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STOCHASTIC MODELS FOR EPIDEMICS WITH SPECIAL
REFERENCE TO AIDS!

By VALERIE IsHAM

University College London

This paper gives a review of some of the recent work on stochastic
epidemic models and their deterministic counterparts. In particular it
focusses on models for the spread of HIV infection and AIDS. The variabil-
ity between realisations of an epidemic is discussed in some detail, and
methods of assessing this variation are described. Numerical examples are
given to illustrate various aspects of the models considered.

1. Introduction. In recent years there has been a great upsurge of
interest in models for epidemics, partly generated by concern over the AIDS
epidemic. Much of the work on building mathematical models for the trans-
mission dynamics of HIV infection is deterministic, although allowance for
many sources of variability can be made in the models [see, e.g., the review
given by Isham (1988) and Anderson, Blythe, Gupta and Konings (1989)].
However, the models are almost always described in stochastic terms even
when a deterministic analysis is envisaged. This raises the question as to the
connection between the stochastic models and their deterministic analogues,
the correspondence being many-to-one since a variety of stochastic models will
have the same deterministic counterpart. A deterministic model for the (multi-
variate) state of a system will consist of a set of differential equations which,
given assumed parameter values, can be solved numerically if not analytically
to give a fixed temporal evolution of the system. Realisations of a correspond-
ing stochastic model can be simulated and will in general, and in contrast,
exhibit considerable interrealisation variability. It will often be difficult or
impossible to obtain explicit expressions for the properties of a stochastic
model.

The aim of this paper is to review some of the recent work on stochastic
models for epidemics and their deterministic versions. It will focus on the
AIDS epidemic which has stimulated much progress in this area, although the
results have more general implications and applications. The paper will start
in Section 2 by describing properties and results for a very simple and
well-understood model, before going on in Section 3 to consider more general

Received August 1991; revised February 1992.

'IMS Special Invited Lecture given to the Biometric Society ENAR meeting in Houston, Texas
in March 1991.

AMS 1991 subject classification. 60K99.

Key words and phrases. AIDS, HIV infection, epidemic model, general stochastic epidemic,
variability of epidemic realisations.

Y
v
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z
The Annals of Applied Probability . STOR IS

i

WWWw.jstor.org



2 V. ISHAM

and realistic models for AIDS. Some areas of current interest and activity will
be outlined in Section 4. In Section 5 we discuss one specific aspect of
stochastic epidemics, that of the variability between realisations, in more detail
and use numerical examples to illustrate some of the ideas touched upon in the
paper. Finally, some summary remarks are given in Section 6.

2. A simple epidemic model.

The general stochastic epidemic. Perhaps the simplest interesting stochas-
tic epidemic model is the general stochastic epidemic, which is a Markov
process in which a closed population of size n is subdivided into three classes
consisting of those susceptible to the infection, those who are infected and
those who have recovered and are immune to reinfection. We denote the
numbers of individuals in these classes at time ¢ by X(¢), Y(¢) and Z(¢),
respectively, so that X(#) + Y(#) + Z(¢) = n. Infections occur at a rate propor-
tional to the current values of both X and Y, that is, we shall assume

P(X(t+dt)=i—-1,Y(t+dt) =j+1,Z(t +dt) = kIX(t) =i,

(2.1)
Y(t) =j, Z(t) = k) = an"Yjdt + o(dt)

while the periods of infection of distinct individuals are independent and
exponentially distributed with parameter v, so that

P(X(¢t+dt) =i, Y(t+dt)=j—1,Z(t +dt) = k + UX(¢) =i,

(2.2)
Y(t) =j,Z(t) =k) =vjdt + o(dt).
This model is also known as an S-I-R model, which alludes to the susceptible-
infected-recovered progression of the disease. An illustration of the course of
this epidemic is given in Figure 1. This will be discussed further in Section 5.
It follows from (2.1) and (2.2) that the increments in the variables satisfy
the equations

2.3) E(dX(8)IX(t),Y(t)) = —an"'X(¢)Y(¢) dt + o(dt),
' E(dY(t)IX(t),Y(¢t)) = [an~1X(t) — v]Y(t) dt + o(dt),

where we shall concentrate on the variables X and Y, Z being then completely
determined. The corresponding deterministic model ‘is obtained by equating
these conditional expected increments to the actual increments, thus it is given
. by the differential equations

' dx(t dy(t
(2.4) ii(t) = —an " x()y(t), J:i(t)

= [an~tx(t) — v]y(¢).
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Fi1c. 1. The expected numbers of susceptibles [ E(X), lower curve] and susceptibles + infectives
[E(X +Y), upper curve] for the general stochastic epidemic with n = 1000, X(0) = 990,
Y(0) = 10, « = 0.6, v = 0.1. The bars indicate +2 (standard deviation) for X or X +Y as
appropriate at particular time points.

