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ON MARKOY PROCESSES WITH RIGHT-DETERMINISTIC
GERM FIELDS

By Frank B. KNIGHT
University of Illinois, Urbana

Given a Hunt process X(f), we investigate the consequences’ of the as-
sumption that £(T+) = ¢(X(T)) for every finite stopping time T, where
LG(T+) = Ne>0 F YT, T + ¢). Such processes constitute a simple extension
of the right-continuous Markov chains without instantaneous states.

0. Introduction. Let (Q, .5, &, X(¢), 0,, P*) be a Hunt process on a locally
compact space with countable base (E, &), where & denotes the Borel sets. The
notation is that of [1] page 45. For each 1, let 57 ,° denote the sigma-field
generated by X(s), s < ¢, and let 7 be a finite, &, -stopping time (i.e. {T' < t} e
& for each t > 0). The influence of chance in such a process in general occurs
continuously in time, but the work of K. L. Chung, P. A. Meyer, and others
has shown that there is a considerable difference between the operation of chance
“from the past” at time T and “to the future.” To be more precise, let .5 (T,
T + ¢) be the sigma-field generated by X(T + 5), 0 < x < ¢, and let & H(T) =
Neso-Z T, T + ¢] be the “right germ field” at time T, containing but not nec-
essarily equaling the sigma-field ¢(X(7')) generated by X(7). The operation of
chance to the future at 7T is only made possible by the non-equality of &+(T)
and ¢(X(T)), while that from the past is still more problematical due to the lack
of a really satisfactory concept of left germ field (except at constant times).
However, to study the distinction between these two local effects a natural idea
is to exclude one and then determine what remains of the other. The idea of
the present paper is simply to exhibit the role of chance from the past by as-
suming that it does not exist to the future.

DerINITION 0. The process X(¢) is said to have right-deterministic germ fields
if, after elimination from Q of a fixed negligible set (where we use “negligible”
to describe a set of P* completion-measure 0 for all x € E), one has for all finite
& ), -stopping times T,

(0.1) GHT) = o(X(T)).

REMARK. We warn the reader against confusing (0.1) with “Z*(T) is the
least ¢-field containing o(X(T)) and the negligible sets of & +(T).” The latter is
merely an extension of the Blumenthal 0 — 1 Law, and can be shown to always
hold for X{(¢). Although the difference lies in negligible sets for each 7, it cru-
cially affects the scope of processes considered, with the result that the remaining
ones behave rather like processes without instantaneous states.

We assume henceforth that the Hunt process (Q, &, &, X(¢), 0,, P*) has
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RIGHT-DETERMINISTIC HUNT PROCESSES 1969

right-deterministic germ fields, and proceed to analyze it into certain elementary
analytical components, from which an equivalent process is then reconstructed
in a standard way. The hypothesis can be given reformulations which are some-
times more clear-cut and readily verifiable. We shall state three here (postponing
the proof of equivalence to the next section).

THEOREM 0. The condition of right-deterministic germ fields is equivalent to each
of the following:
(i) After elimination of a negligible set,
Z*(0) = ¢(X(0)) (i.e. (0.1) holds with T = 0) .
(ii) There is a B* x &-measurable function f(t, x) such that for all x,
P{X(t) = f(t, x), 0 <t < e forsome e¢>0}=1.

(iii) After elimination of a negligible set, forall t and w, wy in Q, X(t, w) = X(0, w,)
implies X(t + s, w) = X(s5, w,) for all 0 < 5 < &(t, w, w,) sufficiently small.

1. Analysis and construction of the processes. The following concept sets the
stage for analyzing the evolution of the process.

DEeFINITION 1.1. A family w,(f), xe E, t = 0, of E-valued, Z-measurable
functions is called a canonical path system for X(¢) if, for all x € E,

(@) wi(0) = x

(b) w,, () = w,(s + ) for all 5, t = 0, and

(c) P*{X(s) = w,(s), 0 <5 < ¢ for some ¢ > 0} = 1.

THEOREM 1.1. There exists a canonical path system.

