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BROWNIAN MODELS OF FEEDFORWARD QUEUEING NETWORKS:
QUASIREVERSIBILITY AND PRODUCT FORM SOLUTIONS

By J. M. Harrison! AND R. J. WiLL1AMS?
Stanford University and University of California, San Diego

We consider a very general type of d-station open queueing network,
with multiple customer classes and a more or less arbitrary service disci-
pline at each station, but restricted by the requirement that customers
always flow from lower numbered stations to higher numbered ones. To
approximate the behavior of such a queueing network under heavy traffic
conditions, a corresponding Brownian network model is proposed and it is
shown that the approximating Brownian model reduces to a d-dimensional
reflected Brownian motion W whose state space is the nonnegative orthant.
A necessary and sufficient condition for W to have a product form station-
ary distribution (that is, a stationary distribution with independent compo-
nents) and a probabilistic interpretation for that condition are given. Our
interpretation involves a notion of quasireversibility analogous to that
introduced by Kelly and elaborated by Walrand in their brilliant analysis of
product form solutions for conventional queueing network models. Three
illustrative queueing network models are discussed in detail and the analy-
sis of these examples shows how a Brownian network approximation may
have a product form stationary distribution even when the original or exact
model is intractable. Particularly intriguing in that regard are two exam-
ples involving non-Poisson inputs, deterministic routing, deterministic ser-
vice times and processor-sharing service disciplines.

1. Introduction. The object of study in this paper is a d-dimensional
diffusion process W = {W(¢), ¢ > 0} whose state space is the nonnegative
orthant. To be more specific, W is a d-dimensional reflected Brownian motion,
also called regulated Brownian motion [5] or just RBM, the data for which are
a d-dimensional drift vector u, a d X d covariance matrix 3 and a d X d
reflection matrix R. A distinguishing feature of this paper is that we restrict
attention to the case where R is lower triangular.

Apart from their intrinsic mathematical interest, processes like W are
studied because they arise as diffusion approximations for the workload pro-
cesses and queue length processes associated with open queueing networks
(4], [17], [10], [16]). Thus the process W, or more often a family of processes
that includes W, will be referred to in this paper as a Brownian network
model. As we will explain later, an RBM with a lower triangular reflection
matrix corresponds to what is called a feedforward queueing network, in
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which customers always flow from lower numbered stations to higher num-
bered ones.

It is the stationary or steady-state characteristics of a queueing model that
are usually of greatest interest and virtually all of the models that have been
successfully analyzed in classical queueing network theory are models having a
so-called product form stationary distribution. In the case of open networks,
this means that the stationary distribution of the entire system is the product
of independent marginal distributions associated with the individual stations.
This state of affairs is often described by the statement that individual stations
are independent in equilibrium. Such queueing network models are said to
have a product form solution, and they are frequently referred to as product
form networks. For an approximating Brownian network model, the analogous
property is that the stationary distribution of W be the product of indepen-
dent marginal distributions for W,..., W,.

From extant results it is relatively easy to show that our Brownian network
model has a product form stationary distribution if and only if the covariance
matrix and reflection matrix of W satisfy a certain algebraic equation. Until
now there has been no probabilistic interpretation of the algebraic condition,
but in this paper we explain it in terms of quasireversibility, an analog of the
probabilistic notion introduced by Kelly ([13], [14]) and elaborated by Walrand
[22] in their brilliant analysis of product form solutions for conventional
queueing network models.

For the simple case of a single Brownian service station, our analog of the
Kelly-Walrand definition of quasireversibility was introduced and analyzed in
the recent paper [11]. Here that notion is transported to the broader setting of
feedforward Brownian network models, and it leads to a clear and simple
interpretation of findings that previously seemed mysterious. Unfortunately,
our analysis does not extend in any obvious way to networks with feedback,
and treatment of the general case is left as a topic for future research.

The paper is organized as follows. In Section 2 we define precisely the
process W under study and then in Section 3 the algebraic condition required
for a product form stationary distribution is derived. In Section 4 we explain
what is meant by a quasireversible station in the context of a feedforward
Brownian network model. In Section 5 we combine results from preceding
sections to conclude that such a Brownian model has a product form station-
ary distribution if and only if each station is quasireversible and we give a
direct probabilistic proof of the if part of this result. Sections 6-8 are devoted
to the analysis of three illuminating examples.

Section 8 is followed by a lengthy Appendix in which we explain how
parameters of a conventional queueing network model are used to determine
the data of an approximating Brownian model. To be more precise, we consider
a very general type of open queueing network and propose a scheme for
associating with each such network a natural Brownian approximation. A limit
theorem is described that would rigorously justify the proposed approximation
scheme, but its proof is left as an open research problem. (Actually, there are
several important open problems mentioned at different points in the Ap-
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pendix, and all of these must be resolved if a comprehensive limit theorem is to
be proved.) Brownian approximations for multiclass open queueing networks
have been proposed and discussed earlier ([6], [7]), but the treatment given in
the Appendix is more general, somewhat more complete and explicit and
slightly different in style. The most important added generality is the al-
lowance of service disciplines other than first-in-first-out. In particular, the
current treatment allows service stations with a processor-sharing discipline
and processor sharing figures prominently in our examples (see Sections 6 and
7). Most readers will want to at least scan the Appendix before starting Section
2 and to understand the examples discussed in Sections 6-8 one must make
frequent reference to the Appendix.

For the most part, the mathematical development in Sections 2-5 consists
of recalling definitions, adapting old results to establish several preliminary
propositions and then assembling the pieces in a more or less obvious way.
Strictly speaking, however, all of the results are new in at least some minor,
technical sense, and there is one important new contribution that arises in
Section 4 and may not be evident to all readers. Our previous paper [11] dealt
with a single Brownian service station that processes several classes of cus-
tomers, and in a network context it is not at all obvious how to interpret the
italicized phrase. In the definitional system advanced in Section 4, what plays
the role of a customer class is workload content for a particular downstream
server, and this is essential for the sharpness of our final result (Theorem 5.1).
If one defines quasireversibility of individual stations in terms of customer
classes that were meaningful in the original queueing model, a much weaker
theory is eventually obtained—a theory in which quasireversibility is sufficient
but not necessary for a product form solution. In fact, a secret of success in
formulating the Brownian model is to suppress all fine structure that may
have been present in the original queueing model, taking as given just the drift
vector, covariance matrix and reflection matrix of W.

It will become apparent that the conditions yielding a product form station-
ary distribution for a Brownian network model are very special, and readers
might well ask why so much effort is being expended on this apparently
narrow subject. One important reason is our general desire to establish solid,
concrete connections between conventional queueing network models on the
one hand and Brownian network models on the other. Product form queueing
networks are widely taught and widely accepted by even the most practically-
oriented engineers as useful tools for system performance analysis [15], [20]. In
contrast, diffusion approximations for complex queueing systems are often
relegated to the category of inaccessible arcana, even by queueing theorists
with a relatively high tolerance for mathematical theory. By elaborating on the
one subject familiar to all students of queueing network theory—product form
stationary distributions—we hope to hasten the acceptance of Brownian mod-
els as a mainstream topic in performance analysis.

We conclude this Introduction with an account of some notational and
terminological conventions used in this paper. Vectors, including the values of
vector-valued processes, are regarded as column vectors. Vector (in)equalities



266 J. M. HARRISON AND R. J. WILLIAMS

are to be interpreted componentwise and a vector-valued function is nonde-
creasing (or nonincreasing) if and only if each component has that property.
For a vector v, diag(v) will denote the diagonal matrix whose diagonal entries
are given by the components of v, and for a square matrix M, diag(M) will
denote the diagonal matrix with the same diagonal entries as M. An n-dimen-
sional process X will be called a (u, Y) Brownian motion if it is a Brownian
motion with constant drift vector u € R™ and n X n covariance matrix 3.

2. The Brownian network model. In the Appendix we describe a very
general open queueing network model with multiple customer classes, arbi-
trary interarrival and service time distributions and a more or less arbitrary
queue discipline at each of the d nodes or stations that constitute the network
(d = 1). As explained in the Appendix, one may approximate such a queueing
system by a corresponding Brownian network model, which is defined from a
given Brownian motion ¢ and a given random vector W(0) by the following five
relationships:

(2.1) W(t) = W) +¢(¢) +Y(t), ¢t=0,

(2.2) () = &(t) - G[W(t) -W(0)], t=0,
(2.3) W(t) =0, t=>0,

(2.4) Y (-) is continuous and nondecreasing with Y(0) = 0
and

(2.5) Y;(') canincrease only at times ¢ for which W,(¢) =0, i=1,...,d.

