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The contention that artificial neural nets operate by a process of
distributed hypothesis testing is supported by analysis of the antiphon, a
model which is close to standard associative-memory models but is in-
tended primarily to represent memory storage under stochastic disturbance
of the system. The memory capacity of the antiphon under ‘“neuronal”
inference rules has been evaluated elsewhere; here it is evaluated under the
supposition of efficient inference procedures.

1. Memory: Association and storage. It is a theme of this paper that
neural networks operate by a process of continual hypothesis testing, dis-
tributed in time and space. Every time a signal is submitted to the nonlinear
operation approximating a threshold response which (in some variant) is found
so necessary in this area, such a test is being performed.

By “neural networks’ is meant what are more explicitly termed ‘““artificial
neural networks” or [Whittle (1989)] ‘‘neuroidal networks,” although the
assertion above may well hold for the natural variety as well. The abbreviation
ANN has become current, and seems useful.

We shall concentrate on a particular type of ANN: that designed to act as a
memory. The version usually considered is that which acts as an associative
memory, but we shall also consider a version which acts as what one might
term a memory store. Let us define these terms.

An associative memory stores a number of ‘“memory traces,” and its
function is to retrieve the correct trace when presented with a ‘‘cue,” that is,
with a partial or noise-corrupted version of the trace. Specifically, we suppose
that there are M traces a’, j = 1,2,..., M, which we suppose to be binary
N-vectors: a¥ = (a 1 @jgseeer @ jN), that is, column N-vectors whose compo-
nents take the values 0 or 1. The cue presented is also an N-vector, Y’ =
(¥1, Y95 - - - » ¥n), Which is assumed to be a distorted version of one of the traces.
(However, the distortion may be such that Y is no longer binary; e.g., one may
have a component value corresponding to ‘‘missing observation.””) If the
distortion is expressed statistically, then the problem is clearly one of statisti-
cal inference: that of deciding between the hypotheses W = a), j =
1,2,..., M, on the basis of the data Y, where W is the ‘“intended” trace
behind the cue. If the M memory traces are equally likely to be presented,
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174 P. WHITTLE

then the inference procedure which minimises the probability of error is that
of maximum likelihood: to decide for the value of j maximising P(Y W = a\).
If the distortion is such that Y is binary and errors in different components of
Y are independent with a constant error probability § < 3, then the maximum
likelihood criterion is equivalent to the minimisation of the Hamming distance
D(Y, a™’); the number of places in which Y and o'’ differ.

In the ANN literature statistical hypotheses are often not very explicit, and
the procedure adopted is rather to calculate the quantities

(1) §j=f(§ajkyk), j=12,...,M.

Here f is a sigmoidal response function, frequently (and here) supposed to be
of the simple threshold form

0, x <d,
) fo={y 59
for some threshold value d. We see here a form of statistical test: One tests for
the validity of the hypothesis W = a’ by testing whether the inner product of
Y and a"’ exceeds the threshold d. The linear/threshold operation (1) has
been regarded as the natural specification of an ‘““artificial neuron” from the
days of McCulloch and Pitts (1943); its function as an effective hypothesis test
is apparent. It represents a simple fundamental operation which can be
adapted to allow ‘‘learning’’ on the part of the network.

One would wish the threshold d to be chosen so that, with high probability,
this threshold will be exceeded (and so ¢; = 1) for and only for the “correct”
value of j. This outcome is not certain, however, a point to which we return
later. It is possible to implement neuronally a ““winner-takes-all”’ rule which
adjusts the threshold so that there is only a single threshold exceedance
[Lippmann (1987) and Winters and Rose (1989)], although of course at some
cost in additional circuitry.

We shall write relation (1) in the vector form as

(3) §=1(AY),

where A is the M X N matrix (a},), the understanding being then that the
threshold operation is applied separately to each component of the vector AY.

Suppose that, as stated earlier, the aim of the network is to actually evoke
(retrieve) the intended trace. This is the so-called auto-associative case. [For
the more general hetero-associative case, in which the output is required to be
a vector associated with the trace, see Baum, Moody and Wilczek (1988).] The
network will then yield an output

(4) L £;a0 = Af(AY),
J

so that A’f(AY) is the output of the network for input Y. A possibility often
considered is that this output is fed back as a new input, so that several passes
of the network are allowed for the output to home in on a memory trace. If
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Y(2), £(¢) refer to values of Y and ¢ at the ¢th pass, with Y(0) = Y, we would
then replace relations (3) and (4) by

5) £t + 1) = f(AY(2)), f=0.12,...
Y(t + 1) = A¢(t + 1),

a pair of recurrences from which we can derive either of the single recurrences
(6) £(¢ + 1) = f(AA4(2)),
(N Y(¢t+ 1) = Af(AY(t)).

