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ASYMPTOTIC FRINGE DISTRIBUTIONS FOR GENERAL
FAMILIES OF RANDOM TREES!

By Davib ALbous

University of California, Berkeley

Consider some model of random finite trees of increasing size. It often
happens that the subtree at a uniform random vertex converges in distribu-
tion to a limit random tree. We introduce some structure theory for such
asymptotic fringe distributions and illustrate with many examples.

1. Introduction. Random finite trees occur in a wide variety of contexts.
One large area of use is in theoretical computer science, where trees are used,
for example, as data structures for sorting and searching. To study the typical
performance of a tree-based algorithm, one starts with a probability model for
the underlying data, and then the mathematical problem becomes to study the
distribution of a certain functional (measuring some aspect of algorithm
performance) on a certain random tree (constructed by the algorithm from the
data). The standard way that such problems are treated by computer scientists
is to set up exact expressions or recurrences involving a(n) = expected perfor-
mance on data-set of size n and (if no simple exact formula emerges) to obtain
asymptotics by analytic methods. Examples of this style of work can be found
in Knuth [24, 25], Flajolet [13], Vitter and Flajolet [36].

To modern probabilists, a somewhat different viewpoint is natural. The fact
that random walk processes can be rescaled to converge to the Brownian
motion process is the prototype example of weak convergence; the point of
weak convergence is that it implies convergence of many different functionals
of the processes. Similarly, instead of studying convergence of particular
functionals of a sequence of random trees, it is natural to seek to formalize the
notion that the random trees themselves converge in distribution to a limiting
random tree. This will imply convergence of various functionals, and to obtain
an explicit expression for the limit of a particular functional, one seeks to
analyze directly the distribution of this functional of the limit tree. We call this
the process viewpoint. Compared with the traditional analytic methods, its
advantages are: (i) it separates the issue of proving convergence to some limit
from the issue of evaluating the limit explicitly; (ii) it eliminates some techni-
calities such as Tauberian theorems needed in analytic treatments; (iii) it is
the natural setting for discussion of robustness of limits under variations of
model.
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On the other hand, its disadvantages are: (i) it only handles asymptotics, not
exact results, and is hard to use to get rates of convergence; (ii) conceptual
overhead in setting up notions of convergence of trees; (iii) its own technicali-
ties, such as tightness (Lemma 4) and uniform integrability.

In this paper we are concerned with local limit results which describe the
shape of the tree near a typical vertex. Natural questions in any random tree
model are:

1. What proportion of vertices are leaves?

2. What is the distribution of degrees of vertices?

3. What is the distribution of the size of the subtree rooted at a uniform
random vertex?

4. What is the distribution of the number of vertices within distance % of a
uniform random vertex?

These are the kind of functionals whose asymptotic behavior can be handled
in our framework. To be honest, the most interesting (both theoretically and
for applications) problems about random trees concern global functionals such
as heights of trees or average distances between random vertices. To handle
such global functionals, one apparently needs several different formulations of
convergence of rescaled trees to handle the qualitatively different behavior of
different families (see [3] for discussion). In contrast, the formulation of local
limit theory presented in this paper applies to almost all families of random
trees which have occurred in applied models.

Given a random rooted tree 7, pick a vertex V uniformly at random and let
& be the subtree rooted at V. For many families of random trees (,; n > 1),
it turns out that as the size n of the underlying trees .7, tends to infinity, the
size of these fringe subtrees .%, remains bounded and their distributions
either converge or have a simple asymptotic cycling behavior. At first sight,
this is just one of many possible types of limit results about random trees. The
purpose of this paper is to show that, from this starting point, a lot of
interesting ‘‘structure’ follows.

1. It implies an a priori stronger result on local convergence to a limit random
infinite tree (of a kind we term sin-tree; see Section 4).

2. These limit random sin-trees satisfy an invariance property; there is a
fruitful analogy (Section 7.4) between invariant sin-trees and classical
stationary processes.

3. We can introduce a concept (coherence; see Section 2.6) for families of
random trees, which is one formalization of the idea of the same random
tree model for trees of different sizes.

There is a close connection between our work and the well-studied notion of
stable type structure in supercritical branching process models of single-sex
biological populations, surveyed in Jagers and Nerman [22]. In rather general
models where offspring behave independently of parents after birth (note: by
allowing individuals to be of many types and allowing dependence between
types of parents and types of offspring, we can fit in many models which at
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first sight involve dependence) the following fundamental result holds. Pick an
individual uniformly from those born before time ¢; then the distribution of
type of that individual converges as ¢ — « to a limit stable type. Such results
apply to random family trees for populations evolving with time and possessing
certain assumed independence structure. Only two of the computer science
models we discuss (Sections 3.2 and 3.3) can be fitted into this setting. A
(perhaps surprising) point of this paper is that similar results often hold in
models of combinatorial random trees where there is no prior notion of time or
evolving populations or independence of evolution of offspring.

Much of the computer science work in this area deals with models which are
sufficiently simple that the form of the asymptotic fringe distribution can be
seen immediately. For harder models, it seems necessary to face up to the
issue of determining the asymptotic fringe distribution even if one is interested
only in simpler questions such as asymptotic proportion of leaves. This is one
reason why it seems worthwhile to write out our theory carefully. We must
admit that the structure theory developed in this paper is a little removed
from the issues in analyzing particular cases, where one is concerned with
proving convergence to an explicit asymptotic fringe distribution and evaluat-
ing distributions of functionals of that limit distribution. Nevertheless we have
one result of immediate practical application. Let X, be an empirical average
associated with a realization 7, of a random tree, for example, the (random)
proportion of vertices of 7, which are leaves. Existence of an asymptotic
fringe distribution implies that p = lim EX, exists. One might anticipate the
stronger result X, — p in probability and seek to prove this by estimating
variance(X,) and applying Chebyshev’s inequality. But there is a much more
powerful abstract method. If the asymptotic fringe distribution is extreme,
then (Proposition 7, a kind of weak ergodic theorem) we immediately have
convergence in probability for empirical averages of all local functionals. Then
Theorem 13 gives checkable conditions for extremality, which apply to almost
all the standard models.

In Section 2, we record theoretical results about asymptotic fringe distribu-
tions. Section 3 discusses several examples, well-studied from other view-
points, in which the form of the asymptotic fringe is intuitively obvious. In
Section 4, we give theoretical results about limit sin-trees, deferring the proof
of the main result to Section 5. Section 6 describes some mathematically
interesting (and not all well-understood) examples where invariant sin-trees
seem to be the correct and necessary approach to understanding asymptotics.
Further technical examples and remarks are in Section 7.

The length of the paper reflects in part our attempt to make it accessible
both to mainstream applied probabilists not familiar with the study of random
trees (who we hope to interest by providing numerous examples) and also to
workers from computer science accustomed only to the standard methods of
that field. For the latter, we have sought to be careful and precise in setting
out the theory (Sections 2, 4). But the examples are treated sketchily, empha-
sizing the description of the limits rather than details of the proofs of
convergence. Some of the novel examples will be treated in detail elsewhere.
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A method of analysis of certain special random trees in computer science
has been called fringe analysis: the connection with our work is mentioned in
Section 6.4.

2. Definitions and first results. In the phrase random tree the word
“random” has the probabilist’s meaning (having some distribution) rather
than the combinatorialists’s meaning of “uniform random”. We are thinking
of trees generated as part of some specified stochastic process. Such trees
typically have extra structure: labels on vertices, weights on edges, birth-times
of vertices representing individuals, ordering of births, and so on. All such
extra structure can be combined by introducing a mark-space S and consider-
ing trees whose vertices are marked with (not necessarily distinct) elements of
S. Such marked trees are the conceptually natural subject of our study.
However, the mark space S plays no essential role in the theory, so we avoid
distraction by considering unmarked trees, and briefly discuss the effect of
marks in Section 7.3. In particular we consider unordered trees, since the
orders can be included in the mark-space, but the reader who prefers may
regard trees as ordered without serious danger. It is important that our trees
be rooted, to define fringe subtrees (but for unrooted trees one can simply
introduce a uniform random root; see Section 2.3). The degree of a vertex v is
the number of edges at v. For v # root, out-degree(v) = degree(v) — 1; that is,
the number of edges at v leading in a direction away from the root. Root-
degree(t) is a convenient abbreviation for the degree of the root of the tree t.

2.1. Fringe distributions. Let T be the set of finite rooted trees. Define a
matrix @ = (Q(s,t): s,t € T') as follows. In a tree s, let the root have children
Uy, ..., Vg, d > 0. Let f(s,v,),..., f(s,v,) be the subtrees rooted at v,,...,v,.
That is, f(s, v;) contains the vertices w such that the path from the root to w
goes first to v;. Making v; the root, we may regard f(s,v;) as an element of 7.
Note it may happen that the trees f(s,v;) and f(s, v) are the same (e,
isomorphic) for some i # j. Define

(1) Q(s,t) = E 1(f(s,v,)=t)'

Call a probability distribution 7 on T a fringe distribution if
(2) Y m(s)Q(s,t) =w(t) foralteT.

s

In matrix notation, this is: 7@ = 7. The row-sum T ,Q(s,¢) gives root-
degree(s): note this equals 0 for the trivial tree triv consisting only of the root.
The matrix powers @' have an obvious significance: (s, ¢) is the number of
subtrees of s rooted at distance i from the root of s which are isomorphic to .
In particular, writing [¢| for the number of vertices of ¢,

(3) ls| = f Y Qi(s,2).

i=0 ¢
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We record a simple lemma.

LemmA 1. Let 7 be a fringe distribution. Then

(@) 0 < w(triv) < 1.
(b) L ,m(¢) root-degree(t) = 1.
(c) X ,m(¢) X (number of leaves of t) = », and so L ,m(¢)|t| = c.

Proor. (a) This is clear from (2), using the interpretation of Q.

(b) The sum is equal to L ,X 7 (#)Q(¢, s): Sum first over ¢ and use the
definition of fringe distribution.

(c) Writing [¢] for the number of leaves of ¢, we have

[¢] = f Q' (¢, triv)
i=0

and so

Y m(t)[t] =X m(t) f Q'(t,triv) = f 7 (triv) = o,
t t i=0 i=0
the last step using (a). O

ReEMARK. Part (c) says the w-average tree size (number of vertices) is
infinite. Examples will show that the m-average height may be finite or
infinite. Recall that the height ht(¢) is the maximum, over vertices v, of the
distance from the root to v.

