON A CERTAIN CLASS OF LIMIT DISTRIBUTIONS

By R. SHANTARAM AND W. HARKNESS

State University of New York at Stony Brook
and The Pennsylvania State University

Suppose that G is the distribution function (df) of a (non-negative) rv
Z satisfying the integral-functional equation G(x) = b-! {}* [1 — G(u)] du,
for x > 0, and zero for x <0, with / = 1. Such a df G arises as the limit
df of a sequence of iterated transformations of an arbitrary df of arv having
finite moments of all orders. When !/ = 1, G must be the simple exponential
df and is unique. It is shown, for / > 1, that there exists an infinite number
of df’s satisfying this equation. Using the fact that any df G which satisfies
the given equation must have finite moments v, = K! bklk(k—1)/2 for k =
0,1,2, ..., it is shown that the df of the rv Z = UV, where U and V are
independent rv’s having log-normal and simple exponential distributions,
respectively, satisfies the integral functional equation. It is then easy to
exhibit explicitly a family of solutions of the equation.

1. Introduction. The class of distribution functions (df’s) of nonnegative ran-
dom variables (rv’s) defined by the solutions of the integral equation

G(x) = b= §i# [1 — G(u)] du, x>0

and zero elsewhere is discussed. Here, [ > 1 is a fixed constant and b =
§6[1 — G(u)] du < oo. Distribution functions (df’s) G, such that for X > 0,
Gy(x) = b7 (¢ [1 — G(y)] dy, occur in renewal theory and as the limit of certain
residual waiting times ([2] page 354-356). For /=1, or when G, = G, it is readily
seen that the exponential distribution, defined by G(x) = 1 — e~*" for x > 0, is
the unique solution to this equation. For / > 1, these distributions arise as limits
of certain sequences of iterated transformations of arbitrary df’s of nonnegative
rv’s with finite moments of all orders. This is discussed immediately below.
Steutel ([5] page 74) proved that any df G satisfying this integral equation must
be infinitely divisible. It can be shown that the convolution G = F,*F, of an
exponential df F, and a log-normal df F, is a solution of the equation. Finally,
Robson ([4]) has shown that certain random phenomena associated with the
study of transect sampling problems have df’s of the form considered here and
which satisfy the above equation.

Let F(x) be the df of a nonnegative rv (i.e., Pr (X > 0) = 1) with finite moments
t, = E(X") of all orders. Consider the sequence of absolutely continuous df’s
G,(x) defined recursively as follows. Put

G(x) = i §i[1 — F()]dy, for x>0
=0, for x<0.
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For n > 1, let
G.(x) = i S2[1 — G,_,(0)] dy, for x>0
=0, for x e 0
where g, = {7 [l — G,_,(y)] dy. It has been shown ([3]) that under certain
conditions, the class of limit distributions (as n — oo) is obtained as the solutions
of the integral equation
(1) G(x) = b7 {i*[1 — G(u)] du, x>0
and zero elsewhere. Here, [ > 1isa fixed constantand b = {*[1 — G(1)] du < o.
2. Result. In this paper we shall characterize this class of df’s. To begin
with, let us consider the case b = 1; the general case*can be derived from this
case. Then (1) becomes
(2) G(x) = {i*[1 — G(u)] du, x>0
with G(4-o00) = 1. Let g(x) = 1 — G(x) for all x, so that g(x) = 1 for x < 0,
and
3) 1 — g(x) = ¥ g(u) du, for x> 0.
In view of the definition of g and (3) it is evident that g is nonnegative,

continuous for x = 0 and monotonically non-increasing with g(0) = 1 and
9(4-c0) = 0. Further, g is infinitely differentiable and (—1)*g*)(x) = 0 for all

k=0,1,2,... and x > 0. Thus, g is completely monotonic, so that by
Bernstein’s characterization ([6] page 160) of such functions we have
4 9(x) = \¢ et da(r) , for x>0

where a(7) is non-decreasing function of bounded variation. Note that (4) im-
plies that g(x) is analytic for x > 0. Further, since (3) (or equivalently, —g’(x) =
lg(Ix)) is valid for x > 0 we have

&) §o te7 da(t) = 1 {7 e~ da(1) .

Setting ¢ = lu on the left side yields

(6) §o e [da(t) — tda(lt)] = 0 for x> 0.
Thus (4) is a solution of (3) as soon as the non-decreasing, bounded function

a(t) satisfies (6) and §;° da(r) = 1.

We now obtain explicitly the subset of solutions (4) with a’(f) continuous
everywhere (¢ > 0) and satisfying (6) in a trivial manner, viz.,

(7) h(t) = Ith(lt) , t>0

where, for simplicity, we have used A(t) for &’(f). (7) implies that A(2) = k(1),
where 2 = 1/I. Conversely, if ®(t) is arbitrary (but continuous) on [, 1] with
®(2) = ®(1) and A(t) is defined to be ®() on [4, 1] and elsewhere by means of
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(7) then, explicitly,
h(t) = MDA for I << -
= [=0RO(IM) [ for eI
forn=1,2,.... Clearly, A(t) is bounded on [0, oo]; in fact,
h(t) < MI-t-v=n2 o for [ <t < I

< M|-rn-v/2 for 1<,

Here, M = max,_,, ®(¢). This guarantees that a(r) is non-decreasing and
bounded if @(r) = 0 on [4, 1]. The A(#) thus obtained provides a solution

(8) 0(x) = §7 e by dt = Tg. .. V™ e-i=h(r) di

of (3). We now proceed to express this solution explicitly in terms of the arbi-
trary, nonnegative, continuous function ®(¢) with ®(1) = @(1), defined on [4, 1].
Fork=0,1,2, ...