The celebrated Hopfield net [Hopfield (1982) and presaged in Kohonen (1977)]
is also such a dynamic network and is also intended to act as an associative
memory with traces a/). It obeys the recursion

(8) Y(t+ 1) =f(AAY(t))

(although sometimes the diagonal elements of the connection matrix A’A are
replaced by 0’s).

In comparing (8) with relations (5)-(7), we notice two points. For one, as
compared with (7), the threshold operation f seems to be misplaced. For
another, relation (8), like (6) and (7), would appear to be better seen as the
reduced form of a double recurrence analogous to (5).

This second point has considerable implications, both for conception and for
physical realisation. If most of the elements of A are 0, then the network (5),
with connection matrix A, has the desirable property of being sparse, whereas
the network with connection matrix AA’ or A’A is in general fully connected.
As far as conception goes, it is only by seeing the network in the nonreduced
form (5) that one can appreciate the two phases: of an effective hypothesis test
followed by production of the appropriate trace. The understanding of this
two-phase operation is clear in the work of several authors [e.g., Baum, Moody
and Wilczek (1988), whose exposition we have partly followed, Moopenn,
Lambe and Thakoor (1987), Whittle (1989) and certainly others]. In the
auto-associative case there is a particular economy, in that the same network
is used for the two phases of the operation: once in the forward direction
(with connection matrix A) and once backwards (implying the connection
matrix A’).

The notion of an associative memory thus centres on the assumption that
the cue presented is subject to statistical disturbance. The idea of a memory
store is prompted rather by the possibility of statistical disturbance in the
operation of the network itself. The goal of achieving reliable memory under
these conditions is a special case of the general problem of trying to achieve
reliable operation from a system constructed of unreliable components. (*Un-
reliable,”” not in the sense that they may fail, but rather in that they follow
stochastic rules and so are imperfectly predictable.) We demand of a memory
store simply that it have a number of ‘““memory states,”” and that, when set in
one of these, it will hold that state reliably, that is, with prescribed probability
over a prescribed time. If the system is stochastic its physical state will in fact
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drift; the memory states will correspond to domains of attraction in physical
state space from which escape is difficult. So, memory states correspond to
what might be variously termed metastable equilibria, quasistationary regimes
or domains of attraction in state space. Reliability demands that these domains
be sufficiently retentive; efficiency demands that there be as many as possible.
These demands are of course conflicting.

In Whittle (1989) the author proposed a device for realising reliable memory
from unreliable components: the antiphon. The antiphon is based upon the
analogy of circulating a message, one of several possible, around a noisy
communication loop, the noise representing the stochasticity (and so unrelia-
bility) of the system. It consists of a network which contains two sets of nodes:
M a-nodes and N B-nodes. The jth a-node will be denoted «; and the kth
B-node B,. At a given time an excitation pattern ¢ = (¢, &,, . . ., &) is defined
on the a-nodes, the individual excitation (¢; at a j) taking values 0 or 1. These
patterns represent the possible memory values. The excitation pattern is
transmitted to the B-nodes and then retrieved by the following rules.

If £(¢) is the pattern at time ¢, then B, receives an input

€)) u(t) = Z £i(t)aj,.

Here a j;, indicates the capacity of the arc between «;, and B,; we shall suppose
that a ;, can adopt only the values 0 or 1 (corresponding to the simple absence
or presence of an arc). We suppose that B, then produces a scalar-valued
output y,(¢), these outputs being independent conditional on the inputs and
conditioned only by the corresponding input. That is,

(10) P(Y(t) =YU(t) =U) = l_klp(ykluk),

where Y is the vector (y,, y,,...,¥y5) and so on, and p(ylu) is a prescribed
function of input and output. In the multiple-excitation case (when more than
one ¢£; can be nonzero), the variables u, will not be binary valued (.e.,
restricted to the values 0 and 1). Correspondingly, there is no need to assume
the y, are binary valued, and distribution (10) may be such as to allow these
variables to take values in a general space %

Time proceeds in unit steps; we suppose that at the next instant of time «;
receives an input

(11) x;(t+1) = P a;pyi(t),
k
which is then normalised to an excitation variable by the threshold test

(12) &(t+1) =f(x;(t+1)).