Given a fringe distribution 7, we can define a Markov transition matrix P,
on {t: w(¢) > 0} by
(4) P.(s,t) =m(t)Q(¢,s)/m(s).

Then
w(s)Pl(s,t) =w(t)Q"(¢,s), n>1.
This is used in the proof of Proposition 2 below, and extensively in Section 4.

2.2. Convergence of random fringe subtrees. We now connect fringe distri-
butions with the notion of fringe subtrees described in the Introduction. If s is
a tree and v a vertex of s, then as above f(s, v) is the fringe subtree rooted at
v. Writing V for a uniform random vertex of s, we can consider the random
fringe subtree f(s,V) rooted at V as a random element of T'. Define

F(s,t) =P(f(s,V)=1t).
Given a random tree .7~ we can consider the random fringe subtree f(7,V),

where V is uniform on 7. There is a map taking the distribution u of 7 to
the distribution of (.7, V), and in vector-matrix notation this map is just

p— upF.
We can write F in terms of @ via

|
F(s,t) = ol EOQ‘(s,t).
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The key idea, formalized in Propositions 2 and 3 is: Fringe distributions are
exactly the possible limit distributions for fringe subtrees f(.7,V) as the size
of trees |.7| — «. To say this sharply, consider random trees .7, such that

(5) T3l »gw ask o

but with otherwise arbitrary distributions. Write %, = f(.7,,V,), where V, is
uniform on 7, and call %, the random fringe subtree associated with .7,.

PropOSITION 2. Let 7 be a fringe distribution. Then there exist random
trees I, satisfying (5) such that

P(F =t) > w(t), alliteT.

In this setting, say = is the asymptotic fringe distribution associated with
T

Proor. Write L, = {¢: [¢t| < k}. Define a measure 6, on L, by

Oy (w) = lwl X 7(v)Q(v,w).

veT\L,

The associated fringe measure 6, F is supported by L,, and for ¢t € L,,

1 .
0. F(¢t) = ZL ﬁok(“’) > Q'(w,?)

i>0
= Z Z m(v)Q(v, w) Z Qi(w’t)

veT\L, weL, iz0

=m(t) L L X Pitw)P,(w,v)
veT\L, weL, i>0

=x(t).
Here the third equality follows from (4), and then the sum in that line is the
expected number of times that the P, -chain, started at ¢, crosses out of L,.
But this number is identically 1, because in a P,-chain (X,) the sizes |X;| are
strictly increasing.

Since the map 6 — 6F preserves mass, 0, has total mass 7(L,). Let .7,

have distribution 6, /7(L,). Then the identity above says P(%, = -) = w(-|L,),
and the result follows. O

To study a converse, let .7, be random trees and suppose
(6) m(t) = li/inp(% =1t) existsforeacht e T.

Then X ,m(¢) < 1, by Fatou’s lemma. By considering the case where 7, is the
deterministic path (1,2,..., %) rooted at 1, we may have 7= = 0. So let us
impose the condition

(7) Y ow(t) =1.

t
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Another easy use of Fatou’s lemma shows L ,m(¢)root-degree(z) < 1. By consid-
ering the case of a star graph rooted at its center, we may have w(triv) = 1,
and so this sum may be 0. So in view of Lemma 1(b), let us impose the
condition
(8) Y. m(t)root-degree(?) = 1,

t
which turns out to imply (7).

ProPOSITION 3. Let 9, be random trees satisfying (5). Suppose the limit
7 in (6) exists and satisfies (8). Then 1 is a fringe distribution.

ProoF. By considering s,¢ with Q(s, t) > 0, we see
9)  P(F=t%) = L P(F =s17)Q(s,t) + |73 N,

Taking expectations and limits, the left side converges to m(¢), and so it
suffices to show

L P(F = 5)Q(s,t) > X 7(5)Q(s,1)

for fixed ¢. For each ¢, the right side is at most the lim inf of the left side, so it
suffices to show that the double sums over s and ¢ converge. Now the left
double sum tends to 1, using (9), and the right double sum equals 1 by (8). O

We state without proof a routine tightness lemma.

DEFINITION. A sequence of random trees satisfying (5) is fringe-tight if
every subsequence has a further subsequence which possesses an asymptotic
fringe distribution.

LeEMMA 4. A sequence 7, of random trees satisfying (5) is fringe-tight iff:

@) lim, _,limsup, . P(|.%,| > a) = 0; and
() lim,_, . limsup, . E degree(V,)1l 4 greev,y>ay = 0-

In particular, if (5) holds and if the limits (6) exist, then = is the fringe
distribution associated with .7, iff (i) and (ii) hold.

Informally, condition (i) says that the trees (.7},) should not be like the path
tree and (ii) says they should not be like the star tree. In (i), the size |f| could
be replaced by the height ht( f).

Here is another easy fact:

Lemma 5. Let (7,) be fringe-tight, and let ¥, be the random fringe
subtrees. Then:

(@) E|F| - o.
(i) E|Fl /1.7 — 0.
(i) E ht(7,)/17,;] - 0.
(iv) ht(7},) = « in probability.
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Proor. Assertion (i) is immediate from Lemma 1(c) and assertion (ii) is a
consequence of Lemma 4, since for fixed a, we have
E |4l <E + P(| %] > a).
— <E—— a
|7 | k
For (iii), note that there are at least %ht(.?}z) vertices v for which the fringe
subtree rooted at v has size at least 3 ht(.7},). Thus

E(#117,) = &’” 5 ht(73)
and so
17 1 [(ht(T) )\
AR ( 7, )
and then (iii) follows from (ii). Assertion (iv) is immediate from Proposition 11.

O

2.3. Unrooted trees. Our treatment so far has involved rooted trees. Given
an unrooted tree, we can make it a rooted tree by choosing a uniform random
vertex as root: In this way we can talk about asymptotic fringe distributions
for unrooted trees. We want to say it makes no difference whether the original
trees are rooted or unrooted. This raises a question. Start with rooted trees,
then consider them as unrooted by deleting the root, then randomly reroot:
Does this affect asymptotic fringe distributions? Fortunately, the answer is no.

LeEmMMA 6. Let 9, be random trees satisfying (5) with roots r,,. Let ./}, be
the same trees, rooted at uniform random vertices U,. If either of the sequences
(73), (%) has asymptotic fringe distribution 1, then so does the other.

ProOF. A branch of a rooted tree is a fringe subtree rooted at a child of the
original root. Consider a vertex v, € 7,. In each of 7, and ./, there is a
fringe subtree rooted at v,, and these two subtrees are identical provided r,
and U, are in the same branch of the tree, considered as being rooted at v,.
Thus it is enough to prove

(10) P(U, and r, in different branches of .7, rooted at V,) — 0,

where V, is a uniform random vertex, independent of U,.
First suppose an asymptotic fringe distribution exists for .7, considered as
rooted at r,. The event in (10) can be rewritten as:

U, is in the fringe subtree rooted at V.

This event has conditional probability (given 7, and V,) equal to
(T, VI /17|, and so has unconditional probability E|f(7;,, V)| /|7,|. Thus
(10) follows from Lemma 5(ii).

Conversely, suppose .}, has an asymptotic fringe distribution. Writing %,
for the random fringe subtree f(.#,,V,) of ./, the event in (10) is the event
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{Z, contains r,}. This event has conditional probability (given ., and r,)
equal to h(r,)/|#l, where h(r,) is the height of r, in ./, and so the
unconditional probability (10) equals Eh(r,)/|.#,|. The result now follows
from Lemma 5(iii). O

REMARK. An alternative definition of fringe subtree for an unrooted tree ¢
is as follows. For each vertex v, consider ¢ as rooted at v, delete a branch of
maximal size (choosing arbitrarily between equals), and let f(¢,v) be the
remaining tree. Lemma 6 remains true with this definition.

2.4. Empirical proportions and extreme fringe distributions. The set of all
fringe distributions is convex, that is, closed under mixtures. Call a fringe
distribution 1 extreme if it has no representation as a mixture

m=am, + (1 —a)my, 0<a<l, ; fringe distributions

except for the trivial representation with m; = 7, = . Theorem 13 will give
checkable conditions for extremality. Choquet theory (e.g., Dynkin [11]) says
every fringe distribution is an integral mixture of extreme fringe distributions,
though we shall not use that fact. Our interest comes from Proposition 7.

Recall F(s,t) defined in Section 2.2. For a random tree 7,, F(Z,,¢) is the
(random) empirical proportion of fringe subtrees of .7, which are isomorphic
to t. If there is an associated asymptotic fringe distribution 7, then by
definition EF(Z,,t) - m(t). If = is extreme, then we can automatically
strengthen this to convergence in probability.

PRroOPOSITION 7. Let 1 be the asymptotic fringe distribution associated with
- Suppose 1 is extreme. Then for fixedt € T, € > 0,

P(F(F,,t) —m(t) >e) >0 ask - o,

Proor. Suppose not. By passing to a subsequence, there exist ¢ € T' and
0 < b < 7(¢) such that lim, ,, P(F(Z,,t) <b) = a exists and 0 < a < 1. De-
fine B, = {s: F(s,t) < b} and let B, be its complement. Write u, = dist(7},)
and u, ; = dist(7,|.7, € B;), i = 1,2. Then u, is a mixture

2
.ka(') = glﬂk(Bi)l-‘vk,i('),

where the weights converge to (a,1 — a). Using Lemma 4 we can pass to a
further subsequence in which (u, ;; £ > 1) has an asymptotic fringe distribu-
tion, 7; say. Then 7 = aw, + (1 — a)w,. But then extremality implies 7; =
my = 7. But from the definition of B; we have 7(¢) < b < w(¢), a contradic-
tion.

In our general theory there is no explicit connection between the random
trees 7, for different k. Suppose for a moment that we do have a tree-process
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(Z,: 0 < u < ) with continuous parameter u. In this setting, say the tree-
process has an a.s. fringe if

(11) F(7,,t) > w(t) as.asu—> .
When this holds, any family (,*; k& > 1) of the form
(12) T =Ty, Up—po

will have asymptotic fringe distribution 7. Thus one may seek to show that a
discrete family of random trees has an asymptotic fringe by embedding it via a
random time-change into a continuous-time tree-process with an a.s. fringe.
We shall see in Section 3 that this is a useful technique. O

2.5. A generic counterexample. A noteworthy feature of Proposition 7 is
that the result requires only a hypothesis on the asymptotic fringe, rather
than hypotheses on the underlying trees (7). The following construction
shows that such a feature cannot be expected in more refined results. Given
random trees 7, with n(k) vertices and ./, with m(k) vertices, form a
combined tree Z,* by identifying the root of .7, with some leaf of ./;. If
(7%) has asymptotic fringe distribution = and m(k) = o(n(k)), then (7,*)
also has asymptotic fringe distribution 7. But it is clear that, if one is
interested in (say) heights of trees, or central limit theorems for numbers of
leaves, then the results may be very different for (.7,*) than for (.7,). In other
words, the theory developed in this paper can handle only laws of large
numbers, and not more refined convergence assertions.