The primitive elements of the Brownian network model are (i) a d-dimensional
Brownian motion & = {£(2), ¢ > 0} called the total workload netflow process,
(i) a nonnegative random d-vector W(0) representing the initial workload
vector and (iii) a nonnegative d X d matrix G = (G,;) called the workload
contents matrix. In contrast to the general system model described in the
Appendix, we assume in the body of the paper that G is lower triangular (that
is, G;; = 0 if j > i), corresponding to a so-called feedforward queueing net-
work, where customers always flow from lower numbered stations to higher
numbered ones, with no loops or cycles.

The drift vector of ¢ is denoted by —6 (the reason for this sign convention
will become apparent shortly), its covariance matrix is denoted by I' and the
initial value is £(0) = 0. It is required that W(0) and ¢ be independent, and to
avoid trivial complications we assume throughout that

(2.6) 6>0
and
(2.7) I is nondegenerate.

The relationships (2.1)-(2.5) serve to define (see below) two d-dimensional
stochastic processes W = {W(¢), t > 0} and Y = (Y(¢), ¢ > 0} in terms of primi-
tive model elements. As explained in the Appendix, Y,(¢) represents cumulative
server idleness at station i up to time ¢ and W,(¢) represents the amount of
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work for servers at station i that is embodied in customers who occupy that
station at time ¢. One interprets &,(¢) as the amount of work for servers at
station ¢ that is embodied in customers who enter the network by time ¢ (not
all such customers will have reached station i by that time), minus the total
amount of work that servers at station i are capable of completing by time ¢ if
they are never idle. One interprets 6, as the service capacity at station i minus
the average rate of workload input there, so (2.6) is a natural stability
condition.

One interprets G,;W,(¢) as the amount of future work for servers at station
i that is embodied in customers who occupy station j, 1 <j <i < d, at time ¢;
thus the quantity {(¢) defined by (2.2) represents the amount of work for
servers at station i that is embodied in customers who have entered station i
by time ¢, minus the total amount of work that servers at station i are capable
of completing by time ¢ if they are never idle. We call { the immediate
workload netflow process for our Brownian network model.

To conclude this description of the Brownian network model, we now use
the assumed triangularity of G to write out recursive formulas for , Y and W
in terms of our primitive model elements. From (2.1)-(2.5), we have for each
i1=1,...,d,

(2.8) L(t) = &(1) = L Gy[Wi(1) - W(0)], ¢=0,
(2.9) Wi(t) = Wi(0) + £i(1) + Yi(2), =0,
(2.10) Wwi(t) =0, t=>0,

(2.11) Y;(-) is continuous and nondecreasing with Y;(0) = 0,
(2.12) Y.(-) can increase only at times ¢ for which W(¢) = 0.
Putting i = 1 in (2.8) gives

(2.13) () = &(8), t=0,

and for each i = 1,...,d, given {,, it is known (see Chung and Williams [3],
Section 8.2) that the unique process Y; satisfying (2.9)-(2.12) is

(2.14) Y(2) = (- min [W(0) + ¢(5)])

Putting i = 1 in (2.14) and (2.9) gives us the constructive definition of Y; and
W,, respectively, and then for i = 2,...,d, we use equations (2.8), (2.14) and
(2.9) to define ¢;, Y; and W,, respectively, by means of the obvious induction
on i.

For future purposes it will be useful to note that, in our original description
(2.1)-(2.5) of the Brownian system model, equations (2.1) and (2.2) can
actually be compressed into the single relationship

(2.15) (I+GYW() =(I+G)W(0) +&(t) +Y(¢), ¢t=>0.
What has been shown in the previous paragraphs is that (2.15) and (2.3)-(2.5)

+
)

t>0.
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together uniquely define Y and W via a path-to-path mapping from W(0) and
£. We note that (Y, W) is adapted to the filtration generated by W(0) and ¢£.

3. RBM in an orthant. Recall from the previous section that the imme-
diate workload process W satisfies equation (2.15), where ¢ is a (—6,I)
Brownian motion, W(0) > 0 and Y, W satisfy (2.3)-(2.5). Since the matrix G is
lower triangular, G™* = 0 for all » > d, and so I + G is invertible with

(3.1) R=(I+G) '=I1-G+G*>— - +(-)* ..
Observe that R;;, =1fori=1,...,d. Let X = R¢ and
(3.2) w=—RO and 3 =RTR'.

Then (2.15) is equivalent to
(3.3) W= W(0) + X + RY,

where X is a (u,>) Brownian motion satisfying X(0) = 0. Conditions (3.3),
(2.3)-(2.5) together are equivalent to (2.15), (2.3)-(2.5), and so given W(0) and
X, the pair of processes (Y, W) is the unique solution of (3.3), (2.3)-(2.5), and
by construction and the invertibility of R, these processes are adapted to the
filtration generated by W(0), X. The process W is called a reflecting Brownian
motion with data (S, u, 3, R), where S = R? is the state space of the process.
It behaves like a Brownian motion with drift u and covariance matrix 3 in the
interior of the positive orthant S. When W hits the boundary face F, = {x €
R9: x; = 0} of S, the ith component Y; of Y increases to give an instanta-
neous push to W in the direction of the ith column of R, so as to keep W in
the orthant.

For the following, we need to be more precise about the probability space on
which W is defined. We can realize W on the path space Q = C([0, ], R?) by
letting W(0) = w(0), £(+) = w(+) — w(0) for all w € Q, and {P,, x € S} be the
family of probability measures on ({, .#), where .#= o{w(s): 0 < s < o}, such
that for each x € S, under P,, (‘) is a (—6,I") Brownian motion starting
from x. Then W, as defined in Section 2 from W(0) and &, together with
{P,, x € S}, defines a strong Markov process on (Q,.#). The strong Markov
property comes from the fact that by construction, for any stopping time
T <o, W(r+ -) is defined by the same path-to-path map applied to
(W(7), é(: + 1) — &(7)) that defines W(:) from (W(0), £(-)). Henceforth by W
we shall mean the strong Markov process as defined above. We are interested
in stationary distributions for W.

In a similar manner to that in Sections 7 and 8 of [10], we can show the
following proposition. Here two measures are equivalent if they are mutually
absolutely continuous and the symbol = will be used to denote such an
equivalence. Let o; denote (d — 1)-dimensional Lebesgue measure (i.e., surface
measure) on the ith face F, = {x € S: x; = 0} of S and let b#(F,) denote the
set of real-valued bounded Borel measurable functions on F,. Let CZ(S)
denote the set of real-valued functions that are twice continuously differen-
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tiable on some domain containing S and that together with their first and
second partial derivatives are bounded on S.

ProposiTION 3.1. Suppose 7 is a stationary distribution for W. Then = is

unique and is equivalent to Lebesgue measure on S. Moreover, for each
i €{1,...,d}, there is a finite Borel measure v; on F; such that v, = o; and

(3.4) E,,[jo’f(W(s)) in(s)] = th'fdvi forall f € bB(F,),

where E_ denotes expectation under P, = [¢w(dx)P,; and for each f € CZ(S),

d

(3.5) fod77+ Y le. fdv, =0,

S i=1"F
where

1 4 *f d  3f
3.6 = - . +
(3.6) Lf 2i,§=12”f’xi5x, E.lu,axi,
(3.7) D,f=v,-Vf, i=1,...,d,

or v, equal to the ith column of the reflection matrix R.
13

Proor. The proof that 7 is unique and is equivalent to Lebesgue measure
on S is the same as that in Section 7 of [10]. The remainder of the proposition
has the same statement as Theorem (8.1) in [10], with the exception that v;
here is twice what it is in [10]. This difference in scale factor, which makes for
a cleaner statement of the above proposition, does not affect the validity of the
result. The proof given in [10] carries over for the R-matrices considered here
once Lemmas (8.4) and (8.7) there are verified. For this, observe that W
together with {P,, x € S} defined on (Q, .#,{.#,}), where .#, = o{w(s): 0 < s <
t}, is an SRBM with data (S, u, 2, R), as defined in [19]. It follows from [19]
that Lemma (8.7) of [10] holds and that R is a completely-# matrix (see [19]
for the definition). By the latter and Lemma 1 of Bernard and El Kharroubi
[2], there is a constant C; > 0 such that for all ¢ and ¢,

(3.8) Y(#) < C; max | X(s) — X(0)],

and so there is a constant C, > 0 such that
E.[Yi(t)] <Cy(t +1) foralli,tand x,

where E, denotes expectation under P,. We remark that in the case treated
here, where G is lower triangular, one can verify (3.8) directly from the
construction of Y; and induction on i. Thus Lemma (8.4) of [10] holds for the
RBM'’s treated here and so the measures v; are finite. The rest.of the proof
given in [10] goes through to yield (3.4) and (3.5). The latter comes from taking
expectations under 7 in Itd’s formula applied to f and W. O
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DEerFiNiTION. We say that W has a product form stationary distribution, or
that the Brownian network model has a product form solution, if W has a
stationary distribution = whose density p relative to Lebesgue measure on S
is of the form

(3.9) p(x) =pyx1) - pa(xq) forx = (xy,...,%5) €8,

where p,, ..., p; are probability densities relative to Lebesgue measure on R .