One can regard the action as the alternation between the holding of a
pattern in a local and reliable fashion (in the a-nodes) and in a distributed and
unreliable fashion (in the B-nodes), the permanent holding of the pattern in
the a-nodes being regarded as physically infeasible.
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In the communication analogue the choice £; = 1 indicates that the jth
message value is to be transmitted. The vector a'’ = (a1, a,, ..., a;y) repre-
sents the transmitted ‘“word” W which encodes this message value. The
vector Y represents the signal received at the other end of the channel, and
the rule (10) represents the channel statistics. The operations (11) and (12)
then amount to a statistical test of whether the signal ¢’ has been transmit-
ted or not. In fact, if the channel had been Gaussian, the M message values
equiprobable and ¥ kaik independent of j, then the efficient (and maximum
likelihood) test for which message value had been intended would be to choose
the value of j maximising x;. The simple threshold rule (12) with appropriate
threshold value d will achieve the same effect with high probability if the
channel is not too noisy.

In the communication context one would send only a single message (.e.,
only one of the ¢; would be nonzero). It is a feature of the memory device that
it is natural to allow the possibility of sending several superimposed messages
at once. Indeed, it is only by this means that the system can be fully utilised;
see Sections 4 and 5. Actually, it is not the compounding of messages which
would be unconventional in the communication context (for this yields what
can be regarded as a single compound message), but rather the representation
of the compound message by the superposition of the corresponding words,
which then constitutes a rather special form of coding.

It is not claimed that the antiphon represents any biological reality. Never-
theless, if one were to try to give a biological picture, one might interpret the
B-nodes as sensory nodes and the a-nodes as centres which test the sensory
information for the presence of particular memory traces. A memory is then
held by allowing an abstract memory to evoke its sensory counterpart, this
sensory evocation then to re-evoke the abstract memory, and so on. While still
making no biological claim, we can give the mechanism more life by sometimes
referring to the - and B-nodes as ‘““processing nodes” and “sensory nodes”
respectively.

Despite its independent motivation from the communication context, the
antiphon is nothing but a stochastic version of the associative memory consid-
ered earlier. Indeed, if the B-nodes are assumed reliable in that Y(¢) = U(2),
then relations (9), (11) and (12) amount exactly to relations (5). This agree-
ment is welcome rather than disappointing in that it indicates a wider basis of
support for the model which now turns out to be common. Much of the
analysis we now give for the antiphon is also valid for the associative memory.
The two models should be distinguished, however; the associative memory
aims to optimise trace retrieval from an imperfect cue, the memory store aims
to optimise trace holding despite imperfect internal operation. The random
coding of communication theory is paralleled by the random choice of the
connection matrix for the antiphon and the random choice of the memory
traces for an associative memory. This coding aspect is made explicit in Baum,
Moody and Wilczek (1988); Bruck and Blaum (1989) consider algebraic rather
than random codings.
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Note that there is an extensive literature on a stochastic (and so ‘‘unreli-
able”’) form of the Hopfield model: the “spin-glass” or ‘‘thermodynamic’
version of this model [for extensive accounts see Amit (1989) and Kamp and
Hasler (1990)]. This differs from the antiphon in at least two respects: The
equivalent of the threshold operation is inserted at a different point, as we
noted after formula (8), and the stochastic transitions are assumed to take a
time-reversible form.

2. Reliability and capacity. Let us take N as a measure of the size of
the network, i.e., the size of the input vector in the associative case and the
number of nodes involved in the distributed representation in the storage case.
One should be aware, however, that there are other size parameters which can
affect the cost of realising the system, e.g., the number M of a-nodes for the
antiphon, or the effective size of the structure introduced if one tries to realise
more sophisticated calculations. The relation of these size parameters to N,
and so the real cost of realisation, is something that has to be monitored.

The probability of error P, for an associative memory is the probability that
the cue is incorrectly recognised, averaged over random choices of the memory
traces and equiprobable choice of which trace the cue represents. The corre-
sponding probability for a memory store would be the probability that the
system escapes after one time unit from the domain of attraction in which it
was initially located. For the antiphon this is simply the probability that
&t + 1) + £(8).

