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EPIDEMICS WITH RECOVERY IN D = 2

By R. DURreTT! AND C. NEUHAUSER2

Cornell University

We consider a modification of the spatial epidemic with removal that
has regrowth of susceptibles. We show that if the original epidemic is
supercritical, then the modified process has a nontrivial stationary distribu-
tion.

1. Introduction. In this paper we will study a process that has been used
to model the spread of epidemics and forest fires (see [4], [13], [14] and
references therein). In the model, each site z € Z? can be one of three states 0,
1 or 2. In the epidemic interpretation, 0 = healthy, 1 = infected, 2 = removed
= immune or dead. In the forest fire interpretation, 0 = alive, 1 = on fire and
2 = burnt. The main result of the paper makes more sense for epidemics but
we will use the forest fire interpretation when we give the proofs and describe
the dynamics:

1. A burning tree sends out sparks at rate a.

2. A spark emitted from x flies to one of the four nearest neighbors x + (1, 0),
x +(0,1), x + (—=1,0) or x + (0, — 1) chosen at random with equal proba-
bilities.

3. If the spark hits a live tree, the tree catches fire immediately and begins to
emit sparks. It burns for an exponentially distributed amount of time with
mean 1, then burns out.

4. Finally, burnt sites return to life at rate g.

At first glance, the spontaneous reappearance of trees may not seem reason-
able. However, there are some situations (e.g., pine forests) where there are
seeds or seedlings everywhere that do not grow in the presence of adult trees
but have a chance to grow after a fire destroys the adult trees. The sponta-
neous regrowth is quite natural for epidemics of nonfatal diseases like measles
that upon recovery confers lifetime immunity. New susceptibles are born and
immune individuals die. We combine the two transitions into the one in step 4
to keep a constant population size.

The case B = 0 is called the spatial epidemic with removal (see [4] for the
historical background and the facts we quote below). In this case it is known
that there is a critical value «,(0) € (0,®) so that if a > «,(0) and we start
with one burning tree in an otherwise virgin forest, then the fire has positive
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probability of not going out. Here the 0 refers to the value of B. Cox and
Durrett [4] showed that when the forest fire does not go out, it expands
linearly and has an asymptotic shape. We will use some of their methods to
show:

THEOREM. If a > a0) and B > 0, there exists a nontrivial stationary
distribution, that is, one that assigns no mass to the “all healthy’ state.

The last result is not surprising in view of the behavior of the contact
process (the extreme case B = » in which the transition from 2 to 0 is
instantaneous). In that case, there is a critical value a () so that if & > a (),
then (a) the fire has positive probability of not going out starting from one
burning tree in an otherwise virgin forest and (b) there is a stationary
distribution concentrated on the set of configurations with infinitely many
burning trees, which is the limit in distribution whenever the fire does not go
out. We conjecture that when B > 0, there is a critical value a,(B) so that
conclusions (a) and (b) hold if (and only if) @ > «,(B8) but we do not know how
to show this.

Before turning to the details of the proof of our theorem, we would like to
discuss three modifications of the model for which we conjecture that the
theorem holds.

1. Suppose we increase the possible states to {0, 1,..., N — 1} and declare that
for 1 <j <N -1, transitions j »j + 1 (mod N) occur at rate 1 (ie.,
N —1 -0 occurs at rate 1). This is a continuous-time version of the
Greenberg-Hastings model (see [9]). A fairly straightforward generalization
of the proof below shows that if @ > «,(0), then this model has a stationary
distribution for any N.

2. While reasonable for epidemics, the spontaneous reappearance of trees is
not natural for forests. In this case, it would be more natural to suppose
that new trees appear at a rate B times the number of occupied neighbors.
Our theorem undoubtedly is true for this variation of the model but we
have not been able to generalize the proof. The main technical problem is
that we must rely on unburned trees to regenerate the forest and hence we
must show that there is always a fairly dense set of survivors.

3. Perhaps the most embarrassing of our assumptions is that we allow the fire
to spread only to nearest neighbors. This is needed for the proof, which
relies on ancient (circa 1980) results in percolation theory. The recent
revolution in percolation technology (see [2], [10]) makes it clear that the
results of [4] and this paper remain valid for forest fires in which sparks go
from x to y at rate a f(y — x) if we assume f is symmetric (f(z) = f(—2))
and has finite range [ f(2) # 0 for only finitely many z]. Zhang Yu (see [2])
has taken the first step in this direction by generalizing the results of [4].

SKETCH OF THE PROOF. The rest of the paper is devoted to the proof of our
theorem. The proof is somewhat complicated, so in what remains of the
Introduction we will describe the ideas on which the proof is based. To be
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strictly shorter than the proof itself, our heuristic discussions will have to
ignore some technicalities. If the reader finds the discussion confusing, he can
skip to the beginning of Section 2 and plunge headfirst into the details. The
only part of the Introduction that we rely on later is the claim that it suffices
to prove Lemma 1.1.