In [10], Brownian models of single-class open queueing networks were
studied. The RBM’s arising there are characterized as unique solutions of
(3.3), (2.3)-(2.5) for R-matrices of the form R =1 — P, where p isa d Xd
matrix with nonnegative entries, zeros on the diagonal and spectral radius
strictly less than one. It was shown in [10] that a necessary and sufficient
condition for these RBM’s to have product form stationary distributions is
that

or equivalently, that
(3.11) 23 = RD + DR’

where D = diag(2). The following theorem is an analog of the result in [10]
for the feedforward multiclass Brownian models considered in this paper. The
class of RBM’s arising here has nonempty intersection with that considered in
[10], but it is by no means contained within it. The proof of Theorem 3.1
parallels that in [10], so we shall not repeat the details here, but simply give an
outline of the argument. The primary purpose of this paper is to give a
probabilistic interpretation of the algebraic condition (3.12).

THEOREM 3.1. W has a product form stationary distribution if and only if
(3.12) I, =3G,T;, forl<j<i<d.

tyJJ
When (3.12) holds, the stationary distribution of W has the exponential density
function (relative to Lebesgue measure):
d

(3.13) p(x) = EYi exp(—v;x;) forx=(xy,...,%4) €8,

where
(3.14) ‘yl=2el/ru, i=1,...,d.

Proor. For this proof only, let A = diag(I'). We first verify that (3.11) is
equivalent to
(3.15) o = A(I + G') + (I + G)A,
and if either (3.11) or (3.15) holds, 3, = I}; for all i. First, suppose (3.11)
holds. Premultiplying (3.11) by R™' =1 + G and postmultiplying by (R")~!
yields
(3.16) 2T = D(I1 + G') + (I + G)D.
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But, since D is diagonal and G has zeros on its diagonal, this implies
I;; = D,; = %;; and substituting this in (3.16) yields (3.15). Thus (3.11) implies
(3.15) and 3, =T;; for all i{. Similarly, by premultiplying (3.15) by R =
(I + G)! and postmultiplying by R’, one can show that (3.15) implies (3.11)
and 3;; = T}; for all ;. We also note here that (3.12) is equivalent to (3.15), by
the symmetry of I' and triangularity of G.

The if part of Theorem 3.1 follows as in [10], Theorem (9.23). We briefly
sketch the proof here. By performing a linear transformation of coordinates,
we can transform W to an RBM in a polyhedral cone with covariance matrix
equal to the identity. In [24], a sufficient condition for such an RBM to have an
exponential form stationary distribution was given. When this condition is
transformed back to the orthant (see [10], page 110, with D = I and H = A~1/?
there), it becomes (3.11) and under this condition W has the stationary density
given by (3.13)-(3.14), with 3., in place of I}; there. By the discussion in the
first paragraph of this proof, (3.12) is equivalent to (3.11) and in the case that
it holds, 3,;; = I};. It follows that (3.12) is sufficient for W to have a product
form stationary distribution, which is then given by (3.13)-(3.14).

For the only if part of the theorem, suppose = is a stationary distribution
for W. Then (3.5) holds by Proposition 3.1. On substituting exponential
functions into (3.5), as in [10], Theorem (9.3), one derives a relationship
between the Laplace transform of 7 and the Laplace transforms of the
boundary measures v;. In precisely the same manner as in [10], one concludes
from this that 7 is of product form only if its density p is of the exponential
form (3.13)-(3.14) with 3,; in place of I}; there and that (3.11) holds. Again,
from the first paragraph of this proof, it follows that (3.12) is necessary for W
to have a product form stationary distribution and in this case (3.13)-(3.14)
hold. O

4. Quasireversibility of a Brownian service station. To develop our
interpretation of (3.12), it will be useful to consider the subnetwork composed
of stations %k through d only. Throughout this section, 2 will be a fixed
integer satisfying 1 < £ <d and @ = (a,, ..., a;) will have the same distribu-
tion as ¢* = (&,,...,¢,), that is, @ will be a (d — k£ + 1)-dimensional Brown-
ian motion with drift vector —6* and covariance matrix I'* and a(0) = 0,
where 6% = (6,,...,60,) and T* = (T};;}), _; ;.4 The process a represents the
total workload netflow to the subnetwork under study, that is, a plays the
same role for this subnetwork as does ¢ for the entire network.

Now let Z(0) be a nonnegative random variable that is independent of «
and define the one-dimensional RBM

(4.1) Z(t) = Z(0) + a,(t) + L(¢), >0,
where
(4.2) L(¢) = (= min (2(0) + ax(5))

Thus Z and L are defined in terms of Z(0) and «,, in the same way that W,
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and Y, are defined in terms of W,(0) and {,. (The relevant connection will be
explained in the next section.) Since 6, > 0, Z has a (unique) stationary
distribution with density

(4.3) pk(xk) = Y exp(—ykxk) for xk (S R+,
where
(44) Yi = 265/ The-

Now suppose that Z(0) is randomized to have the stationary distribution of Z.
Let B =(Bs.1,---,By) be defined by

(4.5) Bi(t) = ai(t) — Gip(Z(t) — Z(0)), t=0,i=k+1,...,d.

THEOREM 4.1. The following two statements are equivalent:
(4.6) {B(s):0 <s <t} isindependentofZ(t) foreach fixedt > 0;
(4.7) Fik = %Gikl—‘kk fori =k + 1,...,d.

Moreover, whenever (4.6)-(4.7) hold, we have

(4.8) B is a Brownian motion with the same distribution as £**1.

In fact, if G,, # 0 for some i € {k + 1,...,d}, then (4.8) is equivalent to
(4.6)-(4.7).

Proor. Consider the model of a Brownian service station described in [11]
with A(#) = at) + 7t, 7=(1,0,...,0), v=0, 6 =(1,G4 1 4,.--,Gy) and
N =[0lI] there, where in the latter, 0 is the (d — k)-dimensional column
vector of all zeros and I is the (d — k) X (d — k) identity matrix. We note that
in [11], A was assumed to have a positive drift and here A will have some drift
components that are negative. However, all that is important for the applica-
tion of the results in [11] is that X = @, there has a negative drift, which it
will since the drift of a, is —8, < 0. With these choices, the processes, W, Y
and ND in [11] correspond to Z, L and B here (note that the + in equation
(2.15) in [11] should be a —). Thus, by the proof of Theorem 3.1 in [11], (4.6) is
equivalent to

(4.9) NT*7 = L(#'T*r) N3,

which in turn is equivalent to (4.7). Moreover, it is shown in the proof in [11]
that (4.9) implies ND is a Brownian motion with the same distribution as NA
and that the converse holds if N& has at least one nonzero component. It
follows that (4.7) implies (4.8) and that the converse is true if G, # 0 for some
ie{k+1,...,d}. O

DeFINITION. We say that station & is quasireversible, or is quasireversible
when viewed in isolation, if (4.6)-(4.7) hold.

ReEMARK. To paraphrase, quasireversibility of station 2 means that if we
feed the station a vector Brownian input a distributed as &%, then in equilib-
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rium it produces a vector Brownian output B. Moreover B is distributed as
£%+1 and {B(s): 0 < s < ¢}, the output up to time ¢, is independent of Z(¢), the
station’s state description at time ¢.

5. Quasireversibility and product form solutions. Comparing condi-
tion (3.12) with (4.7), we see that Theorem 3.1 can be restated in the following
form.