Suppose that for either type of memory one considers a mode of construc-
tion and operation defined for varying N which is reliable in that the
probability of error tends to 0 with increasing N. Let R ,(N) be the number of
traces which can be retrieved by this procedure (in the associative case) and
Rg(N) the number which can be stored (in the storage case).

Now, one would conjecture that there are procedures in the storage case for
which Rg(N) is exponentially large in N, because one expects that reliable
storage of a positive number of bits of information per node should be possible.
More explicitly, one expects that the limit

(13) Cln] = lim ———

will exist and be positive, where C[w] represents a storage rate in nats per
node which is dependent upon the policy m, the procedure of construction and
operation which is followed. (We shall in general take natural logarithms, and
so measure information storage in nats rather than in bits.) One can then
define a capacity

(14) C = sup C[7],

where the supremum is over reliable procedures. The capacity will of course
depend upon the statistics assumed for the components of the system.
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In Whittle (1990) the capacity is in fact evaluated for the antiphon under
various restrictions on the mode of operation. However, the antiphon rules
(11) and (12) represent a neuronal rule for estimating the value of £(¢) from
that of Y(¢) which is in general statistically inefficient. In this paper we shall
see how capacity evaluation changes if statistically efficient methods of infer-
ence are used.

In the associative case it is found that, at least for the Hopfield model,
R, (N) can grow only linearly if reliability is demanded: The approximate
estimate

R,(N) ~0.15N

is supported by both simulation and asymptotic analysis [Hopfield (1982) and
Amit, Gutfreund and Sompolinsky (1985)]. Part of the reason for this is that
the R,(N) memory traces which are to be recognised are considered to be
generated by random independent draws from a common distribution (of
binary N-vectors). Performance can be greatly improved if this restriction is
relaxed. The Hopfield net allows what are termed ‘‘spurious’ or ‘‘parasitic’”
solutions in that, as well as recognising each of suitable small sets of randomly
generated memory traces, it can also recognise some superpositions of these,
that is, some vectors of the form W = L;£,a¥), where the coefficients ¢; take
values 0 or 1. If one includes such compos1tes among the traces which are to be
recognised, then one can indeed achieve an R ,(N) which is exponentially large
in N, and so a positive “association capacity.” [That the Hopfield net allows
exponentially many ‘‘solutions” if one includes the “spurious’ solutions is
established in, e.g., Bruce, Gardner and Wallace (1986), Gardner (1986) and
Amit, Gutfreund and Sompolinsky (1987). However, the spurious solutions are
conventionally regarded as meaningless and a nuisance in the associative-
memory context. In the case of a memory store, we regard them as “memory
states” which are as valid as any other.]

One can also achieve a positive association capacity, even with indepen-
dently generated traces, by the use of nets which, compared with the Hopfield
net, are large and sparse; see Section 3. The unwelcome feature here is that
the cost of realisation can then also be exponentially large in N.

The capacities we calculate will be capacities averaged over a random choice
of the antiphon structure, in which the a j» are independently and identically
distributed, taking values 1 or 0 with respective probabilities § and ¢ = 1 — 6.
This is completely analogous to the choice of a random coding in communica-
tion theory. Capacities for a given value of 6 will be denoted by C(6). More
explicitly, we shall use C2(6) to denote capacity under the neuronal rules (11)
and (12) and under s-fold excitation; that is, when one allows (M ) equiprobable
memory traces, corresponding to exactly s of the ¢, being nonzero.

We shall use CE(9) to denote the correspondlng capacity if rules (11) and
(12) are replaced by statistically efficient procedures for the estimation of &(¢)
from Y(¢). The aim of this paper is to evaluate this capacity; for s > 1 this
poses an interesting variant of standard situations in hypothesis testing and
statistical communication theory.
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The aspects of policy which remain at one’s disposition are the choice of 6
and s and the choice of inference rules (that is, either the simplest neuronal
rules or an attempt at more efficient procedures). The aim under all circum-
stances is to find a procedure for which the capacity evaluation is genuine, in
that the cost of realisation of the calculations is itself of no greater order
than N.

3. Capacity under single excitation. Consider first the case of single
excitation, when £,(¢) is 0 for only a single value of j, so that there are just M
possible memory values.

