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GAUSSIAN PROCESSES AND GAUSSIAN MEASURES!

By BALRAM S. RAJPUT? AND STAMATIS CAMBANIS

University of North Carolina at Chapel Hill

The subject of this paper is the study of the correspondence between
Gaussian processes with paths in linear function spaces and Gaussian meas-
ures on function spaces. For the function spaces C(I), C*[a, b], ACla, b]
and Ly(T, 7, v) it is shown that if a Gaussian process has paths in these
spaces then it induces a Gaussian measure on them, and, conversely, that
every Gaussian measure on these spaces is induced by a Gaussian process
with paths in these spaces.

1. Introduction. Gaussian processes are used in, connection with problems
such as estimation, detection, mutual information, etc. These problems are
often effectively formulated in terms of Gaussian measures on appropriate linear
spaces of functions. Even though both concepts, the Gaussian process and the
Gaussian measure, have been extensively studied, it seems that the connection
between them has not been adequately explained. Two important questions
arising in this context are the following:

(Q) Given a Gaussian process with paths in a linear function space, is there
a Gaussian measure on the function space which is induced by the given process?

(Qy) Given a Gaussian measure on a linear function space, is there a Gaussian
process with paths in the function space which induces the given measure?

In this paper questions Q, and Q, are answered in the affirmative for the fol-
lowing commonly encountered function spaces: C(/), I an arbitrary interval;
C*(I) and AC(I), I a compact interval; and Ly(7T, %7, v), where (T, %7, v) is an
arbitrary ¢-finite measure space. It is clear from the analysis in this paper that it
should be possible to answer these questions for other function spaces for which
satisfactory representations for the continuous linear functionals are known.

It should be mentioned that, throughout the literature, whenever the need
arises to have a Gaussian measure induced on an appropriate function space by
a Gaussian process, then, either (i) it is assumed that the Gaussian process is
mean square continuous and that the index set is a compact interval [10], [12],
[15], and thus unnecessary assumptions are made on the process, or (ii) the
term “Gaussian process” is used to mean a generalized Gaussian process, i.e., a
Gaussian measure, or a measurable map which induces a Gaussian measure [2],
[7] and thus the problem of inducing the Gaussian measure from a Gaussian
process is not considered.
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GAUSSIAN PROCESSES AND MEASURES 1945

Throughout this paper real linear topological spaces, and real stochastic pro-
cesses are considered. The basic notation, definitions and properties that are
consistently used in subsequent sections are given in the following.

Let 22 be a linear topological space, “27* its topological dual, <#(2") the
smallest s-algebra generated by all open subsets of 27, and <Z,(-2”) the smallest
o-algebra with respect to which all elements of 2”* are measurable. A prob-
ability measure y on (27, (")) is said to be Gaussian if every Fe 2% isa
Gaussian random variable (rv) on (2, Z,(:Z°), 1). All spaces considered in
this paper are separable Fréchet spaces for which it is known that &Z(27) =
() ([1] page 100). If in particular 227 is a separable Hilbert space H, with
inner product and norm denoted respectively by (., «» and [|+||, and if p is a
Gaussian measure on (H, <Z(H)), its mean and its. covariance operator are
uniquely defined [13] as the element #, ¢ H and the bounded, linear, nonnegative,
self-adjoint and trace class operator S on H, which satisfy for all v, we H

(1 §u Cu, vy dp(u) = i, V)
) o U — gy VY — ty W) dpa() = SV, W) -
Also, if tr (S) denotes the trace of S, then [13]
(3) § o l[ul|* dpe(u) = ||gl|* + tr(S) < +oo .
A stochastic process (Q, &, P; X(t, ), te T) is said to be Gaussian if for

every finite n and 1, - - -, 1, € T the random variables X(¢,, ®), - - -, X{(¢,, ) are
jointly Gaussian.

Let (Q, &, P; X(t, w), t€ T) be a stochastic process such that X(., 0) e 2~
almost surely (a.s.) [P], where -Z” is a separable Fréchet space of real functions
on T. Without loss of generality it will then be assumed that X(., w) € 2~ for
all w e Q. If the map ®: (Q, &) — (2, &(Z)) defined by

(4) D(w) = X(+, 0)

is measurable, then the probability measure ., induced by X(¢, w) on (27, ZZ(Z7))
is defined for all Be <5(2") by

(5) ty(B) = P{O-Y(B)} = Plwe Q: X(-, w) e B} .