2.6. Coherence. Let ¢: T —{0,1,2,...} be a functional which we regard
as measuring the size of a tree ¢. Usually we will have (¢) = |¢|, the number
of vertices of ¢, but it will sometimes be more natural to have ¢ denote the
number of leaves, or the height, of ¢. Write T, = {¢: ¢(¢) = n}.

DeFiNITION. Let w, be probability distributions on 7,, n > 1. Suppose
(u,) is fringe-tight; and
(13) dist(#,|T,,) > u,, asn — o, eachm > 1,
where &, is the random fringe subtree derived from w,. Then call (u,)
y-coherent.

The definition is easier to understand in the context of the following
(mathematically obvious) lemma.

Lemma 8.  Let (,) be probability distributions on T,, n > 1. Suppose ()
has asymptotic fringe distribution . Then (1,) is ¢-coherent iff

(14) m (") =7(-|T,) foreachn.

In other words, 7 is a mixture

T=1) a,m,
n
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of the (s,), for some weights (a,). When this holds, we also say that = is
y-coherent. The intuitive idea of coherence is (14), but the general definition is
designed to cover also cases where, instead of an asymptotic fringe distribu-
tion, there is asymptotic cycling behavior caused by discreteness effects.

When (¢) = |¢|, the number of vertices, we just say size-coherent. The
definitions have obvious modifications in the case where 7(T,) is nonzero only
for some subsequence of integers n.

An ultimate hope is that coherence may be useful as a general hypothesis
for proving deeper results about families of random trees. See Section 7.5 for
one conjecture. But this is pure speculation. In this paper we merely verify
that the standard examples in Section 3 are coherent. In particular, the three
basic random tree models in computer science discussed in Flajolet [14] are
coherent.

3. Standard examples.

3.1. The general continuous-time branching process. This process is
parametrized by a random collection (C; B,,1 < i < C), where 0 < B, < x, the
B; are nondecreasing in i and where for our purposes we may take C > 1,
EC > 1.

Each individual has C children, at times B, after the individual’s birth;
these times and numbers of children being independent for different individu-
als. At time 0, a single individual is born. For 0 < ¢ < o, let .7, be the family
tree of this process at time ¢. Under minor technical assumptions on (B;)
(nonexplosiveness and nonlattice assumptions), the following fundamental
results hold. See Jagers [21], Jagers and Nerman [22] and Nerman and Jagers
[32] for details.

1. There is a Malthusian parameter 0 € (0, «) such that
(15) E|J,| ~ce” ast—> o forsome0 <c < .

2. (Z,) has an asymptotic fringe distribution 7 = dist(#) [in fact, it has an
a.s. fringe in the sense of (11)] given by

F =9, where L has exponential(g) distribution and is

(16) independent of (7).

We can then write down expressions for probabilities involving the asymp-
totic fringe distribution. For example,

(17)  P(root-degree(5) = d) = [ e P(B, <) ds = Ee~%,
0

where B, is the dth birth time. Also,
P(|Z1=3)

- fw(P(Bz <s)+ fsP(ﬂl €du,B,>s)P(By <s—u)du|deds.
0 0
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Consider now the embedded discrete trees
Tk =Ty, U, =influ:17,| =n}.
Then (Z,*) also has asymptotic fringe %, by the a.s. fringe property. In
general these embedded discrete random trees are not simple to describe, and

are not coherent, but there are interesting special cases. Consider the very
special property: For each ¢, n,

(18) Z,.* has the conditional distribution of .7, given |.7,| = n.
This implies that, for L as in (16),

,* has the conditional distribution of .7, given |7, | =n.
Then (16) implies

(19) P(F=-)= Y a,P(7,*="),
where
(20) a,=P(I=n)= j:()e“’sP(IZI =n)ds.

So (Z,*) is a coherent family.

In fact condition (18) is so special that it occurs essentially only in the
following two examples. But it does enable these (at first sight rather different)
two examples to be treated in almost exactly the same way.

3.2. Yule trees /recursive trees. Consider the simple continuous-time pure
birth process: Initially there is one individual and each individual gives birth
throughout all time at exponential rate 1. This process (or rather, the total
population at time ¢) is often called the Yule process. Let 7, denote the family
tree of individuals born before time ¢. It is hard to resist calling (.7,; 0 < ¢ < «)
the Yule tree process.

The embedded discrete-time random trees (,*) can be described in a
different way. Construct a tree on labeled vertices (1,2, ...) by making 1 the
root and using the recursion

(21) vertex j is connected to vertex U;,

where U; is uniform on (1,2,..., j — 1) and the (U,) are independent. Remov-
ing labels gives a process identical to (.7,,*). Of course, this is a very natural
model for random trees, which has been discussed by many authors, and is
sometimes called the random recursive tree—Dondajewski, Kirschenhofer and
Szymanski [10].

The Yule tree process is the case of the general continuous-time branching
process for which C = « and (B;) are the times of a Poisson(1) process. It is
clear that N(¢) = |.7| satisfies

E(dN(?)IN(¢) =n) =ndt
and so E|.7,| = €', giving Malthusian parameter 6 = 1.
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Fix ¢t and condition on the times of births of (J,: 0 <u <¢) being
(¥1,Y325 - - - » ¥»)- Then the embedded discrete-time tree still grows according to
the recursion (21), by elementary properties of the exponential distribution.
Hence the very special property (18) holds, so the family of recursive trees
(Z,*) is coherent and we can apply (19, 20). Here it is elementary that
a, = [e %P(N(t) = s)ds satisfies a, = 3, a, = na, — (n — Da,_,;, which

has solution a, = 1/(n(n + 1)). Thus the asymptotic fringe .# satisfies

(22) P(F=-)=1

ORI

and in particular,

P(F|1=n)= n>1.

n(n+1)’ -
So this is the limit distribution of size of random subtrees in the random
recursive tree.

A calculation direct from (17) gives

P(root-degree(¥) =d) = (%)d, d=0.

So this geometric distribution is the limit distribution of out-degrees in the
random recursive tree. Further properties of . may be studied using standard
branching process methods.

3.3. Binary search tree. Let 7, be the special case of the general continu-
ous-time branching process, where C = 2 and (B, By) = (min(¢,, &),
max(¢,, £,)) for independent ¢, ¢, with exponential(1) distributions. Note that
the initial (time 0) birth rate is 2 and each time a birth occurs, the overall birth
rate increases by 1. Thus N(¢) = |.7}| satisfies

E(dN(t)IN(t) = n) = (n + 1) dt

giving EN(¢) = 2e’ — 1. So the Malthusian parameter 6 = 1.

We now describe a discrete-time random tree process (.7, *). By binary tree
we mean here a rooted tree with out-degrees at most 2, regarded as an ordered
tree (i.e., distinguishing between left and right offspring). Given a binary tree
t, there are exactly |¢| + 1 different (ordered) binary trees obtainable by adding
a new vertex and edge. Thus we can define 7, * recursively as

Z,*%, plus a new vertex chosen uniformly randomly from

(23) the set of n vertices it is possible to add.

Call this the binary search tree process. These are the trees constructed by a
standard algorithm from ii.d. continuous r.v.’s.; see Knuth [[25], Section
6.2.2].

As in the preceding example, fix ¢ and condition on the times of births of
(Z7,: 0 <u <1t) being (y4,vs,-..,7,)- Then the embedded discrete-time tree
still grows according to the recursion (23), by elementary properties of the
exponential distribution. Hence the very special property (18) holds, so the
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family of binary search trees (7, *) is coherent, and we can apply (19, 20). As

in the above section, an elementary argument gives the form of the asymptotic
fringe distribution 7:

2
(24) PF==L iparn PO ")

In particular,

2
T+ )(n+2)’

P(Zl=n)

S
\
[y

Using (17) we have
P(root-degree(# ) > 1) = Ee 1 = %,
P(root-degree( 7 ) = 2) = Ee P2 = 3

In other words,
(25) root-degree(.% ) is uniform on {0, 1,2} .

3.4. Conditioned critical branching processes. Consider a simple discrete-
time (Galton-Watson) branching process with offspring distribution ¢, and
suppose we are in the critical setting E£ = 1. To avoid technicalities, suppose
P(¢ =0) > 0, E£2 < © and that ¢ is non(sub)lattice. Write .7~ for the family
tree of the entire process started with one progenitor. By criticality, |.77| < «
a.s. For n > 1, write .7, for 7 conditioned on |97| = n. The next lemma
implies that (.7,) is a (size-) coherent family with asymptotic fringe 7.

LEMMA 9. Let F, be the fringe subtree associated with &,. Then
P(%, =t)>P(I=t) asn—>wo,teT.

Although I do not know an explicit reference, this is closely related to work
of the Russian school on aspects of conditioned branching processes motivated
by random mappings and (combinatorial) random trees. Their work is summa-
rized in the book of Kolchin [26]. To make an explicit proof, note that the
special case of the lemma with ¢ = triv can be written as

(26) E(proportion of leaves in 7,)) — P(¢ = 0).

This result (in fact the deeper CLT) is from [26] (Theorem 2.3.1, page 113). We
also need the tail estimate ([26], Lemma 2.1.4, page 105)

(27) P(1T1=n) ~n=3/%2m var(¢)) /2

ProoF oF LEMMA 9. Fix n and trees s,¢ with |s| + [¢/ =n + 1. Let V be a
uniform random vertex of 7. Let #° be the fringe subtree at V and let £°
be the remainder of 7 after #° (but not vertex V) is removed. It is easy to
see

s] P(T=s
P(y°=s,9°=t)=[—l (7= )
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where [s] is the number of leaves of s. Now
P(F=t)= ¥ P(F°=s55°=1t)/P(T|=n)
s:|sl=n—lt|+1

and this rearranges to

P(% = 1)
P(T=1t)
P(J1=n— |t + 1) n — |¢| + 1 E(proportion of leaves in 7, _;,.1)
~ P(91=n) n P(¢=0) ‘

As n — o, each ratio — 1, by (26, 27). O

ReEMARK. With special distributions for &, the conditioned Galton-Watson
tree becomes the uniform distribution on certain combinatorial sets of rooted
labeled trees. This model has been studied by combinatorialists (e.g., Meir and
Moon [27]) under the name simply generated trees. In particular, the case
where ¢ has Poisson(1) distribution gives the uniform random unordered
labeled tree. The case of the geometric distribution P(¢£ =1i) = (3), i >0,
gives the uniform random ordered labeled tree.