But this mode of operation, with efficient inference on ¢ from Y, is nothing
but the operation of a classical communication channel. In the communication
analogue, there are just M possible message values, corresponding to the
value of j for which §; is nonzero. The jth message value is represented by
the transmitted “word”” W = a¥’; the word sent out is to be inferred from the
received signal Y. Assumption (10) implies that the channel is memoryless; let
us rewrite this as

(15) P(Y(t) =Y|U(t) =W) = ]-k_[p(yklwk),

where w, is the kth letter of W. Moreover, the network statistics postulated
imply a random coding in which the letters w, of all codewords are indepen-
dent, taking values 0 and 1 with probabilities ¢ and 6.

It follows then by standard theorems [see, e.g., Blahut (1987)] and also by
the treatment of the more general s-excitation case in the next section that the
capacity of the channel under this coding equals the mutual letter entropy

P(ylw)

P(y)
Here w and y are a pair of corresponding letters (w,, y,) with joint distribu-
tion specified by the random coding and (15). This evaluation is valid for any

y-distribution for which the expectation (16) exists and is finite.
Let us use the notation

H[p()] = — X p(y)log p(y)
y

(16) C{(6) = i(w,y) = Elog

to denote the Shannon information measure for a discrete distribution p(y).
We shall denote this by A(y) if we wish to emphasise the random variable to
which it pertains rather than the distribution of which it is a function.

THEOREM 1. The memory capacity of the antiphon under single excitation
and efficient inference is

(17) C{(6) = H[ép(-10) + 6p(-11)] — ¢H[p(-10)] — 6H[p(-I1)].

This follows immediately as the evaluation of expression (16), with
P(y|lw) = p(ylw) and P(y) = ¢p(y|0) + 8p(y|1). The difference of information
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measures (17) has an obvious version even in the case when the distribution of
y is not discrete.

Capacity evaluation in this case is thus very straightforward. However, we
shall realise this capacity only by taking M of order exp(C;N) [which is
shorthand for saying that we must take log M = (C£(8) — ¢)N + o(N) for
arbitrarily small ¢]. This is not acceptable if the processing nodes also have to
be realised physically, and so contribute to the physical size and cost of the
system. The problem is one that can only be surmounted by allowing multiple
excitations, that is, by allowing several of the ¢£; to be nonzero. In the
communication analogue this would amount to the coding of a compound
message by superposition of the corresponding individual codewords, which is
no longer the classical situation.

Neither does classical statistical communication theory provide an evalua-
tion of capacity under the neuronal inference rules (11) and (12) of the strict
antiphon. Quite different methods are adopted in Whittle (1990) to show that

(18) C{(6) = sup Y [6yp(yI1)log z — (¢p(¥10) + 6p(yI1))log(¢ + 627)].
z>1 y

This expression simplifies in the binary case, for which y can take only the

values 0 and 1, say (corresponding to a B-node’s not firing or firing). Let us in

this case write p(1l|u), the probability of firing conditional on input u, as

p, = 1 — q,. Then the maximising z in (18) is p,/p, and we obtain

(19) C{*(6) = —(&po + 0p1)log($po + 6py1) + p log py + 6p; log py.
Comparing this with expression (18) in the same case, we see that

CE(6) = C{4(6) — (g, + 0q;)log(dq, + 0q;)
+ ¢q, log qo +0q, log q;.

The effect of coarsening the inference procedure to the antiphon rules is then
to strip the g-terms from (20), leaving just the p-terms (19). It is somewhat as
though one could derive information when a B-node fires, but not when it does
not.

Expressions (17) and (18) equally provide evaluations of the capacity for an
associative memory under the assumptions that the components a ;, of the M
memory traces independently take values 1 or 0 with respective probabilities 8
and ¢ and that the distribution of Y conditional on an intended trace W is
given by (15). Expression (18) gives the capacity under the ‘‘neuronal” infer-
ence rule (3); expression (17) gives the capacity under efficient (maximum
likelihood) inference rules.

Note that in all cases (association or storage, neuronal or efficient inference
rules) a positive capacity is achieved, in that the number M of traces which
can be reliably retrieved or stored is exponentially large in N. On the other
hand, the capacity evaluations must also be said to be illusory, in that
calculations are involved (by the mediation of the a-nodes or by importation of
efficient procedures) which are themselves of a magnitude exponentially large
in N. This is a difficulty which has to be surmounted.