THEOREM 5.1. The Brownian network model has a product form solution if
and only if each station k = 1,2, ...,d — 1, is quasireversible. In this case, the
stationary distribution of W has density function p(x) = p(x)) - pa(xy),
where p,(x,) is the exponential density given by (4.3)-(4.4) fork =1,...,d.

REMARK. Since (4.7) is vacuous when k = d, let us say as a matter of
definition that station d is automatically quasireversible. Then Theorem 5.1
can be stated more succinctly as follows. The Brownian network model has a
product form solution if and only if each station is quasireversible.

Theorem 5.1 is essentially a restatement of Theorem 3.1 and it fulfills our
promise of a probabilistic interpretation for the algebraic condition (3.12). To
reinforce that interpretation, we now give a proof of the if part of Theorem 5.1.

ProoF oF THE “IF”’ PART OF THEOREM 5.1. Suppose that for each % €
{1,...,d — 1}, station k is quasireversible, that is, (4.7) holds. First consider
station 1. We have {; = £;. By setting 2 = 1 and @ = ¢ in Section 4, we obtain
that Z, L there equal W,, Y;. Hence W, has stationary density p, given by
(4.3) with 2 = 1, and by Theorem 4.1, since (4.7) holds, when W, is initialized
with this stationary distribution we have for B! = (8},..., BL), where B! =
& — Gy(W, —W(0),i=2,...,d, B! is a (— 6% I'?) Brownian motion and for
each ¢ > 0, {8(s): 0 < s < ¢t} is independent of W,(2).

For a proof by induction on the station index, we make the induction
hypothesis that for j fixed such that 1 <j <d, when W((0),...,W;(0) are
independent random variables (also independent of ¢) with the density of
W,(0) being given by (4.3) for & = 1,..., j, then

(Wy(2),..., W;(¢)) has the same distribution as

(5.1) (Wy(0),...,W;(0)) for each ¢ > 0,

and for B/ = (BJ,,,..., B}) defined by
(52) Bijzfi_ Z Gzl(“’l_“,l(o))’ i=j+17"'7d7

I<j
B’ is a (—6/*1, T7*1) Brownian motion and for each ¢ > 0,

(5:3) " (Bi(s): 0 < 5 < ¢} is independent of (W(£), .., W;(t)).

Let Wy(0), ..., W;(0) have the distributions described above. Setting & =j + 1
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and a = B’ in Section 4, we see that a, = B/,; = &;,; — L, ;41Gj .1 (W, —
Wy(0)) = {;,, and hence Z, L in Section 4 equal W, ,Y;, ;. Thus, W;,, has
stationary density p;,; given by (4.3) with £ =; + 1. Suppose W, (0) is
chosen independent of (Wy(0),...,W;(0), &) with density p;,;. Then W, (¢)
has the same distribution as W,,,(0) and by Theorem 4.1, for g/*!' =
(Bi3,..., B4, defined by

szﬂ =a; — Gi,j+1(Wj+1 - W}+1(0))
=¢ - Z Giz(VVl_Wz(O))’ i=j+2,...,d,

I<j+1

B/*1 is a (—67*2,T7*2) Brownian motion, and for each ¢ > 0, /%, , is
independent of W;, (¢). Now for ¢ > 0 fixed, (W, (0), al,+) is independent of
(Wy(2), ..., W, (). Since W, ,(¢) is determined by (W, (0), a0, it follows
that W, (¢) is independent of (Wy(¢?), ..., W;(¢)) and hence (W(?), ..., W, (¢))
has the same product form distribution as (Wy0),..., W;, (0)). Also
(Bj“,Wj +Dlo,s7 is determined by (W, (0), alo,+) and so is independent of
(W), ..., W,()). In turn, B’* ;o) is independent of W, (¢), and so B+ 0,4
is independent of (W(2),..., W, ().

Summarizing the above, we have shown that when W(0),...,W;, (0) are
independent (and independent of ¢) with the density of W,(0) being given by
43)for k=1,...,j + 1, then (5.1) and (5.3) hold with j + 1 in place of ;.
This completes the induction step. It follows by induction that when
Wy(0), ..., W,(0) are chosen independent, with the density of W,(0) given by
(4.3) for k=1,...,d, then (W(¢),...,W,(¢)) has the same distribution as
(W(0),...,W,(0)). That is, the product form density p(x) = p(x) - ps(xy),
where p,(x,) is given by (4.3) for £ = 1,...,d, is a stationary density for W
and hence W has a product form stationary distribution. O

6. A simple example. The remainder of this paper is devoted to analysis
of three examples, all of which are queueing networks of the type described in
the Appendix. In the context of each example, we will discuss parameter
combinations that yield a product form stationary distribution for the approxi-
mating Brownian network model. That is, we discuss parameter combinations
such that the covariance matrix I' and the workload contents matrix G of the
approximating Brownian network model jointly satisfy the product form condi-
tion' (8.12). The matrices I' and G will be calculated from elemental model
parameters by means of formulas (A.51) and (A.49), respectively. These formu-
las do not involve the numbers of servers at the various stations, so we will not
specify values for the parameters c,,...,c; except to say that each station is
assumed to have enough servers to satisfy the stability condition 6, > 0, where
0, is defined by (A.14).

As a first example, consider the network pictured in Figure 1. This is a
generalized Jackson network, where the number of customer classes n equals
the number of service stations d. That is, in a generalized Jackson network
there is a single customer class associated with each service station, and



FEEDFORWARD QUEUEING NETWORKS 275

FiG. 1. Three queues in series.

customers change station in Markovian fashion. For the series network
pictured in Figure 1, the switching probabilities are P, = Py; = 1 and P;; = 0
otherwise. Following the notational convention used in the Appendix, we
denote by 7; and b, the mean and the coefficient of variation, respectively, for
the service time distribution at station i. Also, let a be the exogenous input
rate to station 1, and let a be the coefficient of variation for the interarrival
time distribution. It follows that the average arrival rate of customers to each
station i is A; = a. (In general, A; denotes the average arrival rate to customer
class i, but in this case there is a one-to-one correspondence between customer
classes and service stations.)

Let us now consider formula (A.51) for the asymptotic covariance matrix I'
of the total workload netflow process &. For a generalized Jackson network,
the constituency matrix C is simply C = I (the d X d identity matrix). Also,
recalling that H is the asymptotic covariance matrix of the switching noise
process V defined by (A.26), readers may verify that H = 0 for any multiclass
network with deterministic routing. That is, H = 0 whenever P,; = 0 or 1 for
all (i, j) pairs. Thus, for the network under discussion, (A.51) reduces to

(6.1) I'=A+ (TB)K(TBY,
where
(6.2) A = diag(arib}, at3b3, ar3b3),
(6.3) T = diag(ry, 72, 73),
(6.4) K = diag(aa?,0,0)
and
1 0 0
(6.5) B=(I+P+P2)'=(1 1 o)
1 1 1
Combining (6.1) through (6.5), one arrives at
(a® + b3)7} a’r7, a’r 7y
(6.6) F'=a| a?r7y (a® + b3)75 a’7y74
a’r,74 a’1,7y (a® + b3)73

To determine the workload contents matrix G, we must first specify param-
eters §;, i = 1,2,3, that reflect the service disciplines at the three stations.
Because there is just one customer class served at each station, formula (A.34)
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specializes in the case at hand to give
(6.7) 8, = 1/7; with FIFO at station i.

Similarly, for the processor-sharing (PS) discipline, formulae (A.60)-(A.61)
specialize to give

(6.8) 8, = 2/7;(1 + b?) with PS at station i.

Recalling that A = diag(s,, 8,, 83), readers may verify that (A.49) reduces in
the case at hand to

0 0 0
(6.9) G=|m0 0 0}

For an intuitive understanding of (6.9), note that formula (A.58), specialized to
generalized Jackson networks, identifies 1/8; as the average amount of re-
maining work for servers at station j embodied in a customer occupying
station j. Thus, for 1 <j <i <3, 7,8; represents the average amount of
future work for station i embodied in a unit of immediate work at station j,
which is the general interpretation of G,; given in the Appendix.

Our general condition (3.12) for a product form stationary distribution is
that I}, = 3G,;T;; for 1 <j <i < 3. Using (6.6) and (6.9), we see that this
reduces to
(6.10) a’rr; = 37;8;(a® + bF)r} forl<j<i<3,

J

or equivalently,
(6.11) 8, = 2d%/7;(a® +b7) forj=1,2.