We will prove our theorem using the technique explained in [7]. Let B =
(=L, L)? and B,, = mLe, + B, where e, = (1,0) is the first unit vector. Let
Z={(m,n) € Z*> m + n is even}. We say that (m,n) € 2 is occupied if
there are more than M = L'/? burning trees in B,, at some time ¢ € [nTL,
(n + 1DI'L] and we have at least one burning tree in B,, at all times ¢ €
[(n + DI'L,(rn + 2)TL]. For convenience we will suppose that L is chosen so
that M = L'/? is an integer. We will show:

1.1 LEMMA. T and L can be chosen so that the set of occupied sites
dominates the set of wet sites in a one-dependent oriented percolation process
on £ with parameter p = 1 — 636,

The reader should note that the space-time blocks B,, X [nT,(n + 2)I'] in
which the process has the desired properties are called occupied while points in
the percolation process are called wet and dry. (A.1) in the Appendix implies
that if the percolation process starts with all sites wet at time 0, then for all
even n,

(1.2) P(some site (2k,n) with |k| < K iswet) > 1 — g

and g4 » 0 as K — ». With Lemma 1.1 and (1.2) in hand, standard argu-
ments take over to give our theorem. We start the process from an initial
configuration that has more than M burning trees in each box 2mLe; +
(=L, L)?, m € Z, take the Cesaro average of the distributions from times 0 to
T and extract a convergent subsequence. Because our process has the Feller
property, the limit u is a stationary distribution (see part (d) of Proposition 1.8
in [12]). Lemma 1.1 and (1.2) imply u concentrates on configurations with at
least one burning site. Being a stationary distribution, & must concentrate on
configurations with infinitely many burning sites (or there would be positive
probability of having no burning trees).

It suffices then to prove Lemma 1.1. Most of the work goes into showing
that if T’ < » and we start with at least M = L'/2 burning trees in B, then for
large L, with high probability, we can keep the fire burning, that is, have at
least one burning tree in B at all times ¢ €[0,2I'L]. (Here and in what
follows, italics indicates that we are giving a technical meaning to a phrase.)
Once we demonstrate that we can keep the fire burning, we will have enough
control over the fire to show that if T is large, the fire will spread into the
neighboring boxes B; and B_; by time I'L and produce at least M burning
trees there by time 2T'L.

To keep the fire burning, we will (a) do nothing as long as the number of
burning trees is larger than M and (b) show that if L is large and there are
exactly M = L'/? trees, then, no matter how they are arranged, the number of
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burning trees in B will, with high probability, reach 8L%" before hitting 0.
Here and in what follows, § is a small positive number, whose value is
unimportant and will change from line to line. The first step in proving (b) is a
covering lemma essentially due to Besicovitch [3]. (Here and for the rest of the
introduction, we use the numbering in the body of the text.)

2.2 LEMMA. If there are at most M burning trees, then we can cover an area
of size at least L?/11 in B by disjoint squares with three properties: (i) they
contain no burning trees in their interiors, (ii) they have a burning tree in at
least one corner and (iii) their sides are longer than L%,

BURNING A MEADOW. The squares satisfying (i)-(iii) give us opportunities
for large fires and we call them meadows. Our first goal is to show:

There are constants p, u, A and A so that if [0, K]? is a
meadow at time 0, then with probability at least p, we will

(*) have a nice fire in the meadow, that is, a fraction p of the
trees in [0, K]? will burn and will stay on fire for at least u
units of time during [AK, AK].

To explain why such fires are nice, note that the number of tree-hours of
burning is at least upK?, so at some time we must have (up/A)K burning
trees and by (iii) in Lemma 2.2, this is at least (up/A)L%". The proof of ()
occurs in two steps. First, we pick S large and wait S units of time so that
even if the meadow were completely burnt, then there will be enough trees for
a strong fire. There are two technical problems here: (i) We have to consider a
bond-site version of the forest fire model in [4] in which sites are present with
probability 1 — exp(—BS) and absent with probability exp(—8S) and show
that if the fire is supercritical with all trees present, that is, & > «,(0), then it
is for large S and the techniques of [4] can be used; (ii) we have to show that
not too much of the meadow burns by time S. Here our nightmare is that all
trees on the boundary of the meadow are on fire. To cope with this scenario,
suppose the meadow is [0, K] X [0, K] and let .# be the five-sided region
formed by connecting the following points in the order indicated (J,J),
(3J,J),(3K/4,K/4),(K/4,3K/4), (J,3J), (J,J) (see Figure 1 for a picture).
A straightforward large deviations estimate for first passage percolation gives:

3.6 LEmmA. If J = J, and K > 8J, the probability that the fire reaches .#
by time S is smaller than %, independent of the number of burning trees on the
boundary or the initial state of the meadow (assuming it contains no burning
trees).

Once the S units of waiting time elapses, we are ready to burn .#Z. In this
stage, we ignore the further regrowth of trees so extra burning trees only help
us and we can use the results of [4] (as generalized above). Let .# be the
trapezoid with vertices at (3K/8, K/8), (3K/4, K/4), (K/4,3K/4),
(K/8,3K/8) (again see Figure 1.) We restrict our attention to ./  to have the
following consequence of the proof of Lemma 3.6.
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3.8 LEMMA. There are constants 8, A > 0 so that with probability at least
1 — e %K the fire does not reach ¥ before time K.