Proor. Assume that the negligible set of Definition 0 has been discarded, and
let {w,’, x¢ E} be any remaining family such that X(0, w,’) = x for all xe E.
Then from £+(0) = ¢(X(0)) it follows that if ¢, > 0 is sufficiently small we have
P{X(s) = X(s, w,’), 0 < 5 < ¢,} > 0. Indeed {X(0) = x} is an atom of Z*(0),
so that it is impossible that for two paths w,, w, and s, — 0 one has X(0, w,) =
X(0, w,) = x and X(s,, w,) # X(s,, w,) for all n, for this would imply that
lim sup, {w: X(s,, w) = X(s,, w,)} would separate w, and w, in &*+(0). Thisshows
in particular that P*{X(s) = X(s, w,’), 0 < 5 < ¢ for some ¢ > 0} = 1, and the
existence of ¢, is clearly a consequence. For such ¢, the quasi-left continuity
of X{(¢) implies that X(s, w,’) is continuous, 0 < s < ¢,, for if s, increases to
s < ¢, then lim,_,, X(s,, w,) = X(s, w,)) = X(s+, w,’). We now need the fol-
lowing lemmas.

LEmMA 1.1. Let f(t) and g(¢) satisfy f(0) = g(0) and, foreacht = 0, f(t 4 5) =
X(s, Whiy)s 9(t + 5) = X(5, wy,) for 0 < s < e(t). Then if fand g are continuous
in [0, c¢) they are identical in [0, c).

Proofr. Let ' = sup{t: f(s) = 9(s), 0 < s < t}. If ¥ < ¢, then f(¢') = g(¥)
by continuity. But since X(s, w/,,) is continuous for small s, this contradicts
the definition of ¢'.
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As a consequence of this lemma we have

LEmMMA 1.2. For each xec E, let t, = sup {t': there exists an f(s) continuous in
[0, ¢") with f(0) = x and, foreacht < ', f(t + 5) = X(s, w},) for 0 < 5 < ¢ small}.
Then there exists a unique function f(s), 0 < s < t,, having these properties. Fur-
thermore, either t, = oo, and then f(t, + s) = f(t, + s) whenever f(t,) = f(t;), or
else t, < oo, and then f(s) is one-to-one on [0, t,) and lim,_,, _ f(s) does not exist.

Proor. Except for the statement about 7, < oo the results are obvious from
Lemma 1.1. Suppose that 7, < oo and f(s) is not one-to-one. If f(t,) = f(t,),
t, < t,, we could extend f cyclically for all ¢ by setting, for ¢ > ¢,

t—t
f0 = f(r = [ F=0 0= w)
t2 - tl .
where [7] is the greatest integer <t. All of the requirements would be met,
contradicting ¢, < oco. Similarly, if lim,_, _ f(s) exists we could let this be f{z,)

and then extend f beyond by using w’, ,, contradicting the definition of ,.
To define our canonical path system we have only to set

w(t) = (1) if 1, = oo
= ft—[le)  if 4, < oo,
where, of course, f depends on x. It is easy to see from Lemma 1.2 that the
required consistency properties hold.
We remark for future reference that only the condition of Theorem 0, (i) has

been used in this construction. The probabilities for X{(z) will be introduced by
means of the system w,(t).

THEOREM 1.2. The random time R = inf {t: X(t) = wy(¢)} is an exact terminal
time for X(t). It is the first jump time in the sense that X(R) # X(R—) over {R < oo}
and X(t) is continuous in [0, R).

Proof. Since X(¢) has left limits, it is clear from Lemma 1.2 that R <
if £, < co. Wehave X(R + 5) = Wy g (s) for all small s, from which it follows
that X(R) # X(R—) over {R < oo}, and R is the first jump time. Clearly this
implies that R is an .& ’-stopping time, and R =t + Ro 0,over {t < R}. Also,
since all points of E are permanent for R, R is an exact terminal time ([1] III,
(4.10)). This completes the proof.

COROLLARY 1.2. There exists a canonical path system which is Bt x &-measurable
in (t, x).
Proor. Let A be adjoined to E as a discrete point, and let
X, ()= X(); O0=<t<R
=A; otherwise .