3.5. Trees and strings. There is a general construction of trees whose
vertices are marked with strings. Fix d > 2 and let b denote a string b =
(by, by,...,0,); i=1,b,€(1,2,...,d}. Call (by,...,b;_,) the parent of the
string (b,, ..., b;) and for i < j, call the string (b,,.. ., b;) a prefix of the string
(by,...,b;). Now let B be a finite family of strings satisfying:

If b € B, then the parent b’ of b is in B.

Then we can regard B as a tree in a natural way: the vertices are the strings b
and the edges are (b, b'), where b’ is the parent of b. The root of the tree is the
null string.

The trees in this and the following two sections use the construction above.
We first consider two simple deterministic examples. Let d = 2 and let ¢(n) be
the tree on the n strings

root, 0,1, 00, 01,10,11, 000,001,010, 011,100, 101,... .
Note that #2**! — 1) is the complete binary tree of height &. Let %, be the
random fringe subtree of #(n). It is easy to see that

(28) if|F,| = m, then, considered as rooted unlabeled trees, 7, = {(m).

So the family (¢(n)) is coherent; indeed, we have equality in (13) rather than
merely convergence. It is also easy to see that there is an asymptotic fringe
distribution % given by

(29) P(F=t2"1-1))=(1)", h=0.

Now consider the trees u(n) defined similarly, except that the rows are now
filled out in reversed significance order, for example,

000, 100, 010,110,001,101,011,111.
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Property (28) still holds, so the family is coherent. If we consider a subse-
quence n; ~ (1 + )2/, 0 < a < 1, then it is not hard to see (draw a picture)
that this subsequence has asymptotic fringe distribution .#, specified as
follows.

Let « have binary expansion ¥, ;5,27 and define

h
[a]h = Z bi2l,
i=1

(a)n = X byyi27"

i>1
Then

P(F, = u(1)) = as%

2(1+a)’

1= (adp
(1 +a)2®’

P(9=u(2h+[a]))=——<—a—>ﬁ— h>1

« MIT 1+ )2’ -

Since this depends on «, the entire sequence (x(n)) cannot have an asymptotic
fringe distribution; instead, the fringes asymptotically cycle continuously
through (%, 0 < a < 1).

This example is somewhat artificial, but the same cyclic behavior occurs
naturally in the following two examples. Indeed, in natural examples of
nondeterministic trees, we see cyclic behavior iff (H, — median(H,)) is
stochastically bounded, where H, is the height of a uniform random vertex.
But it does not seem easy to formalize this idea.

1
>_
a_z,

P(%:u(2h+[a]h—1)) h22,orh21and[a]h>0,

3.6. Tries. Fix d = 2. Consider a collection of £ distinct strings
(b, ...,b,), where each string is of the form b = (b, b,,...), b, €{1,2,...,d}.
Then replace the collection (b;) with the collection (b}), where b/ is the
shortest prefix of b; which is not a prefix of any other b in the collection. Then
set

B = {a: a is a prefix of some b'}.

As described in the previous section, we can regard B as a tree. The leaves of
the tree are exactly the b's.

This construction gives the trie on (by,...,b,); see, for example, Knuth
([25], Section 6.3). Note that the trie has exactly k& leaves, but a variable total
number of vertices. By taking each string b to have independent uniform
random entries and different strings independent, we get a simple random
trie J,.
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Given such a random trie, for each string a, let
¢,(a) = number of b's in the collection for which a is a prefix of b'.

For fixed a, if any random b has a as a prefix, then the remaining entries are
still i.i.d. uniform. So, for fixed a, if ¢,(a) = m > 2, then the fringe subtree
rooted at a, considered as a rooted unlabeled tree, has the same distribution as
... Thus the family (7,; k > 1) is leaf-number coherent.

Now fix 0 <u <1 and consider a subsequence k; =d’""/, u; > u. A
straightforward argument, sketched below, shows this subsequence has a
certain asymptotic fringe distribution .7, .

Take j large and consider a string a of length j —i. Then L7y (a) has
approximately Poisson distribution with mean k;d~ (= ~ d%*i So the num-
ber of internal nodes a with d)k (a) = m > 2 works out to be asymptotic to
d’c,(m), where

Jjtu

(30) c,(m) =Y dlexp(—-d**)d**I™/m!, m=2.

i=—o

The number of leaves is k; ~ d/c,(1) for

c, (1) =d*.
Thus by coherence, the asymptotic fringe distribution for this subsequence is
(31) P(F =) =c(m)/ T c,(v); m=1.
v>1

Again the asymptotic fringe distribution (.%,) cycles as 0 < u < 1. Note that
the asymptotic size of the random trie on & strings is % /(leaf-probability), and
so is kX ,c,(m), where u is the fractional part of log, k; see Jacquet and
Regnier [19, 20] for a more extensive analytic treatment.

3.7. Digital storage trees. The trie on (b,,...,b,) is a data structure in
which the strings b, are stored in the leaves of the trie and where inclusion of
new strings may cause existing strings to be moved. There is a related data
structure where strings are stored at all vertices of the tree and their location
is not changed by inclusion of further strings. In this digital storage tree we
simply store b; at the vertex b/ which is the shortest prefix of b; which is not
the prefix of any of bj,...,b’_;. As before, suppose we have k strings with
iid. uniform entries, and then we get random trees 7,*. For simplicity
consider the binary (d = 2) case.

The coherence property is clear: Given that the fringe subtree at b’ has size
m, there are m strings amongst b;,y,...,b, which have prefix b}, and the
subsequent entries on those strings are still i.i.d. uniform and hence the fringe
subtree is distributed as 7,*.

As with the trees of Sections 3.2 and 3.3, these embed naturally into
continuous-time Markov random trees (7,; ¢ > 0) described as follows. Say
(ay,...,a;) is available at time ¢ if that vertex is not in the tree .7, but its
parent is in J,. Then the tree grows according to the rule: Each available
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vertex (ay, ..., a;) is added at rate 27%. This nonhomogeneity means we cannot
directly apply the standard theory of Section 3.1. Note however that the rate of
growth of |.7,| is always 1.

The asymptotics can be described simply in terms of the distribution
function

(32) G(t) = P( Y 27 < t), (¢;) independent, exponential (1).
i=0

Indeed, the chance that a vertex (a,,...,a,) of height A is in 7, is exactly
P(T!_ 2%, <t). And this is asymptotically G(¢2~").

Fix 0 <u <1 and consider a subsequence n; = 274y ; = u. Then the
families (.7,;) and (9;]_) have asymptotic fringe distribution %, described as
follows.

By coherence, %, must be of the form

P(F,e)= L c(m)P(T,€ ")
m>=1
for constants c¢,(m). By considering the chance that a vertex b’ at height j — i
is added at time 2/ ‘s, and then the conditional probability of exactly m — 1
more strings with prefix b’ being seen before time 7, a brief calculation gives

(33) c,(m)= Y 27i« f2uﬂA(2“+i —s,m — 1)G(ds),
i=—o0 0
where A(A, -) is the Poisson(A) probability function.

Related questions are studied analytically by Flajolet and Sedgewick [15],
who report (Theorem 2) that a cycle-average of the leaf-probabilities ¢, (1)
equals approximately 0.372 and (pages 763-764) that a cycle-average of
P(root-degree(:#,) = 2) equals 1/(4 log 2). Probabilistic analysis related to cen-
tral limit theorems is in Aldous and Shields [4].

4. Sin-trees. In this section we show that the results of Section 2.2 imply
apparently stronger results about convergence to infinite discrete trees, and
explore structural properties of the limit trees.

4.1. Definition and convergence. For a rooted tree t with an infinite
number of vertices, but where each vertex has finite degree, the following are
equivalent. (i) There exists a unique infinite path (root = v,, vy, vy, ...) from
the root; (ii) for each vertex w, there exists a unique infinite path (w =
Wy, Wy, Wy, . ..) from w; (iii) there exists no doubly-infinite path
(.o,w_we,wy,...).

(A path has distinct vertices). Call such a tree a sin-tree (for single infinite
path): an alternative name is tree with one end. For each vertex v in a sin-tree
t, let f(t,v) contain the vertices w such that the unique infinite path from w
hits v; consider f(t,v) as a finite tree rooted at v. Given a sin-tree t and the
path (v,) as in (i), let b, = f(t, root) and for i > 1, let the ith branch b, be the
set of vertices x such that the unique infinite path from x hits v; but does not
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hit v;_,. Consider b; as a rooted (at v;) unlabeled tree. The map
t < (by,by,b,,...)

defines an isomorphism between the set of sin-trees and the product set
T X T X --- . Call this the branch representation of t. With this isomorphism
in mind, we may write T for the set of sin-trees and can define convergence
of sin-trees (or convergence in distribution of random sin-trees) via conver-
gence in the product topology on T (where the countable set T is given the
discrete topology).

The matrix @ at (1) extends in a natural way to a kernel @ on T as
follows. If Q(t,s) > 1, write ¢\ s for the tree obtained from ¢ by deleting a
first-generation subtree isomorphic to s. Then set

Q7((¢,by,by,...),(5,t\'s,by,b,,...)) = Q(2,9),
where we are using the branch representation of sin-trees. Call a probability
distribution p on T* invariant if it is invariant under this kernel @~. Call a
random sin-tree F invariant if its distribution is invariant.
There is a slightly different representation of sin-trees. Let (¢,, ¢,, Z,,...) be
an infinite sequence in T such that

Q(t;,t,_1) =1, i>1.
Then there is a unique sin-tree t such that ¢, = f(t, v,) for each i > 0, where
(root = vy, vy, Uy, ...) is the unique infinite path in t from the root. Call this

(t9,ty,...) the monotone representation of t. In terms of monotone representa-
tions, the kernel @~ is defined by

Q ((fgst1,---), (E1,tostys-.)) = @(g,2_1).

PrROPOSITION 10. Let u be a probability distribution on T, let m be a
probability distribution on T and consider the relation

(34) m is the image of . under the map t — f(t, root).

(@) If w is invariant, then the w defined by (34) is a fringe distribution.
(b) If 7 is a fringe distribution, then there exists a unique invariant
measure u satisfying (34).