The final step in the proof of (*) is to use a block construction from [4] to
show there is a constant p > 0 so that for J > J; and K > 8, the probability
that the fire burns at least a fraction p of ./ is at least p. In our construction,
we only use sites that burn for at least u units of time and bonds with passage
times less than or equal to U so all the burning gets accomplished by time A K.

KEEPING THE FIRE BURNING. To keep the fire burning in B for 2I'L units of
time (i.e., to have at least one burning tree at all times), we have to deal with
two extreme cases: (i) There are a large number of meadows spread evenly
throughout the square (—L, L)? so the largest meadow is small and hence a
nice fire does not last very long; (ii) the number of meadows is small so failure
(i.e., no meadow has a successful burn) is likely. If we define a large number of
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meadows to be at least Alog L and A is large, then case (i) is not a problem
because each nice fire uses up AL%’ units of time and the probability of a
success (i.e., a nice fire in some meadow) is so close to 1 that if we always
found ourselves in case (i), then with high probability, 2I'L units of time would
elapse before the first failure.

Case (ii) is more complicated. Ignoring a technicality that we will confront
in the proof, the first step is to show:

4.1 LEMMA. For any F < », if L is large, then with high probability, we
can tolerate F failures in a row without having the number of burning trees
drop below L'/*/3.

To prove Lemma 4.1, we show that failures almost never last longer than
C loglog L, so for large L then with high probability, at least L~/ of the
trees that were burning originally stay burning after one failure. This estimate
uses ideas from percolation theory and relies on the fact that the number of
meadows is < Alog L.

When there are £ meadows, Lemma 2.2 implies that the largest meadow
has length greater than or equal to L/(11%)'/2 and by definition, a nice fire in
this meadow uses 8%~ /2L units of time. We call a nice fire in the largest
meadow a big success. Now, if the number of meadows were always equal to %,
the expected amount of time used up by big successes before we have a total of
F failures (and hence before we experience F failures in a row) is at least

(1.3) F-8k 2L - p(1 —p)~".

To see this, recall that if we have disjoint events A and B with probabilities
p4 and pg, then the expected number of times that A occurs before B occurs
is ps/Pp-

If F is large, the quantity in (1.3) is much larger than 2I'L for all values of
k. The arguments above only show that the expected value has the desired
behavior when the number of meadows is constant, but a second moment
computation [see Lemma 4.3] shows that even if the number of meadows
varies, the elapsed time is larger than 2I'L with high probability.

INVADING THE NEIGHBORS. At this point we have shown (modulo a few
details) that if there are at least M = L'/? burning trees in B, = (—L, L)? at
some time in [0, L], then with high probability we can keep the fire burning
until time 2T'L. Our last chore is to show that we can get M burning trees in
B, =(0,2L) X (—L, L) at some time in [I'L,2T'L]. If we have a burning tree
in B, then the construction used to burn a meadow gives a probability greater
than or equal to p of producing M burning trees in B,. If we have no burning
trees in B, then the square is itself a large meadow, and a simple modification
of the construction gives us a positive probability to bring a large enough fire
from the rightmost burning tree in B,,.

The paper is organized as follows: In Section 2, we prove the covering
lemma is 2.2. Sections 3-5 give the details for the paragraphs labelled burning
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a meadow, keeping the fire burning and invading the neighbors. Finally, an
Appendix contains the facts concerning oriented percolation we use and indi-
cates how they can be obtained from results in [5].

2. A covering lemma. The first step in proving Lemma 1.1 is to show
that if there are only M = L'/2? burning trees in (— L, L)?, then we can cover a
region of area at least L?/11 by reasonably large disjoint squares that contain
no burning trees and have a burning tree in at least one corner. From a
covering lemma in [15] (page 137):

2.1 LEMMA. If we have a finite collection of squares, then we can find a
subcollection of disjoint squares that covers at least 5 of the area.

SKETCH OF PROOF OF LEMMA 2.1. This lemma is due to Besicovitch [3] and
is easy to prove. We start by choosing the biggest square and discarding all
squares that have a nonempty intersection with the biggest square. Among the
squares that are left, we choose the biggest one and discard all squares that
have a nonempty intersection with it. Continuing in this way gives us a
subcollection that has the following property: If we make all the squares in the
subcollection three times as large, their union contains all the squares (other-
wise we get a contradiction to the way things are chosen) and hence the
subcollection covers at least § of the area.

2.2 LEMMA. If there are at most M burning trees, then we can cover an area
of size at least L*/11 in B by disjoint squares with three properties: (i) they
contain no burning trees in their interiors, (ii) they have a burning tree in at
least one corner and (iii) their sides are longer than L°7.

Proor. We apply Lemma 2.1 to the collection that consists of all the
squares contained in B that have corners at points of the integer lattice, that
do not contain any burning trees in their interior and that have at least one
burning tree on their boundary. It is easy to see that each nonburning tree in
(=L, L)? is in the interior of some square in the original collection. This
means that the original collection covers an area of at least (2L — 1)? — L'/,
so for large L, the subcollection covers an area larger than (2L)%/10.