Since the means of the stochastic system satisfy

dE(X(t)) _ —an 'E(X())E(Y(t)) — an~ ' cov( X(2), Y(1)),
25 U
dE(Z(t)) — [an'E(X(t)) - v]E(Y(t)) + an~ ' cov( X(2), Y (1)),

it is immediately clear that because the model is nonlinear, the deterministic
model (2.4) does not give the mean curves for the stochastic system. If, at
t = 0, X(0) is close to n and Y(0) is small, then for small ¢, Y(¢) will increase
as X(¢) decreases so that their covariance is negative. Thus the stochastic
mean number infected will increase more slowly than the corresponding
deterministic curve at the start of the epidemic.

Sometimes the constant of proportionality a/n in (2.1) is replaced by «’,
say. The distinction only really becomes important when the population size n
is regarded as variable; for example, as when the limit n — o is considered.
However, the former parameterisation is more appropriate in many cases
including that of AIDS, where it is natural to assume that each individual
‘“‘chooses” partners with whom to come into contact, at random from the
population. A common parameterisation for HIV transmission assumes that
individuals form new partnerships at rate « and that there is a probability g
+ that infection will be transmitted from an infective to a susceptible partner.
This results in an infection rate as in (2.1) with « = Bx. Note that in order to
use the S-I-R model as a simple model for AIDS we must reinterpret “infected’



4 V. ISHAM

as being infected with HIV but not yet having full AIDS and ‘“‘recovered” as
having progressed to a full AIDS diagnosis. With these definitions, the S-I-R
model is appropriate if we assume that those who have been infected with HIV
cease to transmit the infection once they have been diagnosed as having AIDS.

Properties of the model. Tt follows from the deterministic equations (2.4)
that if x(0) is close to the population size n, then an epidemic will only occur
(in the sense that the number of infectives initially increases) if a/v > 1.
Corresponding threshold effects exist in the stochastic case also, where if
a/v > 1, then an epidemic occurs with probability 1 — (v/a)*®. The critical
ratio R, = a/v is the reproductive ratio of the epidemic, which represents the
expected total number of individuals who would be infected by a single
infective, assuming all partners are susceptible.

The properties of the general stochastic epidemic have been considered by
many authors. Bailey (1975, Chapter 6) gives a thorough and authoritative
account, while Lefévre (1990) provides a short survey of the considerable
volume of work on the model published in the last fifteen years. The special
case, when v = 0, is known as the simple stochastic epidemic. This provides a
model of a situation where individuals are assumed to remain infectious
indefinitely. In many applications this will be a gross oversimplification.
Nevertheless it will often be an appropriate approximation to the start of an
epidemic. For example, in the AIDS context, it is well known that the incuba-
tion periods of individuals between infection with HIV and diagnosis with
AIDS are typically many years and therefore there will be few transitions from
the “infected” (interpreted as infected with HIV but not yet having full AIDS)
to the “recovered” (interpreted as full AIDS) state during the early years of
the epidemic. Thus the simple stochastic epidemic model can give a good idea
of the spread of HIV infection at the beginning of the AIDS epidemic. The
advantage of using the simple stochastic epidemic model is that its properties
are much easier to obtain by algebraic means.

The solution of the deterministic equations (2.4) when v = 0 is simply the
logistic curve given by

ny(0)e

@6) Y = 26 oo

where x(¢) + y(t) = n. If ¢ is small, then y(¢) = y(0)e*!, which underpins the
common assumption that an epidemic grows exponentially in its early stages.
Of course as ¢t —» «, y(¢) — n and, in this model, the infection spreads through
the whole population. For the stochastic model with v = 0, it is easy to show
that Y(¢) has moment generating function M, (6;¢) satisfying the forward
equation

82

na
=an (e’ - 1){ ——}MY(B;t).

IM(6;t)
a0 902

(2.7) -

The solution of this equation can be expressed in terms of a series of hypergeo-
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metric functions which leads naturally to the moments of Y(¢) and approxima-
tions to these via a variety of expansions [Bailey (1975, Chapter 5)].

In the general case, with » > 0, things are more difficult. Recursive solu-
tions to the forward equations for the (joint) probability distribution of the
state of the epidemic have been investigated by several authors; for a discus-
sion see Bailey (1975, Chapter 6.3) and Kryscio (1975). For the most part these
solutions are computationally very intensive although the scheme by Billard
and Zhao (1991, 1992), which exploits a technique involving the transforma-
tion of the variables first introduced by Severo (1967, 1969), looks promising.
Another approach, taken by Ludwig (1973), is to replace the forward equations
of the process by an approximating system. In contrast with the case when
v = 0, the epidemic can die out without spreading through the whole popula-
tion and the threshold results previously mentioned address this point.