Then X,(#) defines a Hunt process over E U {A} by [1] IIL, (3.16) and (3.7). We
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set L(x) = sup{¢t: P*{R > t} > 0}. Then the function
h(t, x) = wy(t); 0= 1< L(x)
=A; otherwise
satisfies, for A€ & and 0 < ¢, {x: h(t, x) € A} = {x: P*{X,(1) e A} > 0} e &, and
by right-continuity we have that 4(z, x) is B* x &, measurable. Then it is easy
to see that the function A(t — [¢/L(x)]L(x), x) satisfies the requirements.

We can now give the proof of Theorem 0. For this purpose, we let f(¢, x) be
any B+ x &-measurable canonical path system and, denoting the condition of
Definition 0 by (0), we prove that (0) — (i) — (ii) — (iii) — (ii) — (0). The im-
plication (0) — (i) — (ii) is already clear. Assuming (ii) it follows that for each
x, small ¢, and 0 < ¢’ <e, we have f(¢’ + s, x) = f(5, f(¢/, x)) for 0 < s < ¢&”
sufficiently small. Indeed, this follows from the Markov property at time ¢ = ¢’
whenever P*{X(r) = f(t,x),0 <t < ¢} > 0. On the other hand, the strong
Markov property shows that for each stopping time T, P*{X(T + s) = f(s, X(T)),
0 < s < ¢ for somee > 0} = 1. In particular, let 7, = inf {z: for noe > 0 does
it hold that X(¢ + s5) = f(s, X(?)), 0 < s < ¢}. Since X(z + s) and f(s, X(#)) are
both jointly measurable in (s, ¢, w) and, for ¢ = 0,

w: Ty = ¢} = {w: lim,_,, I, (t, w) = Iy, () forall t}e &),
where S(n) = {X(t + 5) = f(5, X(1)), 0 < s < 1/n},

one notes that 7, is a stopping time. If we show that for all x, P*{T, = oo} = 1,
then (iii) follows by restricting Q first to {w,: X(s, w,) = f(s, X(0, w,)), 0 = 5 < ¢,
for some ¢ > 0}. Now over {T, < oo} we have arbitrarily small ¢’ > 0 such that
for arbitrarily small s, X(T, + ¢’ + s) # X(s, X(T, + ¢’)). But except on a negli-
gible set we have for all small s and ¢’ that X(T, + ¢’ + s5) = f(¢’ + s, X(T,)) and
X(T, + ¢) = f(¢', X(T,)), which contradicts the properties of f since X(s, f(¢',
X(Ty))) = f(s, f(¢'s X(T,))) for small s.

To show (iii) — (ii) we have only to use (iii) in the case r = 0. It is easily
checked that the only place where (i) was used in defining f{(¢, x) for (ii) was in
the choice of w,’ such that P*{X(s) = X(s, w,’), 0 < s < ¢ for some ¢ > 0} = 1
in the proof of Theorem 1.1. It is clear that (iii) with z = 0 will suffice for this
purpose. Finally, to show (ii) — (0) we again discard the set where {7, < oo}
whence, for each stopping time T, X(T + s) = f(s, X(T)) for 0 < s < esufficiently
small. Then for Se £*(T) we have S = lim,_, S n {X(T + s) = f(s, X(T)),
0 < s < 1/n} where each set on the right has the form S, n {X(T + s5) = f{(s, X(T)),
0 < s < 1/n} for some S, € ¢(X(T)) since its indicator involves only times T + s
with s < 1/n. Then S = (limsup S,) € ¢(X(T)) and the proof of Theorem 0 is
complete.

We return to the reconstruction of X(7) in terms of the canonical path system
{w,(f), xe E}. It is convenient to introduce a kind of partial preordering in E
involving the times L(x) = sup {¢t: P*{R > t} > 0}.