The squares we have chosen have a burning tree on the boundary. If there
is a burning tree at a corner, we are happy. If not, then making a cut at a
location of a burning tree perpendicular to the side, picking the larger of the
two pieces and then making a second cut to make the region square again gives
a collection of squares that covers an area larger than L2/10. To fulfill
property (iii), we discard all squares with sides shorter than L°7. Since we
have at most L'/2 burning trees and each burning tree can be on the boundary
of at most four squares, the total area of the squares that are smaller than
(L°7)* is at most 4L'°. By choosing L large, we can guarantee that the
remaining squares cover an area of at least L2/11.
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3. Burning a meadow. The squares satisfying (i)—(iii) in Lemma 2.2 give
us opportunities for large fires and we call them meadows. The goal of this
section is to prove (*). To explain why such fires are nice, note that the
number of tree-hours of burning is at least upK?, so at some time we must
have (up/A)K burning trees and by (iii) in Lemma 2.2, this is at least
(up/A)L"". The proof of (*) is divided into three phases, which for ease of
later reference we label a, b and c.

(a) We begin the proof of (*) by introducing some notation, constructing
our process, and recalling its connection with percolation when 8 = 0. For
x,y € Z% with |lx — yll = 1, let {U*?, n > 1}, {V¥, n > 1} and {W?, n > 1} be
the arrival times of independent Poisson processes with rates «/4, 1 and g,
respectively. As the reader can probably guess from the rates: At time U*?, a
spark jumps from x to y if x is on fire; at time V;* the tree at x goes out if it
was burning; at time W* a new tree appears at x if the site was burnt. A
result of Harris [11] implies that we can use this graphical representation to
construct the process starting from any initial configuration. One of the
reasons for using this construction is the following fact, which we ask the
reader to check as he goes along: Given the initial state of the meadow,
occurrence of a nice fire is determined by events in the Poisson processes of
the points in the meadow, so for disjoint meadows, these events are indepen-
dent.

Suppose now that B = 0 and we start with a burning tree at 0 in an
otherwise virgin forest. Let ¢, be the first time the tree at x catches fire. If
t, <o, let T, [resp. e(x,y)] be the time lag until the first arrival in V* (resp.,
Uy ?) after time ¢,. If ¢, = o, generate T, and e(x,y) by using independent
r.v.’s with the appropriate distributions. It is easy to see that (T, x € Z?} and
{e(x,y): x,y € Z% |lx — yll = 1} are independent r.v.’s with P(T, > ¢) = e~*
and P(e(x,y) > t) = e **/* T, is the amount of time the tree at x will burn if
it ever catches fire. e(x, y) is the time lag from when the tree at x catches fire
until it first tries to send a spark to y. Let

e(x,y), ifT, >e(x,y),
(x,y) = { .

o, if T, <e(x,y),
and say the oriented bond (x, y) is open if 7(x,y) < . Let C, be the set of
points that can be reached from 0 by a path of open bonds. In [4] it was shown
that C, coincides with the set of sites that will ever burn when we start with a
tree on fire at 0 and all other sites occupied by trees and that the passage time
to x in the corresponding first passage percolation process is ¢,.

To treat the system with B > 0, we will consider a bond-site percolation
problem in which the sites are open with probability 1 — exp(—gS). This
corresponds to a fire in a forest that was initially all burnt but has regrown for
S units of time. To get control over the times at which the burning occurs, we
will further modify the percolation process so that we only use x with 7, > u
and bonds (x, y) with e(x, y) < U. In the modified system, a path is said to be
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open if all its bonds and sites are. Let C, be the set of points that can be
reached by an open path and let R(2m, m) be the probability that there is an
open path crossing (0,2m) X (0, m) from left to right. It is easy to use results
in Section 2 of [4] to show:

3.1 LemMA. If a > a0), then we can pick H, u, U and S so that
P(R(2H, H)) > 0.98 and ‘hence P(ICy| = ») > 0.

Proor. Let R(K, L) [resp., R(K, L)] be the probability that there is a left
to right crossing of (0, K) X (0, L) in the bond percolation (resp., modified
bond-site percolation) model defined above. [4] has shown

(3.2) If @ > «,(0), then R(2m,m) - 1las m — .

(3.3) If R(2m,m) = 1 — A /49 for some A < 1, then
R(2*m,2*"'m) > 1 — & exp(2¥'logA).

The last result is proved by showing

(34) R(4m,m) >1-"71-R(2m,m)}

(see Figure 3 of [4]) and then observing that crossings of disjoint rectangles are
independent so

(3.5) R(4m,2m) > 1 - {1 — R(4m, m)}?,

(3.4) and (3.5) generalize immediately to the modified bond-site model. Once
they hold, (3.3) follows by simple algebra (see [4], page 182) so that the result
holds for the modified bond-site model as well.