As the proof below shows, u is constructed from 7 using the Markov chain P,
of (4).

Now let v be a vertex at height 4 in a finite rooted tree ¢. Let b,(¢, v) be the
fringe subtree at v and for 1 <i < h, define branches b,(¢,v) as above, with
“path from x to root” in place of “infinite path from x”’. We may regard
(¢, v) = (b;(t,v), 0 < i < =) as an element of T* by setting

bi(t,v) =@, i>h,
where J is a symbol appended to T. Note that b,(t,v) is the fringe subtree
f(¢,v) of Section 2.2. Call f(¢, v) the extended fringe rooted at v.

As in Section 2.2, consider a sequence of random finite trees .7, and let V,
be a uniform random vertex of .7,. Then we can consider the associated
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extended fringe F, = f(7,,V,). Note that the first entry F,, of F, =
(Fy 0, F, 1, Fy 5, ...) is just the random fringe subtree %, of Section 2.2.

ProrosITION 11. Let (9},) be a sequence of random trees with asymptotic
fringe distribution . Then the extended fringes (F,) converge in distribution
to u, the unique invariant measure satisfying (34).

Proor orF ProposITIONS 10 AND 11. Assertion (a) is immediate from the
definitions. Let X,, X;,... be the monotone representation of some random
sin-tree, and let u; = dist(X,, ..., X;). Then the random sin-tree is invariant
iff for each i,

mi(tos--r8) = mi—a(tr, ..., 8)Q(E1, 20).
By induction, this is equivalent to: For each i,

(35) mi(to, ... t;) = "T(ti)JI;IlQ(tj’tj—l)’

where 7 = u,. This implies uniqueness in assertion (b). Existence is estab-
lished by taking (X;; i > 0) to be the P -chain of Section 2.1 started with
distribution 7, for which

i—1
wi(to,---»t;) = (o) I—%Pv(tj, tiv1)
j=

- (1) [1Q(t 6-0) by (4)

To prove convergence, let (X%, X*, ...) be the monotone representation of
the extended fringe of .7,. Then for trees ¢, € T \ I,

P((X(’f,..., Xik) = (to,...,ti)) =P(%, = ti)jli—llQ(tj’tj—l)

using the interpretation of the product term as the number of paths (root =
Vg, U1, -- -, U;) in the tree ¢; such that for all j the fringe subtree f(¢;,v;)
equals ¢;.

Proposition 11 now follows from (35). O

4.2. Convergence of functionals. We have taken for granted that the reader
understands the connection between convergence of trees and convergence of
the kind of explicit statistics (e.g., degrees of vertices) mentioned in the
introduction. Here we spell out the connection for the reader unaccustomed to
thinking about convergence of random processes.

As in Section 2.2, let f(,V) be the random fringe subtree rooted at a
uniform random vertex of a random tree 7. Let g: T — R be an arbitrary
function. Then we can define

(36) I(7) =&(f(7,V)).
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Think of T, as a functional on random trees (pedantically, it is a functional of
the trees and the external randomization defining V). If (7,,) has asymptotic
fringe .7, then

(37) T (7%) —a 8(F)
for all functions g: T — R. And convergence of expectations
ET,(7,) — Eg(F)
will follow upon verification of the usual uniform integrability condition.
For example, the functionals
I'(7") = proportion of vertices of .7~ which are leaves,
I'(.9") = out-degree of uniform random vertex,
(") = size of subtree of uniform random vertex,
I'(7") = height of subtree of uniform random vertex,

arise from the functions
g(t) = 1(t=triv)’
g(t) = root-degree(t),
g(¢t) = ltl,
&(t) = ht(z).

Aside from the results about out-degrees mentioned in Section 3, few special
cases appear in the literature. References to calculations with the general
continuous-time branching process are in Jagers and Nerman [22]. Moon and
Meir ([28], Corollary 2.2) give the result for heights for conditioned
Galton-Watson trees.

Convergence of extended fringes enables us to extend (37) to other function-

als. Let g: T —» R be a function on sin-trees. Let f(.7, V) be the extended
fringe of 7, as in the previous section. Let

(38) (7)) =e(f(7,V)).

Convergence of fringe distributions implies convergence of extended fringe
distributions to an invariant sin-tree F (Proposition 11) and hence

(39) T (7)) —a &(F)

for each continuous g: T* — R. Such functionals T, are the local functionals
to which our theory applies. Note that continuity is a strong requirement for
g, since T” has the product topology. Roughly, g must be almost unaffected by
any modification of a tree which affects only relations of the root who have no
recent common ancestor with the root.

Simple examples are

I'(9) = distance from uniform random vertex to nearest leaf,

I'(.7") = number of vertices at distance j from uniform random vertex,
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which arise from
g(t) = distance from root to nearest leaf,

g,(t) = number of vertices at distance j from root.

Grimmett [18] studies the former functional of the uniform random labeled
tree model.

Returning to convergence of fringe subtrees, here is a more elaborate
example. Say s is a root-subtree of ¢ if s can be obtained from ¢ by repeating
the operation “‘delete some leaf of current tree”. Fix a tree ¢. Writing v for a
generic vertex of ¢, define

N(t’ S) = Z l(s is a root subtree of f(¢,v))*
v
Then N(¢, s) counts the number of times s appears as a pattern in ¢, in the
terminology of Steyaert and Flajolet [35] who study its properties in the
context of the conditioned critical Galton-Watson model. Obviously, knowing
that a family (7},) has asymptotic fringe distribution 7 tells us the asymptotic
proportion of such appearances:

N(Z,,s
%‘ - p(S) = Zt 77-(t)]'(s is a root-subtree of ¢)*

Finally, convergence of random fringe subtrees f(7;,V,) to & implies
convergence of he f(7,,V,) to h(¥) for any function A: T —» T. For in-
stance, consider the mapping A: T — T which eliminates vertices of out-
degree 1 by taking each path segment vgy,vy,..., v; for which the interior
vertices (but not v, and v;) have out-degree 1 and collapsing the segment into
a single edge (v, v;). This is a standard compaction idea. If 7, is the digital
storage tree, then the PATRICIA tree of [25] (Section 6.3) is defined to be
h(Z,). Thus the form of the asymptotic fringe for random PATRICIA trees
can be deduced from the form for digital storage trees.

4.3. Reduced Markov descriptions. There is a natural construction of
random marked trees, which we now describe (omitting measure-theoretic
details). Take a mark-space S. For each x € S, let there be given a distribu-
tion (Cy;v,(x), 1 <i < C,), where C, > 0 is integer-valued and each y,(x) is
S-valued. Write

R(x,") = ¥ P(v(%) € -),

so that R is a nonnegative kernel on S. Suppose v is a probability measure on
S which is invariant under R. For each x we can construct a random marked
tree .7, as follows. Mark the root x. Let the root have C, offspring, marked
Y1 --+» Yc, Conditional on these values, the children reproduce independently,
a child marked z having C, offspring marked y,(z), 1 <i < C, and so on.
Suppose these trees .7, are a.s. finite. Then let = %, where X has
distribution ». Considered as an unmarked tree, .# has distribution =, say. It
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is easy to see (from the assumption that v is invariant under R) that = is a
fringe distribution.

Conversely, given a fringe distribution 7, a Markov description of = is a
collection of a mark space S, offspring mark distributions (C,;y,(x), 1 <i <
C,) and an R-invariant measure v such that the tree % constructed above has
distribution .

Such a description always exists, for a trivial reason: We can take S =T
and mark each vertex v of the random tree by the subtree rooted at v. This is
the unreduced Markov description, where R is just the matrix @ of (1). What
is interesting is the case where we may take S to be a simpler set than T, in
which case we say we have a reduced Markov description. Examples are given
in the next two sections.

The corresponding invariant sin-tree, considered as a marked tree, can be
constructed as follows. Let the vertices on the infinite path from the root be
marked (X,, X;, X,,...), where X, has distribution » and (X, { > 0) is the
S-valued Markov chain with transition kernel

(40) P*(x,dy) = v(dy)R(y,dx) /v(dx).

Conditional on this sequence, let the branches (B;, i > 0) be independent, with
B, distributed as %y and B, distributed as #x x _, i > 1, for & , defined
as follows.

4.,y 1is constructed as 7, except that the distribution of the number and

X x

marks of first-generation offspring is changed to the following distribution:
P(C, =¢; () €dgy,...,9() € dg.)

_ L,P(C,=c+ 1;y(x) €dgy,...,v(x) €dy,...,y..1(x) €dg,)
O(c +1,x,dy) ’

where
O(c + 1,x,dy) = }_ P(C, =c + 1,y,(x) € dy).

The argument that this construction does give the invariant sin-tree is very
similar to the argument in the special case [22] for the time-homogeneous
general branching process—we omit the details.

Call the chain (X;; i > 0) the ancestor chain.

Note that, in the unreduced description, (40) is just the definition (4) of P,:

P,(s,0) = m(t)Q(t,5) /m(s).
In other words, P, is the transition matrix for the ancestor chain in the
unreduced description of the invariant sin-tree. That was the essence of the
proof of Proposition 10.

4.4. The one-dimensional Markov case. Suppose we may take the mark-
space S to be [0,%) or a subset thereof and suppose the kernel R has the
monotonicity property

(41) R(x,(x,%)) =0 foreach x.
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In this case we have a one-dimensional Markov description of the fringe
distribution and the associated invariant sin-tree. Here are the examples.

The fundamental example is the general continuous-time branching process
of Section 3.1. Here (y;(x), i > 1) are the nonnegative values of (x — 8;, i > 1).
That is, we also have time-homogeneity for the offspring distributions. In this
example, the ancestor chain (X;) is a renewal process on [0, ). Proposition 11
and (16) imply convergence of the extended fringe to the invariant sin-tree and
this latter type of result is the main issue of [32].

(Remark: In the context of population processes, one can also consider the
process of descendants into the indefinite future, which does not make sense
for the general random trees considered in this paper.)

This example suggests the intuitive interpretation of the marks as time of
birth, with time measured backward from the present time 0. This interpreta-
tion is the motivation for assumption (41), which says that children are not
born before their parents.

In the special cases of the Yule tree (Section 3.2) and the binary search tree
(Section 3.3), the ancestor chain (X,) is just a Poisson(1) counting process.