Let us assume that the service discipline at both station 1 and station 2 is
either FIFO or PS. Comparing (6.11) with (6.7) and (6.8), one arrives at the
following requirements for (6.11) to hold:

(6.12) if station j has a FIFO discipline, then b; = a;

or
(6.13) if station j has a PS discipline, then either a = 1 or else b; = 0.

In other words, the parameter combinations yielding a product form solution
for the approximating Brownian network model are precisely those given in
Table 1 below.

These findings are in some respects predictable. For example, there are no
restrictions on either the service discipline or the service time distribution at
station 3, which one would expect because that is an exit node. Also, consider
the case where input to the network is Poisson (implying a = 1) and each
nonexit node j = 1,2 satisfies one of the following two descriptions: either the
service discipline is PS, or else the service time distribution is exponential
(implying b; = 1) and the discipline is FIFO. It is known ([1], [13] that such a
network has a product form stationary distribution and Table 1 confirms that
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TaBLE 1
Conditions yielding a product form solution for the approximating Brownian network model

Service discipline at station 2

Service discipline at station 1 FIFO PS
a=b;=1
FIFO a=b; =b,y or
(a = b, and b, = 0)
a=b,=1 a=1
PS or or
(a = by and b, = 0) by=b,=0

the corresponding Brownian network model also has a product form solution,
as one would expect.

What is striking about (6.12) and (6.13) is that one may obtain a product
form solution for the Brownian network model under weaker conditions: For a
nonexit node j with FIFO discipline it is only required that b; = a; and with
non-Poisson input and a PS discipline at a nonexit node, one may still obtain a
product form solution if the service times at that station are deterministic. As
explained in the Appendix, the Brownian network models described in this
paper can be rigorously justified as heavy traffic limits when all nodes have
FIFO discipline, and product form conditions that generalize (6.12) have
appeared in earlier papers ([8], [10]). In contrast, our proposed methed for
representing the PS discipline in a Brownian network model is based on
conjecture; there is as yet no rigorous heavy traffic limit theory for queueing
systems with PS discipline, and such a theory is needed to fully justify the
analysis presented here.

7. A multiclass example. Consider now the three-station network pic-
tured in Figure 2. There are a total of four customer classes, and the
exogenous inputs for class 1 and class 2 are assumed to be independent
renewal processes. We denote by «, the average input rate for class %

Class 1 Class 3

Class 2 Class 4

Fi1G. 2. A multiclass network with deterministic switching.
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customers and by a, the coefficient of variation for the class % interarrival
time distribution (£ = 1,2). Thus the asymptotic covariance matrix for the
four-dimensional input process I = {I(¢), ¢t > 0} is

(7.1) K = diag(a,a}, @5a3,0,0).

The constituency of station 1 consists of customer classes 1 and 2, whereas
only class 3 is served at station 2 and only class 4 is served at station 3. Thus
we have the constituency matrix

110 0
(7.2) c=|0 0 1 o
00 0 1

The 4 X 4 switching matrix P had P;; = Py, = 1 and P;; = 0 otherwise, and
as in our previous example, such deterministic switching implies that

(7.3) H=0.

The overall arrival rates A, for the customer classes are simply A, = A3 = a;
and A, = A, = a,, so formula (A.17) for the covariance matrix A reduces to

(7.4) A = diag(a,77b3, a,Tab3, a;T2b3, aszbf).

From the switching probabilities P;; specified above, it follows that

(7.5) B=1+P =

OO
O-HOO
= =N =)

OO

and as in the Appendix we set
(76) T = diag(71772773774)'

Substituting (7.1)—-(7.6) into (A.51) and simplifying, one finds that the 3 X 3
covariance matrix I" has

(7.7) Ty = ay(a} + b3)rf + ay(a} + b3)73,
(7.8) Ty = ayain7s,

and

(7.9) F31 = a2a227274.

On the other hand,

5, 0 0
5 0 0
A=lo 5, o0
0 0 s,

by definition, and one then deduces from (A.49) that the workload contents
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matrix G has the simple form

0 0 0
(7.10) G=|m38: 0 0Of
7,6, 0 O

Our general criterion (3.12) for a product form stationary distribution requires
in this case that

(7.11) T, = iG,I,, fori=2,3,
and by (7.8)-(7.10) this is equivalent to
(7.12) aka%Tk = %5kru for k = 1,2.

The product form criterion (7.12) involves not only the first and second
moments of the interarrival and service time distributions, but also the service
discipline at station 1, as manifested in the constants §, and 8,. To simplify
subsequent discussion, let us assume until further notice that both input
processes are Poisson, implying that a, = a, = 1. Then (7.12) reduces to the
requirement that

(7.13) Bk = (/\ka)dl fOI‘ k = 1,2,
where
(7.14) dy=2/Ty; = 2/{A(1 + b3)7 + A5(1 + b2)73}.

Comparing this with (A.60)-(A.61), we see that (7.13) holds if one assumes a
processor-sharing (PS) discipline at station 1, and this is as one would expect,
because in that case the original queueing network model is known to have a
product form stationary distribution. A further implication of (7.13)—(7.14) is
that, if one assumes some other service discipline at station 1, the Brownian
network model can only have a product form solution if that discipline gives
the same values for 8, and 8, as does the PS discipline.

For example, if the service discipline at station 1 is FIFO, we know from
(A.34) that

(7.15) 8,=A,/p, fork=1,2,

where p; = A;7; + A,7,. Substituting (7.15) into (7.13) gives the product form
criterion

This obviously requires that 7, = 7, = 7, in which case p; = (A; + A,)7 and
(7.14) reduces to

(7.17) dy = 2/{py + (A1b] + Ab3)r)7.

Then the product form condition (7.16) becomes

A A
2 _ 1 2 2 2
. = + =1.
(7.18) b (A1+A2)b1 (/\1+A2)b2
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To summarize, if one assumes that both inputs are Poisson and the service
discipline at station 1 is FIFO, then the approximating Brownian network
model has a product form solution if and only if 7, = 7, and b = 1. To have
b = 1 it is obviously sufficient that b, = b, = 1. That would be true if classes 1
and 2 had a common exponential service time distribution, in which case the
original queueing network model is known to have a product form solution.
However, (7.18) may hold even when classes 1 and 2 have distinct, nonexpo-
nential service time distributions, and in such cases the original model does
not generally have a product form solution.

As a final note, let us consider again the case where station 1 has a PS
discipline. We concluded that in this case the approximating Brownian net-
work model has a product form solution, as does the original queueing
network model, regardless of the service time distributions for classes 1 and 2.
However, that conclusion is very much dependent on the assumption of
Poisson inputs. If one takes either a; or a, to be different from 1 in the
Brownian network model, a product form solution is no longer guaranteed, but
neither is it impossible. To illustrate the latter point, consider the symmetric
case with @, =a,=a>0, a;=a,=a>0, 1y =7,=7 and b; =b, = 0.
Formula (7.7) then simplifies to give I'}; = 2aa®r? and the product form
condition (7.12) reduces to

(7.19) 8,=1/7 fork=1,2.

If one assumes a PS discipline at station 1, it can be verified from (A.60) and
(A.61) that (7.19) holds, so the Brownian network model has a product form
solution. We presume that in cases like this, with non-Poisson input and
deterministic services, the original queueing network model does not have a
product form solution, but that issue has not been investigated.

8. An example with correlated inputs. As a final example, consider
the two-station network pictured in Figure 3. Here one has exogenous input
processes I, = I, = N and we take N to be a Poisson process with intensity
parameter «. In other words, pairs of customers arrive in Poisson fashion at
average rate « and one member of each pair goes directly to station 2, whereas
the other member requires a service at station 1 before proceeding to station 2.
It follows that a; = @, = a and that the asymptotic covariance matrix of the

L

I, =N /

F1G. 3. A two-station network with perfectly correlated inputs.

I
4
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two-dimensional input process I is
o o
(8.1) k=[5 o]
Class % customers are defined to be those visiting station k., & = 1, 2, and the
2 X 2 switching matrix P is given by
(8.2) P, =1 and P;; = 0otherwise.

As in our previous examples, this deterministic switching implies that the
switching noise process V has asymptotic covariance matrix H = 0. Obviously,
A, = a and A, = 2a, so (A.17) reduces to

(8.3) A = diag(arib?, 2a73b3).

The constituency matrix C is simply the 2 X 2 identity matrix and
_ ,_ |1 0

(8.4) B—I+P—[1 1].