DEFINITION 1.2. We will write x < y if for some t < L(x), y = w,(?).
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It is clear that x < y and y < z implies x < z, although one may have x < y
and y < x without x = y (as in the case of uniform motion on a circle). We
let (x) denote the equivalence class of x under the relation x = y if and only if
x < yand y < x, and write (x) < (y) for the induced ordering of equivalence
classes. By Zorn’s lemma each (x) is contained in some maximal totally ordered
subset (A4) of classes, and we proceed to analyze the structure of such a subset.
A class (x) will be called a ‘“holding class” if it contains only the single point x
and x = w,(¢) for all + < L(x) (in this case x is either a holding point or a trap
of X(t), and L(x) = o). Let us observe that (4) can contain at most one class
which either consists of more than one element or is a holding class, and such
a class must be the maximum element of (4). Indeed, no class can exceed a
holding class, and the same is true of a class having.-more than one element for
if x=wy(t), 0<t, < L(y),and y = w,(t,), 0 < 1, < L(x), then x = w,(t; + 1,),
t + t, < L(x) = oo, and {w,(?), 0 < ¢} C (x).

THEOREM 1.3. The totality of elements of the members of (A) may be expressed
as the range of a continuous function w(t) defined on a right-open, left-open-or-closed
interval (which may be unbounded in either direction) such that, for all s in the domain,
w(s + t) = w,,, (1), 0 < t < L(w(s)). Such a w is unique up to translations of the
domain.

ProoF. Case 1. (A) has only a single member (z). Then either (z) is a holding
class or (z) has more than one element. In the former case we set w(¢) = z for
all ¢, while in the latter if z € (z) then let ¢ = inf {s > 0: w,(s) = z} and define
w(t) = w,(t — [t/c]c), —co < t < oo. The properties of w(f) and the uniqueness
assertion are clear.

Case 2. (A) has only single-element classes. Let (x) be any such class in (A4),
and set w(0) = x and w(z) = w,(¢) for 0 < r < L(x). Since P*{X(t) = w,(1), 0 <
t < L(x)} < P{R = L(x)} = 0 in case L(x) < oo by quasi-left-continuity, we
see that every element y with (x) < (y) is represented as w,(¢) for some 0 < ¢ <
L(x). Next, every y with (y) € (4) and (y) < (x) satisfies w,(¢) = x, 0 < t < L(y).
If (A4) has a least element (y,) < (x) with w, (1) = x, then we define w(—?) =
w,(fy — 1) for 0 < 1 < ,. Otherwise, let (7,) increase to sup (£: x = w,(1), (y) €
(4), t < L(y)}, and (p,) € (4) be such that x = w, (¢,). Then define w(—1) =
w, (t, — 1) forall 0 <t <1, n = 1. The consistency of these definitions and
the properties of w(r) are again clear.

Case 3. (A) has both a single-element class and a several-element class. Let
(x) € (4) have only the element x, and let (z) € (4) be the maximum of (4). We
set x = w(0) and for 0 < t < oo, w(f) = w,(f). Next, for (y) e (4), (¥) < (x),
we proceed just as in Case 2. The continuity requirement on w(t) dictates the
choice of w(min {r: w(f) € (2)}), and from this both the properties of w and the
uniqueness are evident. The proof is complete.

To each such set we can assign a continuous function E(f) such that, if w(),
t < b, defines the set, then for each x = w(f) and r < t 4+ 5 < b, PH{R > s} =



RIGHT-DETERMINISTIC HUNT PROCESSES 1973

E(t + s)/E(f). Here E(f) is determined uniquely up to a constant factor and is
continuous on the domain of w(r). To define E(r) we set E(t,) = 1 for any ¢, in
the domain and then

E(f) = P*“{R > t, — t}; <t
= (P*“{R > t, — th™*; < t,.

The continuity of E(f) follows from the quasi-left continuity of X(). We note
the further properties that if w(t) = w(t,) then E(t, + k(t, — 4,)E™'(1) =
(E(t)/E(t))*, 1 <k, while if w(f) = w(t,) for all + = then E(t, + 1) =
E(1,) exp (—¢t,) for 0 < t, where 0 < ¢ is a constant.