(20)
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In the binary symmetric case, when 6 = ; and p, = q; = ¢ (say), expres-
sion (17) reduces to

CF =1log2 + ¢logy + (1 — ¢)log(l - ¢),

the familiar expression for the capacity of a binary symmetric channel. Chou
(1989) has shown that this capacity can be realised for the associative case by
the Kanerva memory; a network which involves only neuronal operations,
although a large number of them [Kanerva (1988)]. Chou’s calculations are
involved, but one can see quite easily how this performance is achieved. The
Kanerva memory essentially generates a large number of iid random binary
N-vectors ¢ and tests whether the proportion of these for which both ¢’Y and
c'a¥’ exceed a threshold value Nd, itself exceeds a threshold value d,,
Jj=1,2,..., M. By this means one can effectively evaluate whether or not the
probability P(c'Y > Nd,, c'a’’ > Nd,) (for random c and fixed Y and a"’)
exceeds the threshold d, for each j. But if d; is taken in the range for which
this probability can be evaluated by the central limit theorem for large N and
if the binary vectors have elements +1 rather than 0 and 1, then one finds
that, for large N, this probability depends upon Y and a"’ only in that it is a
decreasing function of the Hamming distance D(Y, a*’). The Kanerva memory
thus reveals itself as a technique for calculating these distances, which we
know are exactly what is needed for efficient inference in the binary case.
The price of this improvement in performance is, as we might have guessed
and as Chou proves, that one requires a network of size exponential in N.

4. Capacity under s-fold excitation. It is necessary to allow multiple
excitation, that is, to allow more than one element of ¢ to be nonzero, if the
rate of increase of M with N is to be decreased. Suppose we allow exactly s
nonzero values. In the communication analogue this corresponds to the idea
that the transmitted signal representing a message value is a compound word

(21 W = (a(jl), a?, .., a(js)),

where j,, js, ..., J, is a selection of s distinct values from (1,2, ..., M). There
are thus (¥ ) possible message values (or memory patterns).

The conventional random coding theory then requires supplementation,
because, instead of the (1;4 ) values of W being generated by independent draws
from a common distribution, it is the M individual words o’ which are thus
chosen, and compound words formed from them by the concatenation (21).

As we have noted, the idea of multiple excitation is one that has been largely
rejected for associative models of memory [see, e.g., Amit (1989) and Kamp and
Hasler (1990)], where the situation in which several memory traces are
simultaneously evoked is regarded as a ‘‘spurious solution,” biologically mean-
ingless and of insufficient stability to be useful. At least for the antiphon
model, however, multiply excited states can be stable, and so consistent with
reliability.
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Let us denote the collection of the first r codewords (a®,a®, ..., a) by
a(r). For concreteness, let us suppose, unless otherwise stated, that it is the
first s a-nodes which are excited, so that probabilities are to be calculated on
the assumption that W = a(s). Thus

(22) P(YIW) = I—[P(yk| i ajk)'
k j=1

The joint distribution of the y, and the a;, are thus specified by the random
network assumptions and expression (22), also interpetable as P(Y |a(s)).

Define a(r) = (a”*V,a"*2, ..., a®), the complement of a(r) in a(s). De-
fine the random variable

P(Yla(s))

N BTG

whose expectation is the conditional mutual information rate
¥, = B, = N"N(a(r), YIa(r)).

Each of the random variables ¢, will converge in probability to its expectation
y, as N increases, because the random variables 7, = (ay,, @gp, ..., @ g, ¥i)
are iid.

LeEMMA 1. The capacity under s-fold excitation and efficient inference has
the lower bound

(23) CE(0) = 1min (svy,/7).

Proor. We continue to suppose that W = a(s), that is, that it is the first s
a-nodes which are excited. Then of the (1;4 ) possible excitation patterns there
are
(24) m,= (55, )(M7%) - o),

s —r r

which overlap this pattern by s — r, that is, which excite s — r of the first s
a-nodes and r of the last M — s. As a typical example of such a case, we can
take W = (b(r), a(r)), where b(r) is a set of r codewords disjoint from a(s).
Let @, be the probability that such an excitation pattern is mistakenly
accepted; this is not greater than the probability that

(25) P(YIW = (b(r),a(r))) = P(YIW =a(s)),

calculated on the assumption that W = a(s). Then an upper bound for the
probability of error is

s
P,< ). m,Q,.
r=1
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A better bound is

(26) P,<P(K) + Y m,E(Q),

r=1
where K is the event {{, >y, —¢,; r = 1,2,...,s} and @/ is the probability,
conditional on K and the values of Y and a(s), that &(r) adopts a value such
that (25) holds.