(3.3) shows that if we can find S and H so that R(2H, H) > 0.98, then
R(2%H, 2% 1H) - 1 exponentially fast and the conclusion P(ICOI =) > 0
follows from the construction drawn in Figure 4 of [4]. To complete the proof
of Lemma 3.1, we observe that (3.2) implies we can pick H so that R(2H, H)
> 0.99, so if we pick S, u and U so that

(2L + 1)*(e™PS + (1 — ™) + 4e7°U/%) < 0.01,
it follows that R(2H, H) > 0.98 and we have proved Lemma 3.1. O

(b) The estimate in Lemma 3.1 will give us good control over a fire in a
forest that has regrown for S units of time. The next step is to show that the
fire will not burn too much of the meadow during the S units of time that we
wait for the forest to regrow. Suppose the meadow is [0, K] X [0, K] with a
burning tree at the origin. Let .# be the five-sided region formed by connect-
ing the following points in the order indicated (J, J), (3J, ), (3K/4, K/4),
(K/4,3K/4), (J,3J), (J,J) (see Figure 1 in the Introduction for a picture).

3.6 LEMMA. IfJ > J, and K > 8J, the probability that the fire reaches .#
by time S is smaller than 3, independent of the number of burning trees on the
boundary or the initial state of the meadow (assuming it contains no burning
trees).
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Proor. It suffices to consider the situation in which all the trees on the
boundary are on fire, there is a virgin forest in the interior and the model is
modified so that trees stay burning forever. The key to the proofs is a large
deviations estimate for the associated first passage percolation process. To
formulate the estimate, we need several definitions. Let e(x,y) be i.i.d. with
P(e(x,y) > t) = e **/* A sequence x, = x, x,...,%, =y is said to be a path
from x to y if for 1 <j <k, x; is a neighbor of x;_;. A path is said to be
self-avoiding if it does not visit the same site twice. The travel time of a path
is defined to be e(xy, x;) + - - +e(x,_y, x,). The passage time from x to y is
defined to be the infimum of the travel times over all paths from x to y. In
computing the infimum, we can obviously restrict our attention to self-avoid-
ing paths. Finally, let F; , = {there is a self-avoiding path of length % with
travel time < 8k}.

8.7 LEmMA. If 6 > 0 is small, P(Fy ) < ($)* L.

Proor. Let Xi,...,X, be iid. with P(X;>¢) =e */* and let S, =
X, + o +X,.

e*%*P(S, < 8k) < Be St = (1)*,

Pick 6 so that e*°/5 < + and hence P(S, < k) < (3)*. The number of
self-avoiding paths of length % is at most 4 - 3*~, so P(F; ,) < (3)* L.

To prove Lemma 3.6 now, pick J, so that J,6 > S. By considering the
points on the boundary of .# in turn, it is easy to see that for J > J,, the
probability that the fire reaches .# by time S is at most

K/a j—1 K/4—-1
(2J + (2" + 6? 1(%)" + (K/2)(3)*
Jj=J+

The 6 comes from the fact that the segment (3J, J), (3K /4, K/4) has slope 3,
so there are three boundary points at each height between J + 1 and K/4. If
we pick J; > J,, then the last quantity is at most 3 whenever J > J, and
K > 8J and the proof of Lemma 3.6 is complete. O

Lemma 3.6 implies that with probability at least 3, the fire does not reach
# by time S. The last step in preparing to burn the meadow is to make a path
for the fire to enter the meadow. Consider the path (1,0), (1,1), (2,1),
(2,2),...,(2J,2J) and let E, be the event that:

(D) no site in this path is attacked by a spark by time S,
(ii) all sites in the path in the interior of the square are regrown by time S,
(iii) the fire at (0, 0) does not burn out by time S,
(iv) if there is a fire at (1, 0), it does not go out by time S,
(v) if there is no fire at (1, 0), the site is regrown by time S.

P(Ey) = 8(J) > 0. Let E; denote the event that the fire does not reach .# by
time S. E, is a decreasing event concerning the independent variables e(x, y),
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so it is independent of (ii)—(v) and Harris’ inequality (see [6], page 129) implies
it is positively correlated with (i). The last two observations imply P(E, N E,)
>8(J)/2 > 0.

On E, N E,, we have a burning tree at the origin that is connected by a fuse
to the region .# which has regrown undisturbed for S units of time. Having
reached this stage, we ignore the further regrowth of trees so that the set of
trees that will burn is larger than the cluster containing 0 in the obvious
associated bond-site percolation model. Sites in .# that regrew before time S
are open; and we define T, and e(x,y) for sites x €.# by looking at the
Poisson processes after the fire first reaches x. To have a lower bound on the
time the fire starts, we will concentrate on burning .#/ the trapezoid with
vertices at (3K/8, K/8), BK/4,K/4), (K/4,3K/4), (K/8,3K/8) (again see
Figure 1). While the proof of Lemma 3.6 is fresh in the reader’s mind, we will
prove:

3.8 LEMMA. There are constants 6,A > 0 so that with probability at least
1 — e %X the fire does not reach ¥ before time AK.