Thus question Q, is whether the property of being Gaussian carries over from
the process {X(7, »), t € T} to the measure p,. Question Q, consists in (i) the
existence of a stochastic process {X(7, »), t € T'} which induces the given measure
pon (2, Z(Z)), and (ii) whether the property of being Gaussian carries over
from p to {X(¢, w), te T}.

Related to the measurability of @ the following should be mentioned. Since
for separable Fréchet spaces &Z,(-Z°) = ZZ(Z°), it is clear that the map @ de-
fined by (4) is measurable if and only if for every F e 2%, F o ® is % -measur-
able (for 22~ a Banach space see [9]). Thus the measurability of ® depends on
the properties of the process {X(¢, ), t € T} and of the space 2. For the spaces
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C(I), C¥I) and AC(I) the measurability of @ is proven without additional
assumptions on the process, and for the space L,(T, %, v) the product measur-
ability of {X(#, w), t € T} is required. The problem of the product measurability
of a stochastic process has been widely studied (see for instance [3] and [4]).

2. Gaussian processes and Gaussian measures on spaces of continuous functions.
In this section it is shown that both questions Q, and Q, have affirmative answers
for the following linear spaces of continuous functions: (i) C(I), the separable
Fréchet space of real continuous functions on the arbitrary interval 7, endowed
with the topology of uniform convergence on compact subsets of / ([6] page
205); (ii) C™(I), the separable Banach space of n-times continuously differentiable
real functions on I = [a, 8], —co < a < b < + o0, with the norm

[[x]] = Z%-0 SUPugess XM ()],
where x® = x and x'*, k = 1, 2, ..., n, denotes the kth derivative of x (5]
page 242); (iii) AC(I), the separable Banach space of absolutely continuous real
functions on 7 = [a, 8], —o0 < a < b < + o0, with the norm ||x|| = |x(a)| +
§2 |x'(r)| dt, where x’ is the derivative of x ([5] page 242).

THEOREM 1. The following are true for 27 = C(I) or C*(I) or AC(I).

(@) If (Q, &, P; X(t, w), t € I) is a Gaussian process with paths in 7, then the
map @ defined by (4) is measurable and the probability 1, = P o ®~' induced on
(&, B(Z)) is Gaussian. ‘

(b) If p is a Gaussian measure on (27, B(Z°)), there exists a Gaussian process
(Q, &, P; X(t, w), t e I) with paths in 22° which induces p. on (27, B(Z)).

ProOF OF (a). Since Z(Z°) = <Z(Z), for the measurability of @ it suffices
to show that F o @ is . & -measurable for all Fe 27*. Also, in order to show
that 4, = P o @' is Gaussian, it suffices to show that for all Fe 2%, F is a
Gaussian rv on (27, &Z(2°), py), or equivalently, because of (5), that F o @ is
a Gaussian rv on (Q, &, P).

It should be noted that if a stochastic process (Q, &, P; X(t, w), t e I) has
continuous paths, X(+, w) e C(I) for all € Q, then it is product measurable,
Le, X(t, 0): (I x Q, Z(I) x &) — (R, ZZ(R)) is measurable (R is the real line).
For I = [a, b] this is seen as follows, and the extension to arbitrary intervals /
is clear. For everyn=1,2, ... define t,,, =a + (b — a)(k/n), k =10,1, ...,
n, and

X (1, 0) = 23055 X[tk,n,thrlm](t)X(tk,n’ w) + X1t ad (D) X(Tnt s @)

for all @ € Q, where y is the indicator function. It is clear that for all n, X, (¢, )
is product measurable, and that lim, X, (7, 0) = X(t, ) foralltel, w e Q. It
follows that X(¢, ) is product measurable.