3. Models for the AIDS epidemic. In the previous section we saw that
the general stochastic epidemic could be regarded as a very simple model for
the spread of AIDS if we interpret the three states as susceptible, infected with
HIV but not yet diagnosed as having (full) AIDS and diagnosed with AIDS,
and take the constant of proportionality a to be the product (a« = B«) of the
rate k of partner change and the probability B of transmission of infection.
There are, however, many unsatisfactory features of this model which need to
be modified to make the model more realistic. Realism is of course not the only
goal, as we want a simple parsimonious model which can be interpreted easily.
Nevertheless it is vital to include sources of variation which are known to have
an important influence on the course of an epidemic.

Models for the incubation period. In the general stochastic epidemic,
infected individuals are assumed to have a constant hazard of recovery. In the
AIDS context this would mean that the incubation periods between infection
with HIV and the progression to full AIDS are exponentially distributed. In
fact it is known that short incubation periods (of 2-3 years, say) are, relatively,
very unlikely; see, for example, Bacchetti and Moss (1989). If the hazard of
developing AIDS is taken to be a function v(7) of the time 7 since infection,
then it is straightforward to write down equations for a Markov model in
which the state of the system must now be {X(¢), Y(¢;7) 7> 0, Z(¢)} where
Y(¢; 7) dr represents the number of infected individuals in the population at
time ¢ who became infected during (¢t — 7,¢ — 7 + d7). For example, the
deterministic equations [cf. (2.4)] in this case are

dx(t)
dt

® dx(t
= —an~ x(t)/0 y(t;r)dr, y(t;0) = — g;(t ) s

(3.1)

(52 + 3 Jotim) = —v(to.

The Weibull distribution, for which »(7) ot 77~ ! (some y > 0), is a conve-
nient parametric distribution, quite often assumed for the AIDS incubation
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period. If the index y is greater than 1, then the incubation period has an
increasing hazard, and fitted values of y for AIDS are typically in the range
2.0-2.5 [Billard, Medley and Anderson (1990)]. However, for the purposes of
simulation of the stochastic process or numerical solution of the deterministic
equations, it is simpler to use a gamma distribution with integer index (%, say),
exploiting the method of stages in which the incubation period is represented
as a series of k stages, the durations of stay in the stages being independent,
identically distributed exponential variables. In this way, we need only the
numbers YX(¢), i = 1,...,k, of infectives in the % stages rather than the
density Y(¢; 7), and within a stage the hazard is constant. In this case, for a
gamma distribution with mean k/v, the deterministic equations correspond-
ing to (2.4) and (3.1) would be

dx(t dy (¢t
) ey, O

(3.2)

=an”"x(t)y(t) —vyP(2),

dy®(¢)
dt

= vy () — vy (1), 1=2,...,k,

where y(t) = y®(¢) + -+ +y*(¢). When fitted to AIDS incubation period
data, the gamma distribution has been found to have an index of around 2.6;
Billard, Medley and Anderson (1990).

The method of stages uses independent, exponential variables but there is
no requirement that these have the same parameter v (i.e., that the hazards
are constant between as well as within stages), so that a wider class of
distributions than the gamma class can be considered by letting the ith stage
have hazard v;. This then allows the possibility of modelling explicitly the
clinical progression of HIV infection through a series of clinically defined
stages, as long as the durations of these stages can be taken as independent
exponential (or gamma) variables. This approach has been used by several
authors, including Anderson, Blythe, Gupta and Konings (1989), Bailey (1990),
Brookmeyer and Liao (1990) and Longini, Clark, Byers, Ward, Darrow, Lemp
and Hethcote (1989). In particular in the latter paper, the data for the
incubation period was fitted using three exponential stages, the latent period,
an asymptomatic phase until certain specified symptoms developed and finally
the symptomatic phase until progression to AIDS.

Note that, as the epidemic progresses, it will be necessary to incorporate
into the model changes in the incubation period distribution in real time to
reflect advances in symptomatic management and treatment with drugs like
zidovudine.

Variable infectiousness. Modelling the incubation period in terms of the
time 7 since infection means that ‘the transmission probability 8 can also be
allowed to depend on 7, which is an advantage since it has been suggested
[Blythe and Anderson (1988)] that an infective individual is more infectious
soon after infection and again later during the symptomatic part of the
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Fig. 2. The expected numbers of susceptibles [ E(X), lower curve] and susceptibles + infectives
[E(X + Y), upper curve] for the stochastic epidemic with staged incubation period and n = 1000,
X(©0) = 990, Y(0) = Y(0) = 10, a = (1,0, 1), » = (1,0.25,0.2). The bars indicate +2 (standard
deviation) for X or X + Y as appropriate at particular time points.

incubation period than during the long asymptomatic phase. When the incuba-
tion period is divided into stages with constant hazard functions (v; for the ith
stage), then it is most natural to let the transmission probability also be a
constant (B3;) within stage i but vary with i. Note that in this simple model no
allowance is made for variable susceptibility of individuals to infection by an
infected partner.