For the conditioned critical Galton—-Watson process with ¢ offspring (Sec-
tion 3.4), the asymptotic fringe distribution is the unconditioned Galton-
Watson family tree 7. This is one-dimensional Markov in a degenerate sense:
We can take a single mark 0 and set the offspring number C equal to ¢. Here
the branches (B;, ¢ > 0) are independent, B, =; .7, and for i > 1, each branch
B; has the distribution of the family tree of the modified Galton—-Watson
process described as follows. The second and subsequent generation offspring
distribution is ¢; the first-generation offspring distribution is &, where

P(é=c)=(c+1)P(é=c+1)/Et, ¢=>0.

Almost the same sin-tree occurs in a slightly different context; see Section
7.5(d).
- For random tries (Section 3.6) think of the mark of a vertex v as an integer
m indicating the number of strings with prefix v. Here m > 1 is an integer.
The distribution (C,,;y(m), 1 <i <C,,) is as follows. C;, = 0. For m > 2,
throw m balls at random into d boxes. Let C,, be the number of occupied
boxes and y,(m), ... be the numbers of balls in the occupied boxes. Note that
this description of the ‘“Markovian evolution” does not involve the parameter
u appearing in the asymptotic fringe distribution for subsequences. The
parameter u does appear in the description (31) of the invariant distribution
v. In other words, what happens here is that the kernel R at (41) has a (cyclic)
one-parameter family of invariant distributions.

(Actually, for random tries and digital storage trees, it turns out to be more
natural to use two-dimensional Markov descriptions, specified in the next
section.)

4.5. Extremality. Aside from permitting concise descriptions of invariant
sin-trees, reduced Markov descriptions are technically useful for verifying the
extremality condition used in Proposition 7 on convergence of empirical pro-
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portions. Note that extremality of a fringe distribution is equivalent to ex-
tremality of the associated invariant sin-tree, by Proposition 10.

We first quote a Markov chain result, a variation of the standard result
about coupling. As noted by Hermann Thorisson (personal communication), it
can be deduced from more elaborate results in Greven [17].

PropPOSITION 12. Let P* be a Markov transition matrix on a mark space S.
Call a Markov chain with transition matrix P* and initial state s a (P*, s)-
chain. The following are equivalent:

(a) There are no nonconstant bounded P*-harmonic functions.

(b) For each pair s, s, € S, we can construct a (P*, s,)-chain (X,: n > 0),
a (P*, sy)-chain (X2 n > 0), a random time 7 < » a.s. and a random shift
—w < g < » such that for each n,

X!=X2 _ a.s.on{n=x=r}.
We call the construction in Proposition 12(b) a shift-coupling. The next
result, proved in Section 5, is the only mathematically serious result of the

paper.

THEOREM 13. Let (X;; i > 0) be the ancestor chain in some reduced
Markov description of an invariant sin-tree u. Suppose the conditions of
Proposition 12 are satisfied by (X;). Then u is extreme.

We now use Theorem 13 to prove extremality of the limits in the random
tree models of Section 3. For a conditioned critical Galton-Watson process
(Section 3.4), we noted in the previous section that the ancestor process has a
single state, so all is obvious. For the Yule tree (Section 3.2) and the binary
search tree (Section 3.3), we noted that the ancestor process was the Poisson(1)
counting process, which certainly admits shift-coupling. Indeed, for the general
continuous-time branching process, the one-dimensional ancestor process is a
renewal process and (provided it is nonlattice), the classical Choquet—Deny
theorem says that condition (a) holds, so we have extremality.

Now consider tries (Section 3.6) and the subsequential asymptotic fringe
distribution %, defined there. As stated in the previous section, there is a
one-dimensional Markov description in which a vertex v of the fringe distribu-
tion is marked by the number x of leaves in its subtree. But it is more natural
to use a two-dimensional reduced Markov description with mark space S =
{(i, m): —» <i < ®, m > 1}. Here a mark (i, m) indicates that the vertex (in
the trie with = d’** leaves) is at height j — i and its fringe subtree has m
leaves. The offspring of (i, m) have labels (i — 1, y,(m)), (i — 1, y,(m),...), for
y(m) as in the above section. This description gives a simpler form to the
ancestor process: It has transition matrix specified via

(42) (i,m) > (i+1,m+B;,),

where B, has Poisson distribution with mean d“*(1 — 1/d).
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It is easy to see that, in any Markov chain of form (42), a sufficient condition
for shift-coupling is

(43) lim ¥ P(B; = b) — P(B; = b+ 1)| = 0.
=% p

This certainly holds in the present case, so .%, is an extreme distribution.

For the sin-tree associated with the fringe .#, of the digital storage tree of
Section 3.7, there is a natural two-dimensional mark space S = {(i,#): —» <
i <x, 0 <t<2%. Here a mark (i,¢) indicates a vertex in the tree at time
~ 2/*% which is at height j — i and which was inserted at time ¢#2/. In the
reduced Markov description, the individual (i,#) has at most two offspring
labeled (i — 1,¢ + 2'7%¢)) and (i — 1,¢ + 2'7'¢,), where ¢,, £, are independent
exponential (1) and the offspring exist if ¢ + 2!~ < 2% The ancestor chain
has transitions of the form

(i,¢) > (i +1,s), 0<s<t,
occurring at rate
2,~fi+1(3)
fi(t)

where f, is the density function of the r.v. ¥ ;° __2™¢  for independent (¢,,)
with exponential (1) distribution. Now write

0, %), (1, X,), (2, X,), ...

for the ancestor chain started at (0, x). It is enough to show that chains (X, ;
n > 0) with different starting points x can be coupled. But the process
Y, = 2"X, is a homogeneous Markov chain with transition kernel

exp(—(t — 5)2°),

fo(2)

foly

It is enough to show that P defines a Harris recurrent chain, for then
(Asmussen [7], Proposition 6.3.13) (Y,,), and hence (X,), admits coupling. Now
P has stationary density fo, and proof of Harris recurrence is just a simple
variation on [7] (Example 6.3.1).

A z
P(y,dz) = exp(—(y— —)), 0<z<2y.

2

5. Proof of Theorem 13. Fix an invariant sin-tree distribution u =
dist(F) and its associated fringe distribution . Let (B,, B, B,,...) be the
branch representation of F and let (X, X;, X,, ...) be the monotone represen-
tation. Recall that (X,; n > 0) evolves as the P, -chain, for P, defined at (4).
Say h: T — R is bounded P_-harmonic if A is bounded and

h(s) = ¥ P.(s,t)h(t) foralls.

Note that (A(X,); n > 0) is a bounded martingale, when A is bounded
harmonic and (X,,) is a P_-chain.
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LEMMA 14. The following are equivalent:

(a) = is extreme.
(b) w is extreme.
(¢) Each bounded P_-harmonic function is constant on {t: w(¢) > 0}.

Proor. The equivalence of (a) and (c) is routine: Given harmonic #,
consider the distribution 7, defined by d,/dm = ch, ¢c™! = [hdm. As previ-
ously noted, the equivalence of (a) and (b) follows from Proposition 10. O

Now fix b',b® € T and for j = 1,2, let F/ have the conditional distribution
of F given B, = X, = b’. Write (b’, B{, B}, ...) and (b’, X{, Xj,...) for the
branch and monotone representations of F/.

LeEmMA 15. Under the hypothesis of Theorem 13, we can construct a joint

distribution (F',F2), a random time 7 and a random shift o such that
Bl =B2, on{n=>7}.

Proor. We may suppose the trees possess the marks given by the reduced
Markov construction. Fix arbitrary marks s!, s2 and for j = 1,2, let (Z/;
n > 0) be the ancestor process with Zj =s/. By Proposition 12, we can
construct a shift-coupling of these ancestor processes using times 7', 0. Then
by considering the construction [below (40)] of the invariant sin-tree from the
ancestor process, we see that if (Z1_,, Z!)=(Z2, _,,Z2, ), then we may
take Bl = B2, . Thus the lemma holds for 7 =7'+ 1. O

From now on, let (F!, F2) have the joint distribution given by Lemma 15.
Consider the monotone representations (X/; n > 0) of the conditioned sin-trees
F/; these are P_-chains with initial states &’. Informally, X; has the same
information as does (b/, By, ..., By) except that the location of the original
root is forgotten. If the shift-coupling of Lemma 15 could be extended to a
shift-coupling of the processes (X/; n > 0), then we would be finished (by
Proposition 12 applied to P_). But we cannot carry through such an argument,
so instead use a more devious method. Fix a harmonic function A with
0 < k < 1. By the martingale convergence theorem, the limits

(44) L/ = limh(X))

exist a.s. and h(b’) = EL’. We shall show
(45) L'=L% as.

and then A(b!) = h(b?%), so by Lemma 14, the theorem is proved.

For t € T® and v a vertex of t, write t[v] for the tree rerooted at v. Let A
be an operator which, to each t € T*, associates a probability measure A(t, - )
on the vertices of t. Let £, denote a random vertex of t with distribution
A(t, - ). Say A is F-symmetric if the joint distribution (F,F[£z]) on T X T* is
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symmetric. This implies, in particular, that the randomly rerooted tree Fl¢g]
has the same distribution as F.
Here is a technical lemma whose proof is deferred.

LemMMA 16. There exist operators Ay, N > 1 with the following properties.

@ pt, &) >, as N - o for each t (p is defined below).

(b) For any two sin-trees t,, t, which differ by only finitely many vertices,
we can construct a joint distribution for ¢ and ¢ such that P+ ¢ -0
as N - o,

(c) Each Ay is symmetric for each invariant sin-tree.

(d) For each invariant sin-tree F,

P (fﬁ’ is on the infinite path from the root) -0 asN - w.

We need yet more definitions. Fix t € T*. Write S(t) for the set of vertices
of t which are neither in the infinite path from the root, nor in the fringe
subtree at the root. For v € S(t), the infinite path (v = vy, v, v,,...) meets
the infinite path (root = w,, w,, w,,...) at some vertex v, = w,, say, where
a,b > 1. Define

p(t,v) =0,
Vo= U,,
v_= Ua—l'

For v outside S(t), set p(t, v) = 0. Using the fixed bounded harmonic function
h, define

At,v) = { R(f(8,0.)) = R(f(802)), v e S(H),
1 else,
where f(t,v) is the fringe subtree rooted at v.
Lemma 17. For operators Ay as in Lemma 16 and for any invariant
sin-tree F,
EA(F,£(8) =0 asN - .

Proor. For any F-symmetric operator and any L > 1,
(46)  EA(F,ép) <s(L) + P(p(F,£¢) =0 or I(¢p).] <L),
where
s(L) = ESliplh(Xn) —h(X,_)Myx, > 1)

Consider the sequence Ay of operators given by Lemma 16. By properties (a)
and (d), as N — o (L fixed), the final P(-) term of (46) tends to 0. Thus it is
enough to show that s(L) — 0 as L — «. But this is an easy consequence of
the upcrossing inequality for the martingale (h(X,), n > 0).