From these data and the general formula (A.51), readers may verify that

85 r a(l + bf)*rf 2aT,Ty
(8.5) B 2a7 T, 2a(2 +b§)7§ '

Assuming a FIFO service discipline at station 1, formula (A.34) gives §; = 1/7;
and then (A.49) gives the workload contents matrix

0 o 0 0
(8.6) G= [7251 0] - [72/1'1 0]‘

Our general product form condition (3.12) is T, = $G,,;I';; and by (8.5) and
(8.6) that reduces to

(8.7) b? = 3.

That is, with a FIFO service discipline at station 1, the Brownian network
model has a product form stationary distribution if and only if 5% = 3,
although the original queueing network model appears to be intractable (we
have not actually investigated this matter carefully), regardless of the service
time distribution at station 1. Using formulas (A.60) and (A.61), interested
readers may verify that if one assumes a PS discipline at station 1, it is
impossible to satisfy the product form condition (3.12), regardless of the
service time distribution at station 1.

APPENDIX

The Brownian model of a multiclass open network. In this Ap-
pendix we describe a very general class of conventional queueing network
models and we explain how one approximates such a system by a Brownian
network model of the type defined in Section 2. Only open queueing networks
are considered, in which customers arrive from outside the system and return
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to the outside world after a finite number of required services have been
completed. In this Appendix, customer routing is allowed to be arbitrary, but
in the body of the paper only feedforward networks are considered.

Following the pattern established in [6] and Section 5 of [7], consider a
structured network model with service stations indexed by i, j = 1,...,d and
customer classes indexed by k,l = 1,...,n. Each class k& has its own exoge-
nous input process I, = {I,(¢), ¢ > 0} (possibly null), and in the obvious way
we denote by I the n-dimensional process with components I,...,I,. One
interprets I,(¢) as the number of class & customers who arrive from the
outside by time ¢, and it is assumed that 1,(0) = 0. We also assume that there
exists an n-vector @ and an n X n covariance matrix K such that

(A.1) E[I(t)] ~at and Cov[I(¢)] ~Kt ast— o,

where ~ means is asymptotic to, in the sense that the term on the left of this
sign divided by the term on the right tends to 1 as ¢ —» . (In the second
expression, this must be done component by component for the matrices
involved.) In addition, a rigorous justification of the Brownian network model
(see below) requires that I satisfy a functional central limit theorem, but we
postpone discussion of that requirement until later.

It is assumed that «, > 0 for at least one class k. Customers of class &
require service at a specific station s(k), and their service times there are
independent and identically distributed (iid) with mean 7, > 0 and coefficient
of variation (that is, standard deviation divided by mean) b,. The service time
sequences for the various classes are assumed to be independent of one
another and also of the arrival process I. The probability that a class %
customer, upon completion of service at station s(k), will turn next into a
customer of class [ is P,,;, and the probability that a class £ customer will exit
the system after completing service is 1 — 3, P,;, independent of all previous
history. The n X n Markov switching matrix P = (P,;) is assumed to be
transient, which simply means that all arriving customers eventually leave the
system. Let €(i) be the set of all customer classes & such that s(k) =i. We
call €(i) the constituency of station i and it is assumed that €(i) is nonempty
fori=1,...,d.

Our assumptions with regard to customer routing are extremely weak. In
particular, there is little or no loss of generality in the assumption that
customers switch classes in Markovian fashion, or that the different classes
have independent iid service time sequences, because the number of classes n
can be made arbitrarily large; see Section 2 of [6] and Section 5 of [7] for
discussion of this point. Completing the description of our queueing network
model, it is assumed that station i consists of c¢; identical servers working in
parallel (¢; > 1) and each station i employs a work-conserving service disci-
pline that is static and only uses information about customers present at
station i when the scheduling decision (or priority decision) is made. This
characterization of admissible service disciplines is admittedly vague and
nothing more will be said on the matter at present, except for the following:
Three illustrative disciplines of the type we intend to include in this discussion
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are first-in-first-out scheduling of the station, a static priority ranking (either
preemptive-resume or nonpreemptive) of the customer classes served at the
station, and the processor sharing discipline to be discussed later.

In addition to the stochastic processes described above, let Y,(¢) denote the
cumulative server idleness at station i up to time ¢ (a sum over the c; servers
who work in parallel there) and let @,(¢) denote the number of class &
customers who are present at station s(k) at time ¢, either waiting or being
served. Also, let A,(¢) be the number of customers who enter class % (external
arrivals plus internal transitions) up to time ¢ and let S,(m) be the sum of the
service times for the first m of those arrivals. It will be useful to define the
immediate workload input process for class k,

(A-2) L,(2) = Sp(Ax(?)),
and the immediate workload netflow process for station ¢,
(A.3) ()= X Ly(t) —cit.

ke €()

Let W.(¢) be the immediate workload at time ¢ for servers at station i, equal
to the sum of the impending service times of customers who are queued at the
station at time ¢, plus the remaining service times of those customers (if any)
who are being serviced there at time ¢. For any work-conserving service
discipline, one then has that

(A4) W(2) = Wi(0) + £,(2) + Yi(2).

To express the system equations (A.2)-(A.4) in more compact form, it will
be convenient to define a d X n constituency matrix C via

1, if s(k) =i,
Ab C,.=
(A5) i {0, otherwise,

and an n X n diagonal matrix

(A.6) T = diag(71,-.-,7,)-

Also, let us define

(A7) 8u(m) = Sy(m) —m7, and Uy(?) = Si(Aw(?)),
so that (A.2) can be rewritten in the form

(A.8) L,(t) = Uy(t) + 7,A,(t).

Defining vector stochastic processes (some d-dimensional and some n-dimen-
sional) I, A, L, Y, X, W and U in the obvious way, we can restate (A.8), (A.3)
and (A.4) in vector form as

(A9) L(t) = U(t) + TA(¢t),
(A.10) {(t) =CL(¢) —ct
and

(A.11) W(t) = W(0) + £(2) + Y(¢).
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Recall that P is a transient Markov matrix by assumption. Thus we can
define the fundamental matrix

(A.12) B=(I-P)'=(I+P+Pt+ ...y,

where I here is the n X n identity matrix, not to be confused with the process
I(?). One interprets B, as the average number of visits to class # made by a
customer who starts in class /. Thus, defining an n-vector A = (1,) via

(A.13) A = Ba,

we see that A, represents the long-run average number of customer visits to
class & per unit time, assuming that every station has enough capacity to
handle the workload imposed on it. With that proviso, the long-run average
rate of workflow into station i will be T, 4;A,m, and hence the excess
capacity at station i is

(A.14) 0,» = ci - Z Aka'
ke€()

Hereafter it is assumed that 6; > 0 for all i, in which case one expects that

(A.15) E[A(t)] = At for large ¢,

where = means is approximately equal to. From this and (A.7), it follows that
(A.16) Cov[U(t)] = At for large ¢,

where

(A.17) A = diag(A,73b3%, ..., A,72b2).

Let us denote by D,(¢) the number of class & customers who complete
service by time ¢ (the class k departure process) and by F,(¢) the number of
customers who enter class 2 by means of internal transition, as opposed to
external arrivals, during the interval [0,¢]. (The letter F is mnemonic for
feedback.) Defining n-dimensional processes D and F in the obvious way, one
then has as a matter of definition that

(A.18) Q(t) = Q(0) + A(¢) — D(¢)
and
(A.19) A(t) =1I(t) + F(t).

Our next task is to connect the feedback process F with the departure
process D and for that purpose let {¢™(1),$™(2),...} be a sequence of iid
routing vectors for customers completing visits to class m; the kth component
of the vector equals 1 if the customer goes next to class £ and equals zero
otherwise. We assume that the sequences {¢™(i), i = 1,2, ...} are independent
of one another and of the input process and service times. Denoting by ¢™ a
generic element of the sequence {¢™(i), i = 1,2,...}, it follows that

(A.20) E(¢™) =P, and Cov(¢™)=H™,

where P, is the mth row of P (thus P, is a column vector) and H™ is the
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n X n matrix defined by

- P..(1-P,), ifk=1,

(a.21) Hii = { —P,,P,, itk L.