We can treat the distribution of X(R) similarly. For each x there exists a
wide-sense conditional distribution g(#', 4) of X(R) given R = 7' relative to P?,
since E is compact and metrizable. This is defined uniquely up to sets of ¢
which are of measure O for the distribution 1 — E(r 4 s)/E(t) where x = w(?).
Now if 5, = sup {s = 0; w(¢t + &) is one-to-one in 0 < s’ < s} then either s, = 0
and w(t + s) = w(¢) for all s = 0, or else w(s + s) is one-to-one in [0, s,) and
then either repeats itself cyclically over a cycle of length at most s,, or remains
constant after time ¢ 4+ s,. Where w is constant we may assume that g(¢', 4) is
likewise constant since then w(#') is a trap or holding point, while in the cyclic
case the Markov property justifies using a cyclic repetition of g(#', A) over the
same cycles. Thus we can introduce a function p(x’, 4) satisfying p(w(t + '), A) =
q(t', A), and for any , = ¢ with x; = w(t,), it is clear that p(w(, + '), A) defines
a wide-sense conditional distribution of X(R) given X(R—) = w(t, + ') relative
to P=1. Recalling the sequence (y,) such that x = w, (#,), and assuming that (x)
consists of a single element as in Theorem 1.3, Case 2, we can extend the defi-
nition of p(x’, 4) to the entire range of w(f) by defining recursively p,(x’, 4) =
Pua(x’s A) for x’ =w, (s), 0 < s < L(y,-,), and extending the definition to
X=w,(s), 0=s<1t, —1,, for each n. In the limit n — co we obtain a
function p(x’, A) providing a wide sense conditional distribution of X(R) given
X(R—) = x’ for any P* with x in the range of w(?).

It is quite trivial if not very elegant, to extend the definitions of E(f) and
p(x’, A) to other functions w(f) in a consistent manner. The ranges of such w
clearly may overlap, but if they contain a point x in common then they also
contain all y with (x) < (y). Proceeding by transfinite induction we choose a
point x at each step for which p(x, 4) is undefined, and choose a w such that
x = w(0). If p,(x’, A) is undefined on the entire range of w then we define both
itand E, (f)asabove. Otherwise wesets = inf {': p,(w(t'), A) is already defined},
and extend the definitions of p,(x’, 4) and E,(t') consistently to the remainder
of the range w('), ¥ < t. Repeating this procedure as often as necessary we
finally exhaust E and complete the definitions.

REMARK. In terms of the fields .#(R—) of [2] this means that P*(X(R) ¢
A| Z(R—)) = p(X(R—), A). Indeed, & (R—) is generated by the pair (X(0), R)
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by Corollary 1.2, and P*{X(0) = x} = 1. Such a stopping time R is called in [5]
a Markov time for the strict past, where it is shown (Theorem 2 of [5]) that
under hypothesis (L) of Meyer every totally inaccessible exact terminal time has
this property.

It is now a simple matter to reconstruct a process equivalent to X(z), X(0) = x,,
from the data ({w(?), E, (1)}, p(x’, A)) obtained above. To review briefly, for each
x € E there are a w and ¢, with x = w(z;) and

PRt} =1— Eu(t + ) for t=0.
E,(1)

We denote this by F,(¢), since for each x it does not depend on the choice of
wand f,. Next, we have P*{X(R) € A| R} = P*{X(R) € A| X(R—)} = p(X(R—), A)
in the usual sense of equality of conditional probabilities. In view of Theorem 0
(iii), the jumps of X(r) are well ordered, and since P% a.e. path has only a count-
able number of jumps one deduces easily the existence of a countable ordinal
@, such that P={X(7) has more than a, jumps} = 0. We shall construct a P=-
equivalent process X(7) on the sample space X %=, (R,*xE,) consisting of a product
of compact half-lines R,* = [0, oo) U {oo} and spaces E, U {A,} where A is some
fixed object, a copy of which is adjoined to each E as a discrete point. We
begin by defining on R,* a measure with distribution F, (¢), where 1 — F, (co)
is the measure of {oo};. Next we set X, (1) = w(t, + 1), 0 =t < t; A L(x,) for
t, € R;* (using the notation a A b = min (a, b)). Now letting p(A, A) = 1 and
w(oco) = A for each of the functions w(), we define P,(B, x A)) = 5 p(w(t, +
1), A)F, (dt,) for each pair (B,, 4,) of Borel sets in R,* and E,. Clearly P, ex-
tends to a unique measure on the product s-field of R,* x E,, and we define

Xo(t A L(x)) = & if 6 < L(x,)
=A if 4= L(x),

where e, is the coordinate in E,. It is not hard to see that X, (t A 1, A L(x,)) is
P, — P* equivalent to X(t A R,), where R, is the first jump time of X(7).
We now proceed by transfinite induction.