(U emteh(f) dt = 1\, e~t=h(t) dt
= (L1 e"th(1) dit]t
in view of (7). Proceeding similarly (or by induction)
it e~t=h(r) dt = ¢, §} exp (— txl*tY)h(1) di]te+!
for k = 0, where ¢, = [¥*+b/2 Further, for k = 0
§ikr emh(f) dt = c, §} exp (—txA*)h(t)t* dt .
Hence, from (8)
®) 9(x) = oo {§IE" + §fenleh(r) dt
= 2o i {tF exp (— txlFtY) 4tk exp (—tx2¥)}D(r) dt .
Since g(0) = 1, ®(¢) has to satisfy the normalization
(10) oy (2 7EHD(r) dt = 1

but we still cannot express the integral in (8) in the form given there unless
h(t) = o/(¢) is continuous at t = I*, k = 0, =1, +2, ....

REMARK 1. In view of the above remark we may state the results obtained
in the following generalized form.

THEOREM 1. Let ®(t) = Odefined on|[2, 1] be bounded there and let ®(2) = D(1).
Further, let (10) be satisfied. Then (9) is a solution of (3).

The assumed conditions imply that @ is continuous at all the points /¥, k
integer, and this is all we need to justify (8).

REMARK 2. We recall that the above theorem does not neccssarily exhaust
all the solutions, since a general solution is (4) under the condition (6). In the
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case that o/(¢) exists and is continuous (6) implies
(11) da(t) = tda(lt), t> 0 (a.e.)

REMARK 3. We have considered only the case & = 1explicitly. For barbitrary
it is easily seen that (4) is still a solution with «(f) non-decreasing and bounded
and
(12) §o et [da(t) — bt da(lt)] = 0, x>0.
This reduces to (6) by letting first t = bu and then a*(u) = a(bu).

3. An explicit solution. In this section we look at the solution of (1) by prob-
abilistic considerations. We shall obtain a “natural” solution as well as exhibit
an infinity of solutions. We first note ([3] page 411) that the df defined by (1)
has finite moments v, of all orders and that v, = k! b¥/F*-1/2, We shall first
obtain a df with this moment sequence. Noting that the moment generating
function of a standard normal distribution is equal to /**2, we find, by setting
t = k(Inl)* and x = (Inv)/a, where a = (In /)}, that {/**?} is the moment sequence
of the log-normal distribution with density function (pdf)

f) =v7'2xInl)texp{—(Inv)*}/21nl}, v>0.
Further, k! b*¥I-*/ is the kth moment of the gamma density !
fu(u) = bl-te~witrr
Hence, v, is the kth moment of a rv Z where Z = UV with U and V inde-
pendent and with pdf’s respectively f,(#) and f(v). Z has the df
G(z) = Pr(Z < 2) = §7 Vi fx(@)f(v) du dv
=1 — {¢f(v)e=*"’ dv
=1— {re*2rxInl)~tv-'exp{—(Inv)*2Inl}dv
where § = b/l*. Bernstein’s characterization ensures that this df satisfies (1).

However, the solution is by no means unique. The moment sequence {/**?}
generates an indeterminate Stieltjes moment problem. In fact, Stieltjes has shown
([1] page 88) that for k =0, 1,2, ...

§o> uku=mv sin 2z Inu)du = 0.
(The fact that this result is also true for k = —1 can be seen by putting v = In u.
One sees that the resulting integral is that of an odd function of v over the
interval (— oo, c0)). Noting that u='"* = exp {—(In«)?}, and using, instead of
f(v), the pdf f*(v) = [1 4 a sin (2z In v)]f(v), where |a| < 1, we obtain
G*(z) =Pr(Z* < z) =Pr(UV* < 2)

=1 — {5 e */f*(v) dv

=1 = (¢ e~*f*(1/10) dt/1*0
and Bernstein’s theorem again shows that G*(z) is a solution of (1) for every
a, —1 < @ < 1. This explicitly exhibits an infinity of solutions,



(1]
[2]

B3]
(4]

[5]
(6]

A CLASS OF LIMIT DISTRIBUTIONS 2071

REFERENCES

AKHIEZER, N. L. (1965). The Classical Moment Problem. Oliver and Boyd, London.

FELLER, W. (1966). An Introduction to Probability Theory and its Applications, 2. Wiley, New
York.

HArkNEss, W. L. and SHANTARAM, R. (1969). Convergence of a sequence of transformations
of distribution functions. Pacific J. Math. 31 403-415.

RossoN, D. G. (1972). The relationship between the frequency distribution of pre-interview
time and total trip time in a roving creel census of fishermen. Cornell Univ. Biometrics
Unit Mimeo Series.

STEUTEL, F. W. (1971). Preservation of Infinite Divisibility Under Mixing. Mathematisch
Centrum, Amsterdam.

WIDDER, D. V. (1940). The Laplace Transform. Princeton Univ. Press.

DEPARTMENT OF STATISTICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENN. 16802