256 D. ALDOUS

Now consider a sin-tree t, and let t!, t? be sin-trees obtained by deleting a
finite number of vertices from t and rerooting. Then (t!, t2) admits coupling of
side-branches, in the sense of Lemma 15. Conversely, any pair (t!, t2) which
admits coupling of side-branches is of this form, for some t. Let A, be
operators as in Lemma 16 and let ¢ JN = ¢) be the corresponding random
vertices of t/. By Lemma 16(a, b), we may suppose

P(f{"#fé")—»o as N - o,
p(t', &) =, as N — o,
Therefore, also using Lemma 16(d),
P(¢N e S(t7),j=1,2and f(t,(£V)_) = F(t* (£Y)_)) >, 1 as N>,

where (& JN )_ is defined as (v)_ above. But for each N, on the event above, we
have

(A (62).)) = B 62),)) = X A 68)

for our fixed harmonic function 0 < 2 < 1. Suppose now that the limits
1= limh(x,{), j=1,2,
n

exist, where (x/; n > 0) is the monotone representation of t/. Then the
foregoing implies

2
' —1?| < liminf E A(t7, ¢N).
| | < im in ng (t7,&N)

Applying this to the shift-coupled realizations of (F!, F?) given in Lemma 15,
2
EIL' - I*| < liminf E Y A(F/, ).
j=1

But the limit is 0 by Lemma 17, so L' = L? a.s., giving (45) and establishing
the Theorem. O

Proor or LEMMA 16. Fix a sin-tree t. Let (W,; u > 0) be continuous-time
random walk on the vertices of t: more exactly, the continuous-time Markov
chain with transition rates

rate(v » w) = 1, each edge (v, w).

This chain is null-recurrent, by considering the induced walk on the infinite
path from the root. And the uniform distribution is invariant for this chain.
Write An(t, ) for the distribution of Wy, given W, = root. Null-recurrence
implies that, for each fixed vertex v, P(Wy =v) - 0 as N — », and this
establishes part (a) of the lemma.

Here is a sketch of the proof of (b). The general case reduces to the case
where t,, t, differ by only one leaf; this further reduces to the case of walks on



FRINGE DISTRIBUTIONS FOR TREES 257

0,1,2,3,...)and on (1,2, 3,...); here the simplest independent coupling idea
works.
For (d), the event under consideration can be rewritten as

root(F) isin the fringe of F[fﬁ’] ,

where fringe means fringe at the root. By the symmetry property, this has the
same probability as the event

root(F[¢N]) (which = ¢¥) is in the fringe of F.

But this probability tends to 0 by (a).

It remains to prove the symmetry property. Note that we can define the
random walk (W,) on any finite tree ¢. Then the stationary distribution is
uniform: give W, this uniform distribution. Then (W,, Wy) =, (Wy, W,), by
time-reversibility, and applying this construction to a random finite tree .7~
gives
(47) (7, W, Wy) =4 (7, Wy, Wp).

Now let F be an invariant sin-tree. Appealing to Propositions 2 and 11, there
exist random trees 7 * such that

(T, Uk) -, F
for uniform random vertices U*. Applying this with W and W (the positions

at times 0 and N of stationary random walk on Z*) in place of U*, it is easy
to see the existence of a limit joint distribution

(F(T7% W), £(T*, W) =4 (F, F,), say.

This limit joint distribution is that of (F, F[¢X]), and the joint distribution is
symmetric by (47). O

6. More examples. In the examples of Section 3, the nature of the
asymptotic fringe distributions was rather obvious. Here are some examples
where the behavior is less clear.

6.1. Uniform random spanning trees of graphs. Let G be a finite con-
nected graph on n vertices. A spanning tree of G is a subgraph—with the
same vertices but in general fewer edges—which is a tree. Let (X;; j = 0) be
random walk on G, that is the discrete-time Markov chain Wlth transition
matrix P of the form

P(U w) = {l/ru if(v,w) is an edge,
, 0 if not,

where r, is the degree of v. Let X, be arbitrary. For each vertex v let T, be
the ﬁrst hitting time:

T, = min{j > 0: X; = v}.
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Define a subgraph J(G) of G to consist of the n — 1 edges
(X7,-1, X1,), v # X,.

It is clear that J(G) is a random spanning tree. It is not obvious, but is
nevertheless true (see Aldous [2], Broder [8]) that Z(G) is a uniform random
spanning tree of G.

So for a sequence of graphs G, we may consider asymptotic fringe distribu-
tions for (G,). A simple example is where G, is the complete graph on n
vertices. Then 7(G,) is the uniform random tree on n labeled vertices, which,
as remarked earlier, is the same as the conditioned critical Galton-Watson
branching process whose offspring distribution is Poisson(1). Thus the asymp-
totic fringe is .73, the corresponding unconditioned branching process.

It is proved in [2] (Proposition 10) that, for the cube graphs G, = {0, 1}¢ and
related highly-symmetric graphs, the asymptotic distribution of out-degree in
I(G,) is Poisson(1). Modifications of the arguments there yield the stronger
conclusion that the asymptotic fringe in this example is the same 7] as occurs
with the complete graphs.

Finally, fix d > 2 and consider the discrete torus G, = {0,1,...,k — 1}¢,
k > 1. As k — o, it is intuitively apparent that the asymptotic fringe distribu-
tion %, exists and may be regarded as a random subtree of Z¢. But it is not
obvious whether %, contains all the vertices of Z?. Pemantle [33] has shown
this happens iff d < 4, using ingenious arguments with loop-erased random
walk. Further study of these limit random trees, which (like those in the next
section) presumably have interesting fractal properties in low dimension,
remains a hard open project.

6.2. Euclidean minimal spanning trees. Let &,,...,¢&, be independent
random points in R? with some common density function. Let .7, be the
Euclidean minimum spanning tree on these n random points. As n — «, the
distribution of points around a typical point £, suitably rescaled, converges to a
point process .#"® which is a Poisson (rate 1) point process with an extra point
at 0. It is therefore plausible that the extended fringe associated with ()
should converge to an infinite sin-tree 7~ which can be interpreted as the
Euclidean minimum spanning tree ort the infinite vertex-set .# °. This is
discussed in Aldous and Steele [5], where a type of convergence is proved to a
limiting forest on vertex-set .# °. Proving that this limit forest is a.s. a single
sin-tree seems a difficult problem related to continuum percolation.

6.3. Greedy undirected tree. The random recursive tree of Section 3.2
could be regarded as a spanning tree of the complete graph, where we put i.i.d.
random weights on the edges and grow the tree by attaching vertices in
prespecified order to the existing tree using the minimum-weight edge. In this
setting, if we do not specify the order of attaching vertices, but instead use the
usual greedy algorithm for constructing minimum-weight spanning trees, then
we get the following tree. Fix n. Define forests (%,; 0 < i < n — 1) on vertices
{1,2,...,n} as follows. #, has no edges. %, has the edges of %#,_; and an
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extra edge (v, w) chosen uniformly from the set of edges with end-vertices in
different components of #;_,. Then %, _, is a random tree: call it .7,,.

It is shown in Aldous [1] that (.,; n > 1) has asymptotic fringe distribution
7 described there as follows.

Write . for the family tree of a Galton—Watson branching process with
one progenitor and Poisson(s) offspring distribution, considered as a rooted
unlabeled tree. Construct a random tree process (#: 0 < s < «) as follows.
#, is aroot only. During time [s, s + ds], each vertex v of &#, has chance ds
to have attached to it an independent copy of <, if the realization of &, is
finite: If infinite, nothing is attached, but at the first time 7* when some
infinite tree is attempted, the vertex v at which this occurs is distinguished.
This construction yields a finite tree &%, with one distinguished vertex. Delete
the branch containing the distinguished vertex (if it is not the root): Call the
remaining tree #.°. Then 7 is the distribution of s#°.

Without giving details, let us describe the corresponding invariant sin-tree.
Use the construction above to define a marked tree, where the marks are
defined as follows. Let s*(v) be the time at which v is added to the tree-pro-
cess. Then give v the mark s(v) = max(s*(v),7*) > 1. In the corresponding
invariant sin-tree, these marks decrease along the infinite path of the sin-tree.
To be consistent with our setup in Section 4.4, we want to reverse time, and it
is convenient to replace marks s € (1,») by marks u(s) € (0,1) using the
decreasing function

u(s) =sF(s), F(s)=P(4 <=).
It turns out that the invariant sin-tree has a one-dimensional Markov descrip-
tion. An individual marked z has a Poisson(A(x)) number of offspring each

marked uz and also a Poisson process with rate p(u') of offspring with marks
u' < u, where

ulogu
A(u) - 1 ’
() l1-u+logu dA(u)
u) = = .
g (1-u)’ du

The invariant measure v of Section 4.3 works out to be
v[0,u] =A"Yu), O=<ucx<l,

where A~! denotes the inverse function. The transition kernel P* for the
ancestor chain is

P*(u,{u}) = Mu),
v(dx)
v(du)

Asutl, Mu)~1- (@1 - u)/2and p(u)v(dx)/v(du) ~ 3 on{u <x < 1}. Itis
now not difficult to use Theorem 13 to prove extremality.

P*(u,dx) = p(u) du, u<x<l1.

ReEMARKS. Informally, the invariant sin-tree for this model is asymptoti-
cally like the invariant sin-tree for the conditioned Galton-Watson process of
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Section 3.4, with Poisson(1) offspring distribution. This observation strongly
suggests that global statistics (diameter, mean distances between random
vertices, etc.) in this model are asymptotically exactly the same as for the
Galton—-Watson model, which in this case is the uniform random labeled tree.
Proving such assertions remains an open question.

It is not hard to show by direct calculation that this model is not¢ coherent.

A well-studied problem (e.g., Frieze [16]) concerns the weight W, of the
minimum-weight spanning tree of the complete graph on n vertices, where the
edges are given ii.d. nonnegative weights. This minimum-weight spanning
tree is in fact the same random tree as .7, above. By considering the edges of
. as being marked by weights, the ideas of this paper are used in [1] to

n

recover and slightly improve known results on the asymptotics of W,.

6.4. 2-3 trees and fringe analysis. An interesting technique, sometimes
called fringe analysis, applicable to certain families of random trees was
introduced by Yao [37]. Having nothing new to say, I shall not go into details,
but shall briefly indicate the connection with the present work.