In Figure 2, the course of a stochastic epidemic with a three-stage incuba-
tion period and varying transmission probability is illustrated. This can be
compared with Figure 1, where an epidemic with a single-stage incubation
period and constant transmission probability is represented. The initial condi-
tions, mean incubation period and reproductive ratio are the same in both
cases. The effects of the staged incubation period and of the varying transmis-
sion probability can be seen separately in Figure 3(a) and (b). As before, the
initial conditions, the mean incubation period and the reproductive ratio (R)
are kept fixed. These three figures will be discussed in Section 5.

Heterogeneity in sexual activity. Another important source of heterogene-
ity between individuals is that of sexual activity, represented in our model by
the rate « of partner change, which can be incorporated by dividing the
population into subgroups with differing activity rates. Let X,(¢) and Y;(¢) be
the numbers of susceptibles and infectives in the ith population subgroup
having rate k; of partner change [Y;(¢) will be further divided by stage of
incubation period] and assume that there is a mixing matrix (p,;) which
specifies the probability that an individual in activity subgroup i will choose a
partner in subgroup j. Then infections in subgroup i occur at a rate
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F1c. 3. Comparison of expected numbers of infectives, E(Y), for models with staged incubation
periods and n = 1000, X(0) = 990, Y(0) = YV(0) = 10, R, = 6. (i) Curve (a) single stage v = 1,
a = 0.6; Curve (b) three stages v =1(1,0.25,0.2) «=(0.6,0.6,0.6). (ii) Three stages v =
(1,0.25,0.2) with Curve (a) a = (0.25,0, 1.15); Curve (b) a = (0.5,0, 1.1); Curve (¢) a = (1,0, 1).

BX;k;X;p;;Y;/n;, where n; is the total number of individuals in the ith
subgroup. The effects of heterogeneity of sexual activity will be discussed
further in Section 4.

Demographic factors. Our model can also be made more realistic by allow-
ing the population and subgroup sizes to vary. In particular, because of the
very long time scale applying to AIDS, we should allow for immigration of new
.susceptibles into the populationn (subgroups), for natural mortality of all
individuals and for excess mortality due to HIV infection and AIDS. The
population should also be stratified by age since it is known that the length of
the incubation period tends to decrease with increasing age in adults and also
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that young children have short incubation periods [e.g., Billard, Medley and
Anderson (1990)].

Changes in behaviour. Changes in behaviour can be incorporated into the
model by letting individuals move from one sexual activity subgroup to an-
other. The effects of such behaviour changes are the subject of a recent paper
by Scalia-Tomba (1991). Another sort of behaviour change is the adoption of
safer sexual practices as the epidemic progresses or publicity campaigns are
mounted. This could be introduced by taking the transmission probability 8 to
be a function of real time ¢ (as well as the time 7 since infection).

Other risk groups. So far the model has been formulated with a rather
promiscuous homosexual community in mind, but it is also important to widen
it to include other risk groups. In modelling heterosexuals we must yet further
divide the population into male and female. Then, in including less promiscu-
ous individuals it will be necessary carefully to model pair formation and
separation, as in the papers by Dietz; see Dietz (1987, 1988) and Dietz and
Hadeler (1988). We should consider models appropriate for transmission
amongst drug users and those which allow for vertical transmission to chil-
dren, too. .

All the modifications of the general stochastic epidemic described in this
section can be made in a totally straightforward manner, although the dimen-
sion of the resulting state space will be high if all these features are incorpo-
rated simultaneously. Much recent work has concentrated on investigating the
effects of allowing for these various sorts of heterogeneity. Considerable effort
is also being expended on data analysis, involving the estimation of model
parameters from biological or behavioural data, model fitting and prediction.
In the next section, we consider a few of the issues of current interest
concerning models and their properties in a little more detail.

4. The effect of population heterogeneity.

Heterogeneity of sexual activity and mixing. In the previous section, many
modifications of the general stochastic epidemic were described. The purpose
of these is to allow for the inherent variability within individuals over time and
between individuals, both in terms of biological characteristics (e.g., length of
incubation period) and behavioural ones (e.g., choice of sexual partner). That
incorporating variable rates of partner change into the models has a crucial
effect on the outcome of the epidemic is well known [Andersen, Medley, May
and Johnson (1986)]. Perhaps the clearest demonstration of this effect is given
by Jacquez and Simon (1990). If we make the proportional mixing assumption
that the elements of the mixing matrix (as defined in Section 3) are given by

pij = anj/ZKlnl
l

for all activity subgroups i, j, then the deterministic equation for the number
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of infectives in the ith subgroup is
dy;(t k(L)X k(¢
yi() B (),,y,()_yyi(t).
dt Zl Ky nl
Now the quantity which drives the epidemic is the total rate V(¢) = L«;Y;(?) at

which contacts are made by infectives, and the corresponding deterministic
equation for V is

(4.1)

(4.2) du(t) _ lBZiKixi(t)

dt Yn, v]v(t).