PrOOF OF (a) FOR 27 = C(I). Let Fe Z*. Then there exists a regular Borel
measure 4 on / with compact support such that F(x) = §, x(¢) dA(?) for all x ¢ 2
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([6] page 203). Let a, b I be such that 2 assigns zero measure to all Borel sub-
sets of / that are disjoint from [a, b]. Then F(x) = {’ x() dA(¢) for all x e 2,
and thus F e C*[a, b]. It follows that there exists a real function g of bounded
variation on [a, 6] such that F(x) = §! x(¢) dg(¢) for all xe 2. Since the x’s
are continuous, we can write

(6) F(x) = lim, ., 335, x(t,_)[9(%h,n) — 9(t4_1,)]

for all xe 2, where t, , = a + (b — a)(k/n), k = 0,1, ..., n. It follows from
(4) and (6) that

(M (F o @) (@) = lim, o 213y X(tyo,nr @)[9(1h,0) — 9(timr)]

for all w e Q. Hence F o ® is .& -measurable and also Gaussian, since the a.s.

limit of a sequence of Gaussian rv’s is a Gaussian rv.

PROOF OF (a) FOR 27 = C™(I). Let F e 27*. Then there exists a regular Borel
measure 2 on [a, b]and a, e R, k = 0,1, ..., n — 1 such that
(8) F(x) = Xrzs ax®(a) + §b x™(1) dA(r)
for all x e 27 ([5] page 344). The proof is completed as for 22 = C(I), by noting

that the processes {X*)(¢, w), t € I'};_, are jointly Gaussian, where X*)(¢, w) is the
kth derivative of the w-path of X(¢, w).

PROOF OF (a) FOR 27 = AC(I). Let F e Z27*. Then there existsa f e L,(/) and
a € R such that

©) F(x) = ax(a) + §o x'(1)f() dt
for all x € 27 ([5] page 343). It follows from (4) and (9) that
(10) (F o O)(w) = aX(a, ) + §¢ X'(t, 0)f(?) dt .

Since {X(t, w), t € [a, b]} is a product measurable Gaussian process with paths in
&, it is easily seen that {X'(t, w), t €[a, b]} is a product measurable Gaussian
process and X, X’ are jointly Gaussian. It follows by (10) that F o ® is .57 -
measurable, and by (10) and Theorem 2.8 of [3] (page 64) that F o @ is Gaussian.

PRrROOF OF (b). For 27= C(I) and 27 = C"(I), take (Q, &, P) = (&, B(Z),
©) and X(t, o) = o(t). The result is obvious for 2”7 = C(I), and also for 2" =
C™(I) if we note that d,(x) = x(r) belongs to 2°* for all t e I.

For 227 = AC(I), take (Q, .7, P) = (2, (&), ) and
(11) X(t, w) = w(a) + §,o'(s) ds
foralltel =[a, b] and w € Q = 2°. Then clearly X(., w)e 2 for all w € Q
and by (a) it induces a Gaussian measure p, = P o @~ on (-2, Z&/(Z")). Since

FB(Z") = F(Z), in order to show that p, = p, it suffices to prove p,(B) =
w(B) for all cylinder sets B, i.e., for all sets of the form

(12) B=(xe: (F(x), -, F,(v)) € B,
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where F,, ..., F, € Z7* and B, is an n-dimensional Borel set. By (5), y.(B) =
#{®~*(B)} where

(13) QN (B) = {xeZ7: (Fro @)(x), -+, (F, o D)(x)) € B,} .

For k =1, ---, n, let F,(x) = a,x(a) + §& x'(1)f,(r) dt for all x e 2°. Then it
follows by (11) that (£, o @)(x) = a, x(a) + §! X'(1)f,(t) dt = F,(x). Hence, by
(12) and (13), @~*(B) = Band thus y,(B) = p{®~(B)} = p(B), which completes
the proof.

REMARK 1. Let T be any index set and 227 a linear topological space of real
functions on 7. Then a careful inspection of the proof of Theorem 1 for C(I)
and C*(I) reveals that questions Q, and Q, have affirmative answers and for Q,
one can take (Q, &, P) = (2, F(Z), p) and X(t, 0) = o(t), if the following
sufficient condition is met:

For every ¢ ¢ T the evaluation map 9, € 2”* and the linear span of {,, r ¢ T}
is weak* sequentially dense in 27*.