Proor. Projecting .#” onto the x-axis shows that it has at most 2K
boundary points. All boundary points are at least K/8 units from the bound-
ary, so Lemma 3.7 implies that the probability in question is bounded by
2K(HK/A1L

(c) We have come now to the key to the proof of (*): Using sponge crossing
constructions that generalize the ones in Section 2 of [4], we will show that the
fire in .# dominates oriented percolation on .= {(m,n) € Z% m + n is even}
with parameter p close enough to 1. Let ¢(m,n) = (2.5n + 0.5m + 1, 2.5n —
0.5m + 1)J map .Z into R2 We say that (0, 0) is open if (a) there are bottom
to top crossings of

(J,2J) X (J,3J), (2J,3J) X (J,4J), (3J,4J) X (2J,5J)
and (b) there are left to right crossings of
(J,3J) X (J,2Jd), (J,4Jd) X (2J,3J), (2J,5J) X (3J,4J)

(see Figure 2). We call the crossings in (a), Vi, V, and Vj, and those in (b), H,,
H, and H;. We say that (m,n) € 2 is open if V;, V,, V;, H;, H, and H,
occur in the system translated by —(2.5n + 0.5m, 2.5n — 0.5m)J. Let
Q(m,n) = ¢(m,n) + [0, JI°. Note that ¢(0,0) = (1,1) and ¢(1,1) = (4, 3) so
the line through these points has slope 2. The rectangles in the definition of
(0, 0) is open” fit in the meadow .#, so this is true for their translates by
¢(m,n) with (m,n) € £ aslong as ¢(m,n) - (1,1) <K — 7J.

The events just described are designed so that if (0,0) and (—1, 1) are open,
then there will be paths from Q(0,0) to @(—2,2) and to Q(0,2). [To reach
(0, 2) from @Q(—1, 1), we use the translates of H,, V,, Hj; to reach Q(—2,2)
we use translates of H,, V,, H,, V,. We start each sequence with a translate of
H,, since that path must intersect V;.] With the last comparison in mind, we
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5J
4]
J
J 2J 3J 4] 5J

say that y can be reached from x (and write x — y) if there is a sequence of
open sites xy = %, Xq,...,%, =y so that for 1 <j <k, we have x; —x;_; €
{(1,1),(—1,1)}. Let €, = {x: (0,0) - x} and Q,, = {|€;| = «}. The events G, ,
= {(m,n) is open} are one-dependent, that is, if (my,n,),...,(m,,n,) have
(Im; —m | + In; — n;l)/2 > 1 whenever i #j, then G, ,,,...,Gy,, ,, arein-
dependent, so it follows from (A.2) and (A.10) that:

3.9 Lemma. If P(G,,,) > 1 — 6%, then P(Q,) > 3 and furthermore on

Q., we have
1 1
liﬂigfﬁ|go N{(m,n):m <N}| > e

Combining the choices of S and H with (3.2) and (3.3) shows that if we let
J = 2*H and pick % large enough, then J > J, and R(4J,J) =1 — 6737 so
P@G,, ) >1-67%

The last observation, as we will now explain, completes the proof of (). It is
clear that the events we desire have positive probability and burn a positive
fraction of .#. We only use trees that burn for u units of time so that
condition is fulfilled. Lemma 3.8 implies that with high probability the fire

does not reach .# by time AK. To check that burning occurs by time AK,
note that since we only use bonds with passage time at most U and each
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crossing of (0,3J) X (0, J) contains at most 62 bonds, there is an absolute
upper bound on the time that elapses in each crossing used in the construc-
tion.

4. Keeping the fire burning. The goal of this section is to show that if
I' < » and we start with at least M = L!/2 burning trees in B = (—L, L)?
then for large L, we can with high probability keep the fire burning, that is,
have at least one burning tree in B at all times ¢ € [0, 2I'L]. To keep the fire
burning, we will do nothing as long as the number of burning trees is greater
than M. When the number of burning trees is less than or equal to M, Lemma
2.2 implies that a positive fraction of B can be covered by meadows and (*) in
Section 3 implies that there is a probability of at least p of having a nice fire in
each one. As explained at the beginning of Section 3, if we get at least one nice
fire, we will end up with 8L°%7 burning trees, which is larger than M if L is
large.

When we try to find a nice fire, there are two things to worry about: (i) The
remaining burning trees are spread evenly throughout the square (- L, L)?, so
the largest meadow and hence the time that elapses when it burns is small; (ii)
all the burning trees are in one clump so the number of meadows is small and
it is likely there will be no nice fire. To cope with these conflicting fears, we
will consider two cases depending on the number of meadows. Before turning
to the details, we would like to observe that by separating our trials into two
piles, it suffices to prove that we can keep the fire burning when we assume
the system is always in Case 1 or Case 2.

Case 1. Suppose that the number of meadows is greater than or equal to
Alog L,where A = —1/log(1 — p). The probability of failure (i.e., no meadow
has a nice fire) is at most (1 — p)21°6 L = L =1 so the probability of a failure in
L3 trials is small. Since each meadow has length K > L7, each nice fire
takes at least A L%7 units of time and with high probability, we can keep the
fire burning for at least AL? units of time. For any I' < », AL'2 > TL for
large L and the proof for this case is complete.