Case 1. a is not a limit ordinal. We may assume as induction hypothesis
that a measure P, is given on the product s-field generated at coordinates of
index at most «, and that a process X, (r A i, t;) has been defined over {z; <
L(X,(Xi<; t;)) for all j < a such that 37, ; ¢, < oo} in such a way that the com-
plement of this set has P,-measure 0 and X, (t A i, 1;) is P, — P% equivalent
to X(t A R,), 0 < t < oo, where R, is the ath jump time of X(¢), or co if this
is undefined. We shall extend the measure to the o-field generated at the co-
ordinates of index at most @ 4 1, and extend the definition of X, to obtain an
equivalent of X(¢ A R,,;). Over {}¢,t; = oo} we already have X, () defined
for all ¢, except on the P,-null set where t; > L(X, (X, t;)) holds for some
Jj = a. Denoting the right side by L;, we define X, (t) = A for r = 3, ;1 + L;
and we may assume it defined for ¢ smaller than the first such expression for
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which ¢ satisfies the above inequality. Over {3}&, t; < oo} the point X, (3], t;)
is thus defined by hypothesis, and using this value in place of x, we define a
conditional distribution

Pa+1(Ba+1 X Aa+1ly = Xxo(Z;'Ll tz))
= SBa+1 P(w(ta + ta+1)’ Aa+1)Fy(dta+1) ’

where w and , satisfy y = w(z,). The extension of this to the product o-field
on R},, x E,,, provides a conditional distribution given the o-field on the co-
ordinates up to @, and hence a measure P,,, on the product o-field on (a + 1)-
coordinates (in the case y = A, we simply choose #, = oo, and define F,({oo}) = 1,
so that the measure is concentrated at (c0,,1, A,,1)). Over {X, (X%, (1)) # A}
we extend the definition of X, up tor= 3¢ by setting X, (Xt + 1) =
w(ty + 1), 0 £ t < t,,, A L(w(t,)) where 1, is the coordinate in Rf,,, and finally

X (D 1) + (tasn A LOW(L))) = €anns 0ty < L(W(t))
=A; if lap1 = L(w(t,)) »

where e,,, is the coordinate in E,,,. On the complementary set, X(r) = A for
all 1 > 1, (¢;). It is evident from the strong Markov property of X(¢) at the
ath jump time R, that the process X, (t A { X151 t; + (fars A L(W(2)))D is equiv-
alent to X(t A R,,,), and equals X, (r A 3§2] t;) except on a subset of the cor-
responding null set for the case a + 1.

Case 2. aisalimitordinal. In thiscase the jump time R, of X(¢) is “accessible”
since if @, T « then R, — R, where defined, and @, < a implies R, < R, on
{R, > oo}. By a basic result of Meyer ([4] XIV, T37), X(#) is continuous at R,,
P=-a.s. over {R, < oo}. As induction hypothesis we may assume that consistent
measures P, have been defined for every 8 < a and consistent definitions of
processes X, (t A 3.4, t;) have been made such that each is P; — P®oequivalent
to X(t A Ry), 0 < 1 < co. In this case, we may pass to the limit 8 — « to define
aprocess X, (#)for0 < t < X, 1;, and extend the consistent measures P, unique-
ly to a measure P,_ over the o-field generated at all coordinates 8 < a. Indeed,
the existence of such an extension follows by comparison with the measure P%
on the g-field generated by X(r A R,). Itissimilarly clear that lim,;5,_ ., X, (f) =
X, (X ica t;) exists almost everywhere over {3 ;. #; < oo}, and with this definition
the process X, (t A X<, ;) is equivalent to X(z A R,). Over the subset where
this limit does not exist we set X, (¥;c. #;) = A. We now continue exactly as
in Case 1 from the point X, (¥;<. %), over {3, ; < oo} The strong Markov
property of X(¢) at R, shows that the extension continues to define a process
equivalent to X(r), and the induction terminates at a = a,, in an obvious way
(replacing ., by a,, + 1, we can simply set X, (f) = A for t = 2 ix* 1)) This
completes the construction.
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