3. Gaussian processes and Gaussian measures on L,. In this section we consider
questions Q, and Q, for Hilbert spaces of ‘real valued square integrable functions.
Let T be an arbitrary index set, % a g-algebra of subsets of T and v a non-
negative, o-finite measure on .27, It will be assumed throughout this section
that 227 = Ly(T, %7, v) is separable. A sufficient condition for this is that .
has a countable set of generators ([8] pages 168, 177). This formulation includes
the following cases: (i) T is a measurable subset of the real line, % the Borel
subsets of T and v the Lebesgue measure; (ii) T is the set of integers, . the
set of all subsets of T and v the counting measure.

THEOREM 2. (a) Let (Q, &, P; X(t,0),t € T) be a &7 x % -measurable Gaussian
process with mean m(t), autocorrelation r(t, s), covariance R(t, s), and with paths in
Z = LT, 57, v). Then the map @ defined by (4) is measurable and the probability
tty = P o ®'induced on (2, 6 (Z°)) is Gaussian with mean m and covariance the
integral type operator with kernel R(t, s).

(b) Let p be a Gaussian measure on (27 = LT, 7, v), B (Z)). Then there
exists a &7 x .F -measurable Gaussian process (Q, &, P; X(t, w), t € T) with paths
in 22 which induces y on (25, B(Z)).

CoROLLARY 1. Let (Q, &, P; X(t, ), t € T) be a 57 x F -measurable Gaussian
process. Then

(14) §r Xo(t, 0) dv(t) < +o00 a.s. [P]
if and only if
(15) §r(t, 1) dv(t) < +o0 .

The “only if” part is shown in the proof of Theorem 2 (a) and the “if” part
is an application of Fubini’s theorem.
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Thus, for a product measurable Gaussian process condition (15) determines
whether or not X{(¢, w) induces a Gaussian measure on L,(T, %7, v). For instance,
if T = R, the real line, %7 = ZZ(R), and if {X(t, w), t € R} is stationary, then
X(t, w) does not induce a measure on L,(R, <% (R), Leb), but it induces a Gaussian
measure on Ly(R, ZZ(R), v) for every finite measure v. Also, if T = [0, + o0) =
R*, &7 = ZZ(RY), and if {X(t, w), t € R*} is the Wiener process, then r(z, ) = ¢
and even though X(#, ) does not induce a measure on L,(R*, <Z(R*), Leb), it
induces a Gaussian measure for example on L,(R*, ZZ(R*), v), where v is defined
by [dv/d Leb](r) = e~*. 1t is easily seen that if T is a Borel subset of the real line
and .97 the g-algebra of Borel subsets of T, then there always exist measures v
on (T, %) such that (15) is satisfied. One such measure is obtained as follows.
Define v, on (T, %7) by [dy,/d Leb](t) = f(t)g(r), where g(t) > 0, g € L(T, .57, Leb),
f(t)y = r(t,t) for 0 < r(z,t) < 1, and f(r) = r'(¢, t) for 1 < r(t,1). Clearly y,
satisfies (10) and is also a finite measure.

It follows from Corollary 1 that if {X(t, w),7e T} is % x % -measurable
and Gaussian and if f: (T, %) — (R, Z#(R)) is measurable, then f()X*(, 0) €
L(T, o7, v) a.s. [P] if and only if f(¢)r(t, t) € L(T, %7, v) (apply Corollary 1 to
the process Y (¢, w) = |f(¢)|*X(¢, w)). This result is known in the particular cases
where T is a compact interval of the real line, v the Lebesgue measure, and X(7, 0)
the Wiener process [16] or a mean square continuous Gaussian process [17]. In
fact in [16] and [17] a zero-one law is proven for this property; a similar zero-
one law in our more general setting is proven in [14].

PrOOF OoF THEOREM 2 (2). It should be noted at the outset that since X(¢, w)
is & x Z -measurable, it follows that m(r) is %7-measurable and r(z, 5), R(z, 5)
are % x Y-measurable.

Because of the separability of .27, an application of Fubini’s theorem shows
that the map ® defined by (4) is measurable and thus it induces the probability
Uy = Po®'on (2, HB(Z)).