Cast 2. The number of meadows is < A log L. Unfortunately, this case is
much more complicated. The good news is that Lemma 2.2 implies that the
biggest meadow has length > L/(11A log L)'/2 and a nice fire in the biggest
meadow uses up at least yL(log L)~/2 units of time where y = A /(11A)*/2.
We call a nice fire in the biggest meadow a big success and use these events to
use up 2I'L units of time.

Now for the bad news. We can expect to have several failures (i.e., no nice
fire in any meadow) before the big successes use up 2I'L units of time, so we
have to make sure there are a reasonable number of burning trees after a
failure. To do this, it is useful to introduce a notion weaker than a nice fire so
that the duration of a bad outcome can be estimated using percolation theory.
We say that a successful burn occurs if the events E, and E; in the regrowth
phase of the construction (ie., part (b) of Section 3) occur and there is
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percolation on . in part (c) of Section 3. The events in the regrowth phase
are known after S units of time so we only have to estimate the duration of an
unsuccessful attempt at percolation. To do this, we begin by observing that (a)
after (4T /py)log L)*/? trials it is likely that the big successes have used up
9T'L units of time and (b) there are at most A log L meadows in each trial, so
we are concerned with at most C(log L)3/? percolation trials. We say that a
bad outcome occurs if there is an unsuccessful burn in each meadow. Using a
standard exponential estimate from percolation leads to:

4.1 LEMMA. For any F < «, if L is large, then with high probability, the
number of burning trees will not drop below L'/*/3 before we see (i) F bad
outcomes in a row or (ii) (4T /py)log L)*/? trials.

ProoF. (A.2) implies that if sites are open with probability p > 1 — 673,
then the probability that ¢, reaches {(m,n): —n <m <n} but does not
percolate is at most 272", Since there is an upper bound on the passage
times of the bonds used in the construction, this implies that the probability
an unsuccessful burn lasts for ¢ units of time is at most Ce™®‘. This means
that if L is large, the longest failure in our at most C(log L)*/? attempts will,
for large L, take less than (2/8)loglog L units of time with high probability.
The probability a burning tree does not go out in (2/8)loglog L units of time
is thus at least L~1/4F for large L. Since we start with M = L'/ trees, the
last estimate implies that even after F consecutive unsuccessful burns, the
expected number of trees that remain is at least L'/*. To see that the number
of survivors is larger than L'/4/3 with high probability, let X,..., X;, € {0, 1}
be i.id. with P(X; =1 =L""* andlet W=X, + --- +X,,. Now

Ee"={1+L"Y*e "'~ 1)}M < exp(—L'*/2),
since (1 + x) < e* and e > 2. So
P(W < LY/*/3) < ™" /3Ee~W < e LV'/8,
which completes the proof of Lemma 4.1. O
In the proof of the last result, we have emphasized the distinction between

an unsuccessful burn and a nice fire. The next result implies that we can
ignore the difference.

4.2 LemMa. In a meadow of side K, P (nice firelsuccessful burn) >
1-CK2

REMARK. Since we will inspect at most C(log L)3/?> meadows in the first
(4T /py)Xlog L)/ trials and all the meadows have K > L7, it follows that
with high probability all successful burns will be nice fires.

ProoF. 8K generations of the percolation process fit inside of .#. Using
(A.9) and summing from n = 8K/2 to 8K shows that when percolation
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occurs, the probability of burning fewer than pK? trees in .# is at most
CK 2 Lemma 3.8 implies that the probability that the fire reaches ./ by time
AK is at most exp(—6K). Combining the last two estimates and recalling that
we only use trees that burn for u units of time and there is an absolute upper
bound on each crossing used in the construction proves Lemma 4.2.

The next step is to show that if F is large, then the total time used up by
big successes will, with high probability, reach 2I'L before we experience a
total of F failures, which in turn occurs before we have F consecutive bad
outcomes. The key to this is the following.

4.3 LEemmA. Let K, > 1 and X,, be sequences adapted to an increasing
sequence of o-fields #,, and suppose
P(Xm = eKr_nl/zlg;n—l) =E€m>
P(X,=0%,_,)=1-¢,,

where ¢,, = paK;/*(1 — p)%X~ and a is chosen so that ax'/*(1 — p)* < 1 for all
x>0 . Let S, =X; + - +X, and N =inf{n: " _,(1 — p)X» > B'/%}. Then

P(Sy < 27'0paB"/?) < 4(BY? + 1) /(paB).

ReEMARK. Here K, is the number of meadows on the mth attempt and
X,, L is a lower bound for the duration of a nice fire in the largest meadow. To
make the computation simple, we have chosen to lower the success probability
by a factor of ak'/%(1 — p)*, which is less than or equal to 1 by the choice of a.