Let us denote the set of &(r) consistent with (25) for given Y and a(s) by
B(Y, a(s)), and let us denote probabilities P calculated on the assumption that
W = (b(r), a(r)) by P®. Note then that b(r) is independent of @(r) under any
hypothesis, and that P®Y|a(r)) = P(Y|a(r)). For values of Y and a(s)
consistent with K and for 6(r) in B(Y, a(s)), we have then

PY(Y1b(r),a(r)) > P(Yla(s)) > P(YIa(r))exp[ N(y, - &,)]
or
PY(Y,b(r)ia(r)) = P(b(r)) P(YIa(r))exp[ N(v, - ¢,)]
or
Pe(b(r)la(r),Y) = P(b(r))exp[N(v, — ¢,)].
Summing this last inequality over b(r) in B(Y, a(s)), we deduce that

1> @ exp[ N(, — &,)],
which, with (26), implies that

S
(27) P,<P(K)+ ) m,exp[N(y, —¢,)].
r=1
Now, by the convergence of the {, mentioned above, P(K) will converge to 0
with increasing N for prescribed positive ¢-values. Since m, = O(M") then
expression (27) will tend to 0 with increasing N if r log M < N(y, — 2¢,) for
=1,2,...,s, that is, if

N-llog M < 1min [(v, — 2¢,)/7].
<r<s

Since the ¢, are arbitrarily small and the memory size is log(lg ) ~ slog M, we
see that a reliable rate arbitrarily close to the bound in (23) can be attained. O

We shall see that equality indeed holds in (23). One can then ask which
value of r is minimising in this relation. If the minimising value of r were
small, this would mean that the limiting factor on memory storage was the
inability to distinguish the excitation pattern ¢ from those differing from it in
only a few places (that is, to distinguish the true hypothesis from those close to
it). If the minimising value were near s, then this would mean that the
limiting factor is the possibility of confusing ¢ with one of the (many more)
totally dissimilar patterns (i.e., of confusing the true hypothesis with one of
the many totally dissimilar to it). In fact, the second is the case.
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LEmMa 2. The quantity vy, increases with r and v,/r decreases.

Proor. We appeal to the facts that the random vectors a™®, a®,...,a®
are iid when unconditioned and exchangeable when conditioned by Y. We have
P(Y,a(s))
Ny, = E log = const. + A (Yla(r)).

P(a(s))P(Yla(r))

Since arguments are lost from a(r) as r increases, the first assertion follows.
To establish the second, note that we can also write

P(Y,a(s))P(a(r)) P(a(s)lY)

Ny = Elog g ) P(Y,a(r) ~ 8 Bla(r)) P(a(rY) |
Thus
P(a(r - 1)|Y)
N(y, = v-1) = Elog P(a(r)lY)P(a™)
and

P(a(r)lY)?
- 1DIY)P(a(r + 1)|Y)

N(¥r+1 = 2%, +¥,—1) = Elog P@a(r
P(a™Y)*

P(a, 0" Vla(r +1),Y)

P(a®la(r + 1),Y)P(a" Pla(r + 1),Y)
P(a™,a" Via(r +1),Y)

= —i(a",a"* Vla(r +1),Y) < 0.

Thus v, is concave and so vy, /r decreasing. O

= E log

= E log

THEOREM 2. The memory capacity of the antiphon under s-fold excitation
and efficient inference is

(28) C#(0) = H[Ep(-lu)] — EH[p(-lu)],

where the expectation is with respect to u, considered to have a binomial
distribution with parameters s and 6.
That is, for a function g(u),

Eg(u) = ¥ (;)0° " 0%8a(u).

u

Proor. By Lemmas 1 and 2 we have

CsE(a) = Ys = N_li(a(s)’Y) = i((alk’azk""’ask)’yk)'

This expression is readily found to have the evaluation (28). In order to
establish the reverse inequality, we again have to adapt standard arguments,
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although by much less. It follows by the extended Fano inequality [see, e.g.,
Blahut (1987)] that a bound on the probability of error for a fixed choice of
codewords (21) is

Pl 1+i(W,Y)
. log(]g) ’

where i(W, Y) is the mutual entropy between W and Y under the assumption
that W takes each of its (’;4 ) values (21) with equal probability. For the error
probability averaged over codings we thus have