Also let ¢™(r) be the centered random vector

(A.22) é™(r) = ¢™(r) — P,

and define the n-dimensional cumulative sums

(A.23) ®"(r) = ¥ ¢™(i) and &7(r) = ¥ é™(i).
i=1 i=1

Then one has the key representation

n

(A2) ()= T 0n(Dy(0) = X [87(Do(0)) + P Du(0)]

m=1

and (A.24) can be rewritten in the compact form

(A.25) F(t) =V(t) + P'D(t),
where
(A.26) V() = ¥ ®™(D.u(t)).
m=1

Given (A.15) and the stability condition 6 > 0, one naturally expects that
(A.27) E[D(t)] = E[A(¢)] = At for large ¢,
and from this and (A.26) it follows that
(A.28) Cov[V(#)] = Ht for large t,
where
(A.29) H= ) A, H™.

m=1

Before an approximating Brownian network model can be proposed, it
remains to connect the queue length process @ with the immediate workload
process W, and that relationship depends critically on the service disciplines
employed at the various stations. The final data of our Brownian network

model will be nonnegative constants 8, ..., 8, such that
(A.30) Y 8,>0 fori=1,...,d.
ke €G)

A key hypothesis underlying the proposed approximation is that the service
disciplines manifest themselves in the relationship

(A.31) Q.(t) =§,W,(t) foreach k € €(i),
which can be stated more compactly as
(A.32) Q1) = AW(2),
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where A is the n X d matrix defined by

8,, if ke €(i),

A.33 A, =
( ) ke {0, otherwise.

The approximation (A.32) is a key to the tractability of the Brownian network
model. It is precisely analogous to the relationships hypothesized in [11] to
connect the queue length process and server workload process in a Brownian
model of a single service station, and as we will discuss later, existing limit
theorems suggest that it can be rigorously justified under heavy traffic condi-
tions, at least for certain familiar service disciplines. If station i employs a
FIFO service discipline, it is clear from existing theory that one should choose

(A.34) 8,=A,] Y A7, forallke €(i)andi=1,...,d
le€(i)

when forming the Brownian network model, and we will discuss later the
appropriate choices to represent other disciplines.

In describing the Brownian network model, we will use the same symbols
employed in the description above, with the understanding that each process is
interpreted just as before. The primitive elements of the Brownian model are a
nonnegative random d-vector W(0) and three independent n-dimensional
Brownian motions I, U and V, which are also independent of W(0), with
I(0) = U(0) = V(0) = 0 and the following parameters:

I has drift o and covariance matrix K;
(A.35) U has drift 0 and covariance matrix A;
V has drift 0 and covariance matrix H.

We call I the exogenous input process as before, and given the earlier
definitions of U and V in terms of centered random variables, one might
reasonably describe them as a service noise process and a switching noise
process, respectively. The system equations for the Brownian network model
are the following:

(A.36) A(t) = I(t) + F(t),

(A.37) L(t) = U(t) + TA(¢),

(A.38) {(t) = CL(t) — ct,

(A.39) W(t) = W(0) + £(t) + Y(2),
(A.40) Q1) = AW(2),

(A.41) D(t) = A(t) — [Q(2) — Q(0)]
and

(A.42) F(t) = V(t) + P'D(t).

Each of these relationships, except (A.40), is a repetition of an equation
appearing in the earlier discussion and (A.40) is obtained from (A.32) upon
replacing the approximate equality by equality. Completing the specification of
the Brownian network model, the following two relationships characterize the
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cumulative idleness process Y:

(A43) Y is continuous and nondecreasing with Y(0) = 0

and

(A.44) Y, can increase only at times ¢ for which W,(¢) =0, i=1,...,d.

Of course, (A.43) is a natural physical restriction. Condition (A.44) says that
cumulative server idleness at station i only increases when the station is
devoid of customers. This is exactly true for single-server stations and we take
the point of view that it is an acceptable idealization in the case of multiserver
stations. One can rigorously defend that point of view under heavy traffic
assumptions, but (A.44) may represent a substantial compromise with reality
for stations that are lightly loaded and/or have many servers.

Once the Brownian network model has been described by (A.35)-(A.44), two
questions naturally arise. First, does there exist a family of processes that
satisfies these relationships, and is that family in any sense unique? Second,
can the Brownian network model be rigorously justified as a heavy traffic limit
of the conventional network model described earlier? Turning first to the
former issue, one can substitute (A.40)-(A.42) into (A.36) to obtain

(Ad5)  A(¢) = I(t) + P'A(t) — PA[W(t) — W(0)] + V(2).

Recalling that B = (I — P")~!, we now solve for A(¢) in terms of the other
quantities:

(A.46) A(t) = B[I(t) + V(t)] — BPA[W(¢) — W(0)].
Next, defining

(A.47) £(t) = CU(¢) + (CTB)I(t) + (CTB)V(t) — ct,
one may substitute (A.37) and then (A.46) into (A.38) to arrive at
(A.48) () = £(t) — G[W(2) — W(0)],

where G is the d X d matrix defined by

(A49) G = CTBP'A.

Finally, adding W(0) + Y(¢) to both sides of (A.48) and substituting (A.39) on
the left, we conclude that

(A.50) W(t) = W(0) + £(¢) — G[W(¢) — W(0)] + Y(¢).

To understand the significance of (A.50), note first that (A.47) defines ¢
entirely in terms of primitive model elements. More specifically, it follows from
(A.35) that ¢ is a d-dimensional Brownian motion with £(0) = 0, covariance
matrix

(A.51) I = CAC’' + (CTB)(K + H)(CTBY

and drift vector CTBa — c. Using (A.13), one may reexpress the drift vector as
CTA — ¢ but this is just —6, where 6 is the d-vector of excess capacities
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defined by (A.14). As we will see shortly, both £ and the matrix G appearing in
(A.50) have a ready interpretation. For the moment, however, the important
point is that (A.50) and the two restrictions (A.43) and (A.44) that characterize
Y contain all of the information about W and Y that is present in our original
model description (A.35)-(A.44). One may naturally ask, given W(0) and ¢, is
there a pair (W,Y) satisfying (A.50), (A.43) and (A.44), and is that pair
unique? In Section 3 we show that the answer is affirmative for the relatively
easy special case where G is lower triangular, corresponding to a feedforward
queueing network. For general G, the question is much more complicated, and
we do not actually know the answer, but it is worthwhile to say just a bit more
about this fundamental issue. To avoid trivial complications, assume that I is
nondegenerate and that R = (I + G) ™! exists. Then (A.50) can be reexpressed
as

(A.52) W(t) = W(0) + R&(¢) + RY(¢)

or

(A.53) W(t) = W(0) + X(t) + RY(¢t),

where X = R¢ is a d-dimensional Brownian motion with drift vector u = —R6

and nondegenerate covariance matrix 3 = RTR'. For the purpose of analyzing
such a process, a minimal assumption is that {X(¢) — ut, ¢ > 0} be a martin-
gale with respect to a filtration to which W and Y are adapted. These
conditions on X, together with (A.53), (A.43) and (A.44) identify W as a
so-called semimartingale reflected Brownian motion (SRBM) with state space
Re. It follows from the works of Reiman and Williams [19] and Taylor and
Williams [21] that there exists a triple (W, X, Y) defined on some probability
space and satisfying these properties if and only if R is what is called a
completely-# matrix, in which case W and Y are unique in distribution given
W(0). An important open research question is whether the R-matrices derived
from queueing networks by means of the process described here are automati-
cally of this class. That question, in turn, involves the issue of which A
matrices can legitimately arise from queueing network models, and we will
return to that subject shortly.

For an interpretation of the key relationship (A.50), let us return briefly to
the conventional queueing network model described earlier. For the purposes
of this paragraph only, let £,(¢) be the total amount of work that servers at
station ¢ must do to complete the processing of all customers who enter the
network by time ¢, minus c;¢ (the total amount of work that servers at station
i can complete by time ¢ if they are never idle). Defining a d-dimensional
process ¢ in the obvious way, we call ¢ the fotal workload netflow process for
the queueing network. Arguing exactly as in Section 5 of [7], one can show that
E[£(t)] ~ — 6t and Cov[£(t)] ~ Tt as ¢ — . In the Brownian network model, £
is represented by the Brownian motion on the right side of (A.47), whose drift
vector and covariance matrix we have shown to be —6 and T, respectively.
Next, from (A.12) and (A.49), it follows that G = MA, where M isthe d X n



FEEDFORWARD QUEUEING NETWORKS 289

matrix defined by

!

M=CT(P+P%+--Y.