In order to prove that x, is Gaussian it suffices to show that for every fixed
feZ, Fu) = (u, f), ueZ, is a Gaussian rv on (2, &8(Z°), pty), Or equiva-
lently, because of (5), that &(w) = {, X(¢, w)f(t) dv(t) is a Gaussian rv on
(Q, &, P).

It also suffices to prove that £(w) is Gaussian for y(T) < +oco. This is seen
as follows. By the o-finiteness of v there exists an increasing sequence {7™}z_,
of sets in .9 such that y(T*") < + o0, all n, and g, T™ = T. Then

§M(0) = §rom X(t, 0)f(1) du(t) =, §(@)
on Q and if £&™ is Gaussian for all n, £ is also Gaussian.

Now fork = 1,2, ...,define T, = {teT:rt, t) < k}, X,(t,0) = XTk(t)X(t, )
and §,(w) = §, X, (¢, w)f(t) dv(t). This idea of truncating the process X was sug-
gested to us by Dr. L. A. Shepp. Clearly T, 1 T as k — oo and this implies that
§,(®) >4 §(w) on Q. Thus it suffices to prove that &, is Gaussian for all k.

We now fix k, assume »(T') < + oo, and will show that &, is Gaussian, Clearly
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{X.(t, ), t € T} is a Gaussian process and its autocorrelation r,(z, s) satisfies
(16) §rru(t, 1) du(t) < + oo
Then r, € Ly(T x T, & x %7, v x v) and by Fubini’s theorem

E[§] = (7 2 ni(t, )f()f(5) du(r) du(s) < + o0 .

Let H, be the closure in L,(Q, &, P) of the linear manifold geénerated by the
random variables X, (¢, ), t € T. Since &, € Ly(Q, %, P) wecan write £, = { + 7
where { € H,and » | H,. Then {isof the form{ = lim, {, in L(Q, %, P), where
Cu(w) = X% a, ; X(t,: 0), t,;€T, a,,cR. Forall teT we have E[X,()§,] =
E[X,(nC] = 9(¢) and also, by the definition of &,, g(r) = §, r.(t, 5)f(s) dv(s) and
g(t) = lim, E[X,(),] = lim, g,(r), where g,(1) = 8 a, ;ry(t. 1,.)- Now |g(1)]* <
E[C*]r.(t, 1), t € T, and (16) imply that g € 2, and similarly g, € &2 for all n.
Also |g,(1) — 9(1))* < E[(, — {)*r(t, 1), t € T, along with lim, E[({, — £)] = 0,
(16) and the bounded convergence theorem imply that lim, g, = g in 27 It
follows from these results that

E[{’] = lim, lim,, E[(,C,.]
= lim, lim,, 337 ¥ a, .a, ; 1ty tw. ;)
= lim, 3 a, ;lim,, ¢,(1, ;) = lim, 3% a, ;0(t, )
= lim, §, 9,(5)f(s) dv(s) = §r 9(s)/(s) d(s)
= §z §2 (8, 9)f(0) f(s) du(t) du(s) = E[€,7] -
Hence &, = { € H, and thus &, is Gaussian, since all random variables in H, are

Gaussian.
Hence p, is Gaussian and by (3), (5) and Fubini’s theorem we have

(A7) +oo > (||l dux(u) = §a (§, X7(t, @) du(1)) dP(0) = §, r(t, 1) du(t) .
Since r(t, t) = m*(t) 4+ R(t, t), it follows that m ¢ 22” and that the kernel R(z, s)
defines a trace class operator on 22°. By using (1), (2) and (5) it is easily seen

that the mean element of 2, is m and that its covariance operator is the integral
type operator with kernel R(z, s).

REMARK 2. With respect to the proof of Theorem 2 (a) it should be noted
that an alternative way of showing that &, € H, is by using the quadratic mean
integral introduced in [11]. Also in the particular case where 7 is an interval on
the real line, . is the Borel subset of T and v is the Lebesgue measure, that &
is Gaussian follows from Theorem 2.8 of [3] (page 64). However, this theorem
of Doob is clearly not applicable in our general setting. A careful inspection
of the proof of Theorem 2(a) reveals that an appropriate generalization of
Theorem 2.8 of [3] to the present more general set up is provided therein.