Pl 1+ Ei(W,Y)
. log(lg)

and so
CZ(0) < limsup N'E,i(W,Y),
N-oox
where E, denotes an expectation over random codings a. Now, since the
channel is memoryless

i(W,Y) < Xk:i(wk,yk)

and so
N7Ei(W,Y) <E,i(w, ),

where w, has the distribution in which it takes each of the (1:’ ) values
(@4 @jpps- - -5 @ ) With equal probability. But with increasing N this distri-
bution (itself a random variable under variation of the network a) converges
in distribution to a distribution in which the elements of w, are distributed
independently, each taking values 0 or 1 with probabilities ¢ and 6. Since
i(wy, y,) is a bounded continuous function of the w,-distribution, we then
have E,i(w,,y,) = 7v,, so that CE() <y, and the proof of the theorem is

complete. O

Expression (28) is exactly the capacity of the memoryless channel with
input /output transition probability p(y|u) under the random coding in which
the letters w, are independently binomially distributed with parameters s and
0; the expression is meaningful even if the distribution of y is not discrete. So,
the conclusion is the simple but unobvious one: The constrained random
coding in which one generates (1;4 ) words by taking superpositions of s of M
independent binary N-vectors realises the same information rate as that for
which one takes the words as (1;4 ) independent N-vectors with independent
binomially distributed components.

5. Structural economies. The capacity C, = CZ(6) is a function of the
two variables s and 6; these are the only parameters disposable for the
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maximisation of capacity. However, there is the consideration which we have
already emphasised. The quantity M also reflects the size of the system, in
that it represents the number of processing nodes. We should try and realise a
given capacity with M as small as possible; that is, growing with N as slowly
as possible.

Under s-fold excitation and full capacity working, we have (s/N)log M =
C, + o(1), so that, in this sense, M ~ exp[ NC,/s]. That is, M grows exponen-
tially fast with N, which is unacceptable if M and N are both to be regarded
as size parameters. How C; varies with s has yet to be determined. However,
if C,/s decreases with s then M grows more slowly with N as s is increased,
although still at an exponential rate for any given s. One can then ask whether
a slower rate of growth than exponential could be achieved by making s an
increasing function s(N) of N. An ideal would be if M could be made of order
N, when the two size parameters would have been brought into correspon-
dence.

Consider first the behaviour of CF(#) with increasing s (which means that
we evaluate the limit as N — o« for fixed s and then consider s-dependence of
the limit). Suppose that the B-units saturate with increasing input, in that
p(ylu) has a limit p(y|) which is a distribution: L, p(ylo) = 1. Then one
readily verifies that, for fixed 6, expression (28) tends to 0 with increasing s.
This simply reflects the fact that the input to the B-nodes becomes so high
that their output is almost independent of the set of a-nodes which originated
the input. To stabilise input to a fixed expected value A with increasing s, one
must make 6 decrease as A /s. One will then achieve a capacity, which we shall
denote by CF(1), given by expression (28) but with u following a Poisson
distribution of parameter A.

One may now ask whether the capacity C, = CE()\) can be realised by a
mode of operation in which s increases with N at some appropriate rate, 6
then decreasing as A/s(N). One would like s(N) to increase as quickly as
possible, so that M(N) may increase as slowly as possible. Application of the
methods of Section 4 suggests that one can attain the capacity C, with s
increasing as N'/2 and so M increasing as exp(kN2/3) for some k. This is a
far cry from the M = O(N) behaviour we seek.

In fact, a positive capacity can be achieved with M of order N, although the
methods of Section 4 are not strong enough to demonstrate this as they stand.
The cruder neuronal inference rules are easier to analyse; it was demonstrated
in Whittle (1990) that a positive reliable rate could be achieved under the
constraint M = O(N), although short of C;2(1). This positive rate was achieved
with s(N) of order N/log N and so the number NA/s(N) of B-nodes linked
to a given a-node of order log N.

One certainly has C¥ > C4 for any given mode of operation (that is, for any
choice of dependence of s, 6 and M upon N). The results quoted thus imply
that a positive reliable rate can be achieved in the case of efficient estimation
with M or order N. Specifically, if one chooses M = LN, s = KN /log N and
0 =A/s = Alog N/KN for constant L and K, then there are positive values
of K consistent with reliability, the supremum of such values being de-
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pendent on A but independent of L. But K is itself the memory rate, since
(s/N)log M = K + o(1), and so positive reliable rates exist.
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