If we write u, and o2 for the population mean and variance of the rate x of
partner change, that is, u, = Yx;n;/n and 02 = L«?n,/n — u2, and assume
that at the beginning of the epidemic almost all individuals are susceptible so
that x,(¢) = n;, then (4.2) can be approximated by

dv(t) a?
(4.3) e [B(— + MK) - V}v(t),

for small ¢. Thus we see that it is not u, but u, + 0,>/u, which determines
the rate of growth at the start of the epidemic. In particular the reproductive
ratio for this model is R, = (8/v)(62/u, + u,), where we need R, > 1 for
epidemic growth.

Modelling the mixing matrix. It is clear from the preceding argument that
heterogeneity of sexual activity must be incorporated into the model. Then the
question arises as to the most appropriate form for the mixing matrix. This
cannot be an entirely arbitrary stochastic matrix because its entries must
satisfy the basic constraint

(4.4) n;K;P;ij = N;K;Pj;

for all activity subgroups i, j, which says that pairs in which a subgroup i
individual chooses a subgroup j partner must balance those with i and j
interchanged. It is easy to verify that the proportional mixing probabilities do
obey this constraint. In that case, p;; does not depend on i and individuals
choose partners in a particular subgroup in proportion to the total rate of
activity of members of that subgroup. Another possibility is that of restricted
mixing, where individuals choose partners only from within their own sub-
groups (p;; = 8,;, where §,; = 0 if i #j and §,; = 1). A less extreme form of
preference (preferred mixing) is to take

in which a proportion ¢ of all-choices are reserved for like-with-like within-
group partners and the rest are spread proportionately through the other
subgroups. Jacquez, Simon and Koopman (1989) and Koopman, Simon,
Jacquez and Park (1989) devised a mixing scheme (structured mixing) which
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allows the proportions of choices to be specified over all the subgroups. In this
scheme, choices are made in “‘contact classes’” which can be thought of as
locations (e.g., geographical or social) in which the partner choices take place.
Alternatively, perhaps they could be determined by type of sexual activity or
age group. A matrix must be specified giving the probabilities f;, that an
individual in activity subgroup i chooses a partner in contact class (location) %.
Then for each contact class k, a stochastic matrix, with elements p; (), must
be specified giving the probabilities that an individual from activity subgroup i
who is choosing a partner in contact class %, chooses a partner from subgroup
J. For example, we could assume proportional mixing within each contact class,
in which case '

(4.6) pij(k) =anjfjk/;anlflk'

Of course it is necessary that the balance equations (4.4) are satisfied within
each contact class.

In Section 3, the modification of the basic model was mentioned in which
the population and subgroup sizes vary in time because of demographic
factors, and this will be a very necessary feature of a model for AIDS. Then n,
is a function of time n,(¢) and the constraint (4.4) must hold for all ¢. Thus we
cannot take a fixed set of activity rates x, and a fixed mixing matrix (p;);
either the rates or the mixing matrix or both must vary with time. Note that
all of the mixing schemes described above automatically satisfy (4.4) for all ¢,
when the activity rates «; are kept constant. However, this point becomes
important if the entries in the mixing matrix are to be determined from
empirical data rather than being given a priori.

Some authors have considered the estimation of m,; = n;«;p;; using as
data the number x,; in some sampled population, of subgroup i individuals
choosing subgroup j partners. Since it is unlikely that the sampled population
will be closed under partner choice, the x,; will not usually be symmetric in :
and j. Thus, for example, Pugliese (1990) fits the ‘“nearest” symmetric matrix
(m;;) to the observed data (x,;) which preserves the zeros in the data ma-
trix, where two different metrics are suggested to define ‘“‘nearest.” Morris
(1991a, b) discusses the use of log-linear models for the x;;, which offer the
possibility of using more or less parsimonious models as appropriate. She notes
that a proportional mixing model is equivalent to a log-linear model with no
I X j interaction. While the former author is concerned with the situation at a
single time point, Morris takes account of the fact that m;; must be symmet-
ric in continuous time by putting forward the model
(4.7) m;;(t) = n()n;(t)ea;;,
where «;; is to be symmetric and estimated from data, and suggests taking
@;; as;;s; where s;; is the probability that a subgroup i individual signals
“yes’ to a subgroup j individual.

The reproductive ratio. In Section 2 we saw that the reproductive ratio R,
for the general stochastic epidemic is given by R, = BxD, where D = 1/v is
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the mean incubation period, and earlier in this section we showed that when
the rate k varies over the population, we must replace « not by u, but by
u,. + o2/u, in this expression for R,. If the incubation period has a gamma
distribution T'(%, v) with mean % /v, then we substitute /v for D in R,,. If,
however, we allow deaths to occur, at a constant rate w, say, over the
incubation period, then things become a little more complicated because the
individual may die before completing all stages of his incubation period. In this
case D should be the mean infectious period between infection and whichever
is the sooner of development of AIDS and death. Within each stage of the
incubation period which is attained, the hazard for the combined ‘“AIDS or
death” event is v + u and hence D is given by

1 k v i-1
(4.8) D= 2( ) :
v+u 3 \vtu

If the transmission probability 8 varies from stage to stage of the incubation
period, then in the expression for R, 8 should be replaced by the time-weighted
average value B given by

_ 1 k v i-1
(4.9) B Do)

A recent paper by Jacquez, Simon and Koopman (1991) discusses the
appropriate form for the reproductive ratio in their important structured
mixing model. The essential idea is that for a deterministic model with
recruitment of susceptibles at a constant rate, there will be global stability of
the endemic state if R, > 1 and of the disease-free equilibrium if R, < 1. If all
the activity subgroups have within-group reproductive ratios of at most one,
then it is intuitively clear that there will be a disease-free equilibrium, while if
all the subgroups have ratios exceeding one, there will be a persistent epi-
demic. The interest is therefore in detailed results in between these two
extremes, which are described in Jacquez, Simon and Koopman (1991). There
is also the question as to the stochastic counterparts of these threshold results,
in the same way that there are corresponding threshold theorems for the
general stochastic epidemic and its deterministic analogue. Jacquez and O’Neill
(1991) address this question for homogeneous populations.

5. Variability of stochastic epidemics.

A multivariate normal approximation. In general it is not easy to get exact
explicit expressions for the properties of the general stochastic epidemic, let
alone the more complicated modifications of the model described in earlier
sections of this paper. There is interest, therefore, in any methods which claim
, to give reasonable approximations to properties and which are straightforward
to implement. In Isham (1991) a means of obtaining a bivariate normal
approximation to the joint distribution of X(¢) and Y(¢) for the general
stochastic epidemic is described and discussed. The method goes back to a
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paper of Whittle (1957) and, in essence, consists of taking the forward equa-
tions for the means, variances and covariances of the variables and replacing
any higher-order moments in these equations by the functions of the first- and
second-order moments appropriate in the case of a multivariate normal distri-
bution. Thus for the general stochastic epidemic, a set of five simultaneous
differential equations is obtained, which are simple to solve numerically using
particular choices for the parameter values. The first two equations, for the
means, are the exact equations (2.5). Nevertheless the solution of the set of
equations will not give exact stochastic means because the equations for the
second-order moments are only approximate.

Theoretical justification for the method is provided by a series of papers
[Daley and Kendall (1965), Kurtz (1970, 1971) and Barbour (1972, 1974)]
obtaining Gaussian diffusion processes about the deterministic curve, as limit-
ing processes for density-dependent Markov processes on a lattice, where the
limit is taken as the population size tends to infinity but the initial proportions
of susceptibles and infectives are kept fixed. Numerical illustrations of this
convergence are given later in this section, in Table 6 and Figure 6 and related
discussion. An equivalent approximation obtained using perturbation tech-
niques is given by Daniels (1991).

The importance of the multivariate normal approximation is that it provides
a practicable means of obtaining a better approximation to the stochastic mean
than the solution of the deterministic equations, and in addition gives a way of
assessing the variability likely to occur between realisations of the stochastic
epidemic. This is particularly relevant in the context of prediction of the AIDS
epidemic where often predictions are given, based on the deterministic approx-
imation, and where allowance is made for uncertainty over parameter values
but not for the fact that a single realisation of the epidemic will be observed. In
Isham (1991), the multivariate normal approximations are compared with
estimates of the true moments determined by simulation of the stochastic
process, and are found to work well for the chosen parameter values. In the
remaining part of this paper, the multivariate normal approximation will be
used to investigate and illustrate properties of some of the more general
models described earlier.

Comparison of the multivariate normal approximation and the determinis-
tic curve with a stochastic epidemic.

(a) Exponential incubation period. In Table 1 we compare the multivariate
normal approximation and deterministic curve with simulation estimates for
the general stochastic epidemic in a population of size n = 1000 in which 990
are susceptible and 10 infected at ¢ = 0. The incubation period is assumed to
be exponentially distributed with a mean of 10 years (v = 0.1) and the repro-
ductive ratio is chosen to be 6 (o« = Bk = 0.6), the values being chosen as those
which might be appropriate for AIDS. Estimates of « of approximately 0.6 are
reported by Bailey (1990) for Swiss data. In the table, values are given for the
means and standard deviations of the numbers of susceptibles (X), infectives
(Y) and diagnosed (AIDS, Z) individuals in the population; for ease of display,
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TaBLE 1
Comparison of results for the general stochastic epidemic with n = 1000,
X(0) = 990, Y(0) = 10, « = 0.6 and v = 0.1!

Time X Y z
(Years) Mean St. Dev. Mean St. Dev. Mean St. Dev.

t=0 990 10 0
t=2 970 8.1 27 7.9 3.1 1.7
970 8.0 27 7.8 3.4 1.8
970 27 3.4
t=4 920 25 68 22 12 4.2
920 25 68 22 12 4.2
920 68 12
t=17 727 72 221 59 52 15
727 74 220 61 52 15
720 2217 53
t=10 406 90 442 61 152 34
407 90 441 59 152 34
387 456 157
t=15 90 29 503 24 407 43
90 26 504 25 407 42
82 503 415
t=25 10 3.8 225 22 765 23
10 3.8 225 21 765 22
9.8 221 769
t=235 4.3 2.2 86 11 910 12
4.3 2.2 86 11 910 11
4.2 84 911

'The three lines in each band of results correspond to those from 10 simulations of the general
stochastic epidemic, the multivariate normal approximation and the deterministic approximation.

correlations between the variables have not been given. The estimates ob-
tained by simulation are based on 10* realisations of the stochastic epidemic,
the normal approximation values are found by numerical solution of (3.5) from
Isham (1991) while the deterministic approximation is obtained by solution of
(2.4). The simulation estimates are also illustrated in Figure 1. It is clear that,
as expected on theoretical grounds, the deterministic epidemic curve y(¢)
increases too quickly over the first part of the epidemic. We also see that the
normal approximation gives mean values which are very close to the simula-
tion estimates. The standard deviations, while also close, are such that the
normal approximation values for the standard deviations lie outside confidence
" intervals based on the simulations more often than would be expected if the
variables were truly multivariate normal. Nevertheless the normal approxima-
tion values give a good idea of the true standard deviations and the approxi-
mation would improve with a larger population. Note that, for small ¢,
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X(@#) + Y(®) =n so that var X(¢) = var Y(¢). Similarly, when the infection
process has largely ceased, var Y(¢) = var Z(¢). It is noticeable that the stan-
dard deviations grow relatively quite large as the epidemic progresses indicat-
ing that, given any particular initial conditions, there will be substantial
variations between distinct realisations. Of course for the parameter values
chosen, the probability (v/a)¥® = 1.65 X 1078, so that the chance of obtain-
ing a realisation in which the epidemic dies out without all the susceptibles
being infected is negligible in these simulations. Therefore the standard devia-
tions shrink to zero as the epidemic dies away.

(6) Gamma incubation period. A second comparison of approximations
and simulation results is given in Table 2, where we examine the effect of
replacing the (single stage) exponential incubation period with one made up of
three independent, exponentially distributed stages with means 1, 4 and 5
years, respectively (v, = 1, v, = 0.25, v3 = 0.2). We then have the problem of

TABLE 2

Comparison of results for the stochastic epidemic with staged incubation period and n = 1000,
X(0) = 990, Y(0) = YD(0) = 10, @ = (1,0, 1) and » = (1,0.25,0.2)"

Time X Y Z
(Years) Mean St. Dev. Mean St. Dev. Mean St. Dev.
t=0 990 10 0
t=2 967 11 33 11 0.54 0.73
967 11 33 11 0.54 0.73
967 33 0.54
t=4 919 31 77 30 3.8 2.1
919 31 77 31 3.8 2.1
918 78 3.8
t=17 739 83 239 76 21 8.2
740 87 238 80 21 8.3
730 249 22
t=10 443 106 482 85 75 24
446 108 480 86 74 25
418 505 77
t=15 106 44 603 26 292 56
106 38 604 27 291 58
92 606 302
t=25 7.6 3.5 211 35 782 37
7.6 3.4 211 34 781 36
7.0 202 . 791
t=235 3.2 1.9 41 13 956 13
3.2 1.9. 43 10 954 10
3.1 40 957

1The three lines in each band of results correspond to those from 10* simulations of the general
stochastic epidemic, the multivariate normal approximation and the deterministic approximation.
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distributing the 10 individuals already infected at # = 0 between the three
incubation stages. Here we make the simple, but entirely arbitrary, assump-
tion that all 10 are in the first of the three stages. We also assume that
individuals are not infectious during the middle stage of the incubation period
(B, = 0) but we keep infectiousness constant over the first and third stages
(B; = By) in such a way that the reproductive ratio is again 6. Although the
model distinguishes the numbers Y¥(¢), i = 1,2, 3, in the three stages of the
incubation period, for simplicity only their total Y(¢) is tabulated. The com-
ments made above concerning Table 1 apply equally to this case also. The
equations used to derive the normal approximation for this model are given in
the Appendix [(A.3)-(A.6)]. The simulation results are shown graphically in
Figure 2.

The effect of varying infectivity. If we try to compare Tables 1 and 2, it is
hard to disentangle the effect of the staged incubation period from that of
allowing the transmission probability to vary from stage to stage. In Table 3
and subsequent tables and figures, results will be given for the normal

TaBLE 3
Comparison of results for staged incubation periods with n = 1000, X(0) = 990,
Y(0) = YP(0) = 10 and R = 6!

Single stage, v = 1 Three exponential stages, v = (1, 0.25,0.2)
a = 0.6 (see Table 1) « = (0.6,0.6,0.6) « = (0.25,0,1.15) a = (0.5,0,1.1) «=(1,0,1)

Time
(Years) Y VA Y VA Y VA Y VA Y Z
t=20 10 0 10 0 10 0 10 0 10 0
t=2 27 3.4 32 0.49 15 0.38 19 0.43 33 0.54
7.8 1.8 8.4 0.70 3.1 0.61 4.8 0.65 11 0.73
t=4 68 12 92 3.7 24 2.0 34 2.4 77 3.8
22 4.2 27 2.0 7.7 1.4 11 1.5 31 2.1
t="1 220 52 338 25 57 7.8 88 10 238 21
61 15 74 7.6 21 3.1 32 4.0 80 8.3
t=10 441 152 637 98 126 21 203 31 480 74
59 34 47 23 45 7.5 66 11 86 25
t=15 504 407 592 372 354 87 488 133 604 291
25 42 34 41 87 29 71 40 27 58
t=25 225 765 158 837 448 504 363 615 211 781
21 22 19 20 56 76 - 55 62 34 36
t=235 86 910 29 968 129 866 88 908 43 954
11 11 6.3 - 6.4 31 32 21 21 10 10

1The two lines in each band give the means and standard deviations of the numbers of infectives (Y) and
diagnoses (Z) for each of the chosen parameter sets.
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approximation only (we assume that the case for this approximation has been
made by Tables 1 and 2; as in those cases the corresponding simulation results
for subsequent tables are very similar to those from the normal approxima-
tion). In Table 3, we give only the total number of infectives (Y) and the
number of diagnosed (Z) (the numbers of susceptibles can be obtained by
subtraction), and we consider a variety of parameter sets. The three stages of
the incubation period will be as before but now several different sets of «;,
a; = B;«, are used, varying from B; constant across all three stages, sets where
B, = 0 but B, # B35, to a set with B, = 0, B; = B3 (as in Table 2). In each case
the reproductive ratio is fixed at 6 as in Tables 1 and 2. For comparison, we
repeat, from Table 1, the results obtained using a single stage incubation
period. The evolution of the number of infectives over the epidemic, for each
parameter set considered, is shown graphically in Figure 3(a), (b).

Compare first in Table 3 and Figure 3(a) the results obtained when the
transmission probability stays fixed and where the incubation period consists
of a single exponential stage, with those when the incubation period has three
exponential stages (the first two pairs of columns). Although the mean incuba-
tion period is fixed at 10 years in both cases, its smaller variance in the latter
case with fewer very short and very long incubation periods has the effect that
there are more infectives and fewer diagnosed cases in the early part of the
epidemic, but fewer infectives and more diagnosed in the later part. This
observation confirms results in a recent paper by Malice and Kryscio (1989),
which show that the expected cumulative number [ E(Y(¢) + Z(¢))] infected by
time ¢ is greater for the less variable incubation period distribution. Note that
the proof of this result uses a general branching process approximation and
therefore applies for small ¢ in the finite population case.

Now consider the other results in Table 3 and Figure 3(b) which illustrate
the effect of varying the transmission probability over the incubation period,
while the reproductive ratio is held constant. It is clear that for fixed R, and
By = @y = 0, the larger B, the faster the epidemic spreads through the popula-
tion. On the other hand if we compare the «; = 0.6, i = 1,2, 3, results with
those when a = (1,0,1), we see that after an initial spurt, the epidemic
proceeds more slowly in the latter case (reflecting the fact that in that case the
average a in the first stage of incubation is 1, but over the first two stages is
only 0.2, as compared with 0.6 both times in the former case). Thus we see
that changing the incubation period distribution and the transmission proba-
bility over the incubation period both have profound effects on the course of
the epidemic. It is therefore important to fit well the tail behaviour of the
incubation period distribution. Data is of course only available now on the
left-hand tail although information on the right-hand tail is gradually increas-
ing as the epidemic progresses. Unfortunately this information will inevitably
be confounded with treatment effects as new methods of treating HIV infec-
tion are put into practice. Similarly, it is vital that understanding is achieved
of how the infectiousness of HIV infected individuals varies over the incuba-
tion period.
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Varying sexual activity. Note that in all these numerical comparisons we
have assumed a single fixed value for the rate k of partner change. It is a
straightforward though rather tedious matter to write down the equations for
the multivariate normal approximation when there are several sexual activity
subgroups characterised by distinct values of . In the case so far considered
with a three-stage incubation period, there are essentially four variables (the
fifth being constrained by the fixed population size) which results in the set of
14 simultaneous differential equations given in the Appendix. Even if