ProoF oF THEOREM 2 (b). Let %, and S be the mean and the covariance opera-
tor of x, and let {¢,}_, be a complete set of eigenfunctions of § with correspond-
ing eigenvalues {,}7_; (some of which may be equal to zero). There exists a set
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T, e &7 with y(T,) = 0 such that on T, ¢,(¢) is defined and finite valued for all
n. Define for all n

Ot u) =, udp,(t)  on Ty¢ x 27
=0 on T, x 2.

Then clearly {¢,(t, u), t € T};_, are jointly Gaussian processes on (27, SB(Z), ).
Also it is easily seen from (2) that for all n, ¢, € LT x 27, % x ZB(Z), v x
1) = Ly(T x &) and that for all n and m

§r o Gult, 0)Po(t, 1) dp() du(t) = 0, (20 + Sthoy $2)7) -
Hence {¢,};_, are orthogonal in L,(T x £2°) and by (3) and tr(S) = Y=, 2, we
have .
272§ o @205 ) dpu(u) du(t) = [Juo[* + tr(S) < oo
It follows that the series Y5, ¢, (¢, #) converges in LT x 27) to say Y(¢, u) €
L(T x -2°). Hence for a subsequence lim, 7k, ¢, (1, u) = Y(t, u) a.e. [v x p].
Let E={(t,u)eT x 27: 3Nk ¢,(t, u) does not converge to Y(t,u)}. Then
(v x #)(E) = Oand it follows by Fubini’s theorem that there exist sets (i) 7, € .
with »(T,) = 0 such that for all re Ty and w € E;° € <Z(Z°), where y(E,) = 0,
we have lim, > ¥, ¢, (¢, u) = Y(t, u), and (ii) Ny e (Z") with p(N,) = 0 such
that for allu e Nyand t ¢ E,° € %7, where v(E,) = 0, we have lim, 317k, ¢, (¢, u) =
Y(t,u). If we let T, =T, U T,, then T,e % and »(T,) = 0. Define X(¢, u) on
T x 2 by

(18) X(t, u) = Y(t, u) on {Ty x Z27) U (T x Ny)} n E°
=0 elsewhere .

Then clearly {X(#, u), te T}isa % x & -measurable process on the probability
space (Q, &, P) = (2, (L), ). Since by definition for re Ty, X(t, u) =
lim, Y%, ¢, (¢, u) a.e. [¢], and since {¢,(1, u), te T};_, are jointly Gaussian, it

follows that {X(¢, u), te T} is Gaussian. Since by (18), X(z, u) = Y(t, u) a.e.
[v x ¢] and Y e L(T x ), it follows that Xe L(T x -2”) and thus
F00 > §p §oo X3(t, u) dp(u) du(t) = §,1(t, 1) du(r)
i.e., (15) is satisfied. Hence {X(¢, u), t € T} satisfies the assumptions of Theorem
2(a) and thus it induces a Gaussian measure p, on (27, (Z")). It will be
shown that p, = p. For this it suffices to prove that p,(B) = p(B) for all cylin-
der sets B. Let
B={ueZ": Kuf), -+, <u,f.)) € B,}
where f,,- - -, f, € £ and B, is an n-dimensional Borel set. Then by (5), px(B) =
#{®(B)}, where
O-YB) ={ueZ: (Vo X(t, u)fy(t) du(?), - -+, §, X(t, u)f,(1) du(t)) € B,} .

Note that for ue Ny, p(N,) = 0, X(¢, u) = lim, 3}¥% ¢, (¢, u) a.e. [v] and thus
X(t, u) = lim, 37k, (S, uy¢,(f) a.e. [v]. Also, since {4}z, is a complete



1952 BALRAM S. RAJPUT AND STAMATIS CAMBANIS

orthonormal set in 227, we have that for all ue 2%, 3\, (¢,, udp, = u in 2.
It follows that for ue NS, u(N,) = 0, we have X(¢, u) = u(f) a.e. [v]. Hence
§r X(2, u)fi (1) du(t) = §, u(t)fi(2) dv(t)a.e. [n]fork = 1,..., nand thus y,(B) =
{®@~*(B)} = p(B), which completes the proof.
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