Write T,* for the set of all rooted trees for which: (i) all leaves are at height
h; (ii) all internal nodes have out-degree 2 or 3. Let T* = U ,T,*. Given
t € T* and h > 1, there is an h-fringe of ¢, the multiset of all subtrees of #
which have height A. Such subtrees are in T}*. Write f,(¢, s) for the propor-
tion of the subtrees in the A-fringe which are isomorphic to s.

Yao [37] studied a certain family (,; n > 1) of T *-valued random trees and
observed the following special property. For each h, the process of mean
proportions of fringe subtrees

(48) n > (Efu(Zn,s); s € T¥)
evolves in the same way as the process
(49) n— (P(Z}=s);s €Ty)

for a certain T,*-valued Markov chain (Z”; n > 1). This chain has some
stationary distribution 7,(-) on T;*, which can be calculated numerically for
small A. And global functionals of the tree can be bounded by functionals on
Ty*, so numerical bounds for asymptotics of such global functionals can be
computed.

In the terminology of the present paper, the family (7,; n > 1) has an
asymptotic fringe distribution of the form

T = Zch‘"'h
h

for some constants (c;,); the limits (7,) must fit together via
ChTRQ = Cp_ 1Ty
for @ as at (1).
An abstract treatment of this idea of models where fringes evolve with n as
Markov chains was given by Eisenbarth, Ziviani, Gonnet, Mehlhorn and Wood

[12]; more examples are given there and in subsequent papers, for example,
[34, 9]. Aldous, Flannery and Palacios [6] observed that, in the abstract setting
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proposed in [12], the Markov chain arises from an urn model and that one
could deduce a.s. convergence of fringe proportions. That is, there is an a.s.
fringe 7 in the sense of (11).

These models are the simplest examples where one can show that asymp-
totic fringe distributions 7 exist without being able to describe 7 explicitly. An
open question about these models concerns the asymptotic behavior of heights,
that is to say the evaluation of the limit constant

y ht(.7,)
[ logn

Here y can be expressed in terms of the limiting sin-tree. There are some
heuristic arguments using sin-trees to obtain explicit values of y in certain
models; it is a challenging open problem to formalize these arguments.

7. Technical examples and remarks.

7.1. k-type critical Galton-Watson branching process. Here is an example
of a fringe distribution which can be described simply but which does not have
a one-dimensional reduced Markov description.

An extension of Example 3.4 is to replace the offspring distribution ¢ by a
family (¢, ;; 1 < i, j < k). Suppose that the matrix of means

i
M; ;= E¢; ;

is an irreducible stochastic matrix, which therefore has a unique stationary
distribution p. Suppose that a type i individual has (for each j) ¢; ; offspring
of type j, who themselves have offspring independently. This specifies a
critical k-type Galton-Watson process, and under a minor nondeterminism
assumption, the family tree 7, for the process started with a single type i

individual is a.s. finite. It is straightforward to check that the mixture
m= Y p(i)dist(7; )

is a fringe distribution. The associated invariant sin-tree is given by the
construction in Section 4.3, with (M, p) replacing (R, v). However, we lose the
monotonicity property (41) and so the limit is not one-dimensional Markov as
defined in Section 4.4.

One’s initial reaction to this example is to say: change the definition of
one-dimensional Markov to allow multiple types. But this is not satisfactory,
since if we were to allow an infinite number of types, then (as observed in
Section 4.3) we could declare tree ¢ to be “type ¢’ and the notion of “Markov”’
becomes vacuous. Allowing only finitely many types does not resolve the issue,
because the current example could be restated with infinitely many types.

ReEMARK. It is undoubtedly true (but may be technically messy to prove)
that this = is the asymptotic fringe distribution (as n — «) associated with the
critical k-type branching process conditioned to have population size equal
to n.
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7.2. Balanced deterministic trees. Recall from Section 4.1 the branch
representation (B;; i > 0) of an invariant sin-tree. In the critical Galton-
Watson limit case, the branches are i.i.d. for i > 1. In all the other natural
examples, the size of the branches |B;| tends to increase with i. One might
conjecture that this is a general fact: Here is a counterexample to several
formalizations of this idea.

Let d;,d,,... > 1 be deterministic and such that

D= Y 6,<w, whered, = (dydy - d,)"", 8,=1.
i20
For each h, let ¢, be the deterministic tree of height 4 in which the root has
degree d,, each first-generation offspring has out-degree d,_;, each second-
generation offspring has out-degree d,_, and so on. Then (¢,; A > 0) is a
(height- or size-) coherent family with asymptotic fringe distribution

w(t,) = 8,/D, h > 0.
Consider the case where
dj2=2, j=1, d; = 1 otherwise.

Then the branch size process (|B;|; i > 0) is of the form (b, ,; i > 0), where 7
is a random shift and b; = 1 for i # j2. Clearly this process is not increasing in
any strong sense.

7.3. Marked trees. We set up our general theory for rooted trees without
any extra structure. Most types of structure can be handled by introducing
some suitable mark space S and considering marked trees. For instance:

1. To handle ordered trees, we introduce a mark space S, 4 = {1,2,...} and
mark the ordered offspring (v;, v,, . ..) of each vertex v with marks 1,2, ... .

2. To handle a tree with edge-weights (e.g., in the random minimum-weight
spanning tree problem mentioned in Section 6.3), we mark each vertex with
the weight of the edge leading from that vertex to the root, using label-space
S = (0, ).

3. For trees built with vertices in R¢, we just mark each vertex by its position
in R%.

4. In studying continuous-time branching processes (Section 3.1), each vertex
of 7, represents an individual born before time ¢. It is natural to mark the
individual with its birth-time (most conveniently measured backwards from
time ¢).

Several types of structure may be present simultaneously: Just use a
product mark space.

To make a theory, let S be either countable (with the discrete topology) or
uncountable and equipped with a Polish topology. Write Ts for the set of finite
rooted trees with marks from S. Thus ¢ € T has a vertex-set v(¢), an edge-set
e(t) and marks {s(v): v € v(¢)}. Two marked trees are identical if there is an
isomorphism between vertices which preserves edges and marks. To discuss
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convergence of trees or random trees, we require that the mark-space S be the
same for all the trees under discussion. For marked trees ¢,, t., the assertion
t, = t, means: For each sufficiently large n, there exists an isomorphism
¢, v(t,) — v(t,) which preserves edges and is such that s,(¢,(v)) — s(v) as
n — « for each v € v(t,).

The general results of this paper apply to marked trees with essentially no
change. In Lemma 4 (fringe-tightness) we need to add a condition

(iii) {s(W,):k=1,2,...}istight on S.

Theorem 13 becomes nicer in this setting. Regarding an invariant sin-tree
in a reduced Markov description as an invariant marked sin-tree, the shift-cou-
pling of ancestor chains property becomes necessary, as well as sufficient, for
extremality.

7.4. Analogy with stationarity. Let us list analogies between our results
and standard elementary facts about stationary sequences.

Fix a finite set S. Suppose that for each n, we have a sequence of S-valued
random variables (X, ,..., X, ,). Let U, be uniform on {1, ..., n}, indepen-
dent of the X’s. For each n, define Y;" = X, u,+i» With some (unimportant)
convention about overflow. Two elementary facts are: If
(50) (512 0) =»4(Y;120),
then the limit process (Yj; ¢ > 0) is stationary and every stationary sequence
arises this way. Our Propositions 2 and 3 are clearly analogs of these facts.
Proposition 7 is analogous to a weak (convergence in probability) ergodic
theorem for stationary sequences (which can be proved in the same soft way,
though is not often given in textbooks). Proposition 10 is analogous to the fact
that the distribution of a one-sided stationary sequence (Y;; i > 0) determines
uniquely the distribution of a two-sided stationary sequence (Y;; — < i < ).
Proposition 11 is analogous to the fact that convergence of one-sided sequences
in (50) implies convergence of two-sided sequences.

Our reduced Markov descriptions in Section 4.3 are analogous to the issue
of representing a stationary process (Y,) as a function Y, = h(X,) of a
stationary Markov process (X,,). There is always a trivial such representation
with X, =(...,Y,_,,Y,), but this gives no information. But if there is a
representation with a simple Markov chain, then we can deduce useful results
about (Y,).

7.5. Final remarks.

1. There is a coding between trees and walks which enables invariant sin-trees
to be identified with a class of stationary processes. This coding yields
alternative proofs of some simple results (e.g., Proposition 7) but does not
help with Theorem 13. It also provides a starting place for the study of
random tree analogs of deeper facts about stationary processes. For exam-
ple, we are studying how the entropy of a limit sin-tree relates to issues in
data compression, that is, ability to code the finite random trees as smaller
trees.
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2. We used random walks on invariant sin-trees as a technical tool in the proof
of Theorem 13, but they have some intrinsic interest which may be pursued
elsewhere. Essentially, the rate of convergence of P(W, = W;) to 0 reflects
the growth rate of the random tree, and in particular provides useful
definitions of trees of exponential/polynomial growth. The case of the
conditioned critical Galton-Watson sin-tree has been studied in detail by
Kesten [23].

3. In the examples of Section 3, central limit theorems for the number of
leaves are known; see Najock and Heyde [31] for the Yule tree, Kolchin
([26], Theorem 2.3.1) for the conditioned critical Galton-Watson process,
Aldous and Shields [4] for the digital storage tree, Jacquet and Regnier [20]
for tries. It would be nice to find some abstract structure which implied
such a CLT, and our best guess is coherence.

4. Our results concern asymptotics of the local structure of trees around a
random vertex. One can also study asymptotics of the local structure
around the root. This is comparatively easy to study directly in concrete
models, but less amenable to structure theory, because obviously any limit
infinite tree can occur. The particular case of conditioned critical Galton—
Watson processes has been studied (e.g., Kesten [23], Lemmas 1.14 and 2.2),
because here the limit tree has the interesting interpretation of the critical
branching process, conditioned to live forever. In this example, it turns out
that the limit root-based sin-tree is almost the same as the limit invariant
sin-tree (based on a random vertex) we derived in Section 4.4; the only
change is that B, has the distribution as B;, i > 1. Some functionals of
finite conditioned branching processes, which we can interpret as function-
als of the root-based fringe, were studied analytically in Meir and Moon
[29, 30].

5. Our work also suggests various structural questions, such as “describe
constructively all coherent families with a one-dimensional reduced Markov
description”.

Acknowledgment. I thank a referee for careful reading and the concise
proof of Lemma 1(c).
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