One interprets M,, as the average amount of future work required from
servers at station i to complete processing of a customer currently in class £,
where future work means work remaining after the customer’s next class
transition, or equivalently, after completion of the customer’s impending class
k service. When one equates Q(¢) with AW(¢) in accordance with (A.40), one
obtains

(A.54) GW(t) = MAW(¢) = MQ(t),

and the ith component of MQ(¢) represents the expected future work for
servers at station i embodied in customers now present anywhere in the
network. Thus G, ; represents the average amount of future work for station i
embodied in a unit of immediate work at station j. In the Brownian network
model, actual future work per unit of immediate work is simply equated with
average future work per unit of immediate work, which results in equation
(A.48) for the immediate workload netflow process {. Given the interpretations
of ¢ and G developed in this paragraph, of course, one can simply take these to
be primitive model elements and use (A.48) to directly define the immediate
workload netflow ¢, arriving at the reduced form Brownian network model
laid out in Section 2, as opposed to the extensive form Brownian mod-
el (A.35)-(A.44). Such a direct formulation of the reduced form Brownian
model was advocated in [7].

There have been repeated references in this paper to heavy traffic limit
theorems that rigorously justify Brownian network models as weak limits of
conventional queueing networks. What we have described in this Appendix is
an approximation scheme that goes far beyond anything one can justify on the
basis of existing heavy traffic results, but we conjecture that a limit theory can
in fact be developed to provide formal justification of the proposed approxima-
tion. The following paragraphs elaborate on this conjecture.

Consider a multiclass queueing network model of the type described earlier
in this Appendix and assume that 6, is small but positive for each station i.
(That is, consider a stable system in heavy traffic). One can then choose a large
integer N such that

(A.55) B =N29 >0 is of moderate size.

What one would like to show is that the d-dimensional scaled workload process
WP defined by

(A.56) WN(t) = N"V2W(Nt), ¢>0,

is well approximated by a d-dimensional RBM with appropriately chosen
parameters. To obtain such a conclusion, one needs to assume something more
about the vector input process I, in addition to existence of an asymptotic
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mean vector a and an asymptotic covariance matrix K. One natural assump-
tion, but certainly not the weakest possible, is that the centered and scaled
input process IV defined by

(A.57) IM(¢) = N"V2[I(Nt) — Nat], t=>0,

behaves approximately as a (0, K) Brownian motion. If I has independent
renewal inputs (in that case K is diagonal), such a statement is justified by the
familiar functional central limit theorem (FCLT) for renewal processes and a
similar FCLT can be proved for many other structured models of input flows.

To be more precise, one wants to consider a sequence of queueing networks
indexed by N = 1,2,... whose excess capacity vectors 8V satisfy N'/26N —
B>0as N — o, and then to show that the scaled workload processes W
associated with the successive systems converge weakly to a specified RBM as
N — o, [If each system in the sequence has the same master covariance matrix
I and the same workload contents matrix G, then the limiting RBM will be
one with reflection matrix R = (I + G)~}!, assuming this exists, covariance
matrix 3, = RTR’, drift vector » = —RB and state space S = R%.] More
generally, given appropriate restrictions on the service disciplines (see below)
we conjecture that the entire vector of processes I, A, F, L, U, {,W,Y,Q, D
and V, after proper centering and scaling, converges weakly to the analogous
vector of processes associated with the approximating Brownian network
model. That is precisely the sort of result obtained by Peterson [16] for
feedforward networks having multiple customer types and deterministic rout-
ing. The results that we are conjecturing here would generalize Peterson’s
limit theorem by allowing probabilistic switching among customer classes,
including the possibility of feedback, and multiserver stations. Previous work
on heavy traffic theory suggests that the extension to multiserver stations is
relatively easy, whereas the extension to networks with feedback involves
profound difficulties; by using induction, one can reduce the analysis of a
feedforward network to analysis of single stations, but a new approach must be
found to treat the general case with feedback. Also, as the next paragraph
suggests, service disciplines have a definite influence on the RBM that one
obtains as a heavy traffic limit, and it is not clear thus far how to even state a
limit theorem for a network with general service disciplines, let alone prove it.

In describing the Brownian network model that approximates a given
conventional queueing network, we have specified that the queue length
process @ be related to the workload process W via

(A.58) Q,(t) = 8,Wi(t) forallk € €(i)andi=1,...,d,

where {§,, £ € €(i)} are constants (not all zero) reflecting the service disci-
pline at station i. The simple relationship (A.58) does in fact characterize the
Brownian network model obtained by Peterson [16] as a heavy traffic limit, at
least for the case of a static priority ranking at each station. To be more
precise, for each station i, let .#(i) be a nonempty subset of the constituency
(i), and suppose that customers at station i are granted admission to service
in accordance with a static priority ranking, classes in #(i) being tied for
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lowest priority. This means that classes k € .#(i) are served on a first-in-
first-out basis at station i, and customers of all other classes in €(i) are given
priority over classes in .£(i). Peterson [16] showed that (A.58) holds in the
Brownian network model that he obtains as a heavy traffic limit, where

8, = le£G)

0, otherwise.

(A.59)

Of course, ordinary FIFO scheduling corresponds to the special case where
Z(i) = €(i), and we conjecture that (A.58) holds for many other types of local
scheduling rules (that is, scheduling rules that depend only on the current mix
of customers at the station being scheduled) if the constants §, are chosen
correctly. As an example, consider a single-server station i that uses the
so-called processor-sharing rule, which means that when a total of m cus-
tomers are present at station i, work is done constantly on each of those
customers at rate 1/m (that is, each customer receives one mth of the server’s
total attention). This rule may be viewed as a limit of the so-called round robin
discipline with service increment e. In that discipline the customer at the
head of the queue at station i receives ¢ time units of service, and if that does
not suffice to complete the customer’s service requirement, he is sent to the
end of the queue and must work his way up to the head again to receive
another service increment. Assuming that new arrivals to station i join the
end of the queue, one may think of processor sharing as the limit of this
discipline as £ | 0. Reiman [18] has proved a heavy traffic limit theorem for a
single-station queueing model with multiple customer classes and probabilistic
feedback, which includes the round robin discipline as a special case. A formal
analysis of his limiting Brownian station model leads one to conjecture that,
for a queueing network in which station i has processor sharing, the limiting
Brownian network model satisfies (A.58) with

(A.60) 8, =d;(M,7,) forall k € £€(i),
where
-1
(A.61) d; =2 ¥ 7,3(1 + b,f))tk
ke€()

To repeat, we conjecture that (A.58), (A.60) and (A.61) hold for a Brownian
network model obtained as a heavy traffic limit of a conventional model with
processor sharing at station i; there is no rigorous limit theorem to justify this
assertion even in a single-station setting, to say nothing of a full-blown
network setting. The intuitive content of (A.60) is that the queue lengths for
various classes served at station i remain at all times proportional to the
average contributions those classes make to the overall workload at the
station. For a derivation of the proportionality constant d;, let F, be
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the distribution function for class % service times and consider the correspond-
ing residual lifetime distribution

Gy(x) = 7,;1]0 [1-F,(y)]dy, x>0.
The mean of the residual lifetime distribution is
(A.62) re= [ xdGy(x) = 3(1+8Y)m, ke 6(0).
0

In the Brownian model of a station with processor sharing, the distribution of
remaining service time among class k£ customers who occupy the station is at
all times equal to the residual lifetime distribution G,, and thus the average
amount of remaining work to be done per class k& customer is at all times equal
to r,. Combining (A.62) with (A.59) and (A.60), we conclude that the immedi-
ate workload for station i at time ¢ is

Z r.Qp = Z rpd; A Wi(2),
ke €(i) ke €G)

and upon equating that expression to W,(¢) and solving for d;, one obtains
(A.61).

The heavy traffic limit theorem that was conjectured earlier in this Ap-
pendix involved a structured multiclass model with Markovian switching
among customer classes and independent iid service time sequences. In the
end, however, we obtain an approximating Brownian network model that is
built from just two primitive elements: a Brownian motion ¢ that represents
the total workload netflow process; and a matrix G whose (i, j)th element
represents the average amount of future work for station i embodied in a unit
of immediate work for station j, taking into account the service discipline
employed at station j. This suggest that a heavy traffic limit theorem might be
obtainable with much weaker assumptions than described earlier. Without
even introducing the notion of customer classes, one might directly hypothe-
size (a) a functional central limit theorem for the total workload netflow
process, and (b) some sort of functional strong law of large numbers that
involves a long-run average workload contents matrix G. There is reason to
believe that under such weak assumptions one could still prove convergence to
the approximating Brownian network model proposed in this paper. The
exposition of Brownian network models in Sections 1-3 of [7] was based on
just such a minimalist approach.
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