Proor. Let u,, = E(X,|%, 1) =0pa(l —p)¥~ Y, =X, —u, and T, =
Y, + - +Y,. T, is a martingale w.r.t. %,. Let

o = var(X,|, 1) < E(X}| %, 1) < 6%a(1 - p)*~

(since K,, > 1) and let v, = o + -+ +02% T? — v, is a martingale w.r.t. .%,.
Using the optional stopping theorem at time N A n gives ETZ ,, = Evy , ,.
Letting n — », using Fatou’s lemma on the left and the monotone conver-
gence theorem on the right gives ETZ < Evy. From the definition of N, it
follows that

N
BY2< ¥ (1-p)%"<BYV2 4+ 1.
m=1

This implies u; + - +uy > 6paB'/? and vy < 8%pa(B'/? + 1). Combining
the last two observations and recalling ET3 < Evy, gives

P(Sy < 27'9paB'/?) < ETZ/(2 *0paBY/?)* < 4(BY? + 1) /(paB),
completing the proof of Lemma 4.3. O

If we take F large, then Lemma 4.3 implies P(Sy < 2T) < &. To see that
with high probability we do not have F failures by time N, let F, =‘“a failure
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occurs on the mth attempt.” Now P(F,|%, _) <(1 — p)E~, so taking ex-
pected values shows that the expected number of failures by the Nth attempt
is at most F'1/2 + 1 and Chebyshev’s inequality implies that, for large F, the
probability of F failures by time N is small.

5. Invading the neighbors. At this point, we have shown that if there
are at least M = L'/? burning trees in B, = (—L, L)? at some time in [0, T'L],
then with high probability we can keep the fire burning until time 2I'L. Our
last chore is to show that we can get M burning trees in B, = (0,2L) X
(=L, L) at some time in [T'L, 2T'L]. If we have a burning tree in B, then the
construction used in Section 3 gives a probability greater than or equal to p of
producing M burning trees in B;. If we have no burning trees in B, then the
rightmost burning tree in B, is at a point (x,y) with x < 0. Choosing the
square (x,y) + [0, L]* when y < 0 and (x,y) + [0, L] X [0, — L] when y > 0
gives a large meadow with no burning trees. The construction used in Section
3 gives us a positive probability of burning a positive fraction of this square
and when this occurs the rightmost burning tree has x-coordinate x > x +
0.51L with high probability [see (A.3)-(A.5)]. Thus at most two successes will
create a burning tree in B;, which gives us probability p of gettlng M burning
trees. Each cycle of the procedure above has probability at least p® of creating
M burning trees in B, and uses up less than 4A L units of time [by (*) since
in the first two steps we have K = L and in the third we have K < 2L]. From
this it is clear that if T is a large multiple of 4A /p3, we will get M burning
trees in B, with high probability. The proof of Lemma 1.1 and hence of our
theorem is complete.

APPENDIX

One-dependent oriented percolation. Let W2 = {m: (%,0) - (m,n)
for some k € A} and 74 = inf{n: WA = &}. We will write W,? and 7° when

= {0}. The first thing to be proved about oriented percolation is that if p is
close to 1, then P(7° = ) > 0. This is done in Section 10 of [5] by a contour
argument which has the following consequences. Here and throughout this
section we assume p > 1 — 6736,

(A1) P(rI"N Nl < ) < 272N-1 foreven N > 0,
(A.2) P(N <r°< %) <2281 for N > 0.

To get the second result, we observe that if the process survives up to time N
and then dies out, the contour must have length at least 2N + 2.

Let r2 = sup W,f‘, 14 = inf WA We will write r, and so on when A =
{0,-2,—4,...}. Results from Sectlon 3 in [5] lmply that on {W? # &},

(A.3) W0 = W2%n[19,r0],
(A.4) W0 =W; n[l%,®) andhencer)=r,.
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Our next result show that r? — [2 grows linearly on {r° = »}. Noticing that
62/3 > 3.3 and then using the bound from [5] (at the bottom of page 1030)
gives

(A.5) P(r; <n/3) <2(¥)".

To show that |W?| grows linearly when 7, = o, we introduce the dual
percolatlon process. We say that y can be reached from x by a dual path (and
write x > y) if there is a sequence of open sites Xo =X, Xpyee, X =Y
so that for 1<j<k, we have x,_; —x; € {(1,1),(-1,1)}. Let Wimm =
{k: (m,n) 5 (k,n — s)} It follows lmmedlately from the deﬁnltmn that

(A.6) (m € W22) = (Womm = o),
The last observation and (A.1) imply
(A.7) P(W*N[-N,N]=0) <272}

which proves the claim we made in (1.2).
Our last goal is to prove the second claim in (3.6). The first step is to
observe that using (A.2) for the dual process implies that if a = 2/log 2, then

(A.8) P(Wimm + @, Wimm = @) <27 'n~",
The variables W;({fjg’;) are independent when |m; — my| > 2a log n. Let
X,, = Ly so — P(Wikw + 9).

Dividing the integers into groups I, ; = {k(2alogn) + i,k € Z}, comput-
ing the eighth moment of the sum of X, over [-n/3,n/3] NI, ;, using
Chebyshev’s inequality and then combining the estimates shows

n/3

Y X, < n/6) < (Clogn)(n/logn)™*
m=-n/3

Combining the last result with (A.8) and (A.6) gives
P(|W2 n[-n/3,n/3]| <n/6) <Cn™3,

then using (A.3) and (A.5) gives

(A.9) P(0 <|W <n/6) <Cn3

Using the Borel-Cantelli lemma now gives

(A.10) liminf|W?|/n > 1 a.s.on %= o,

n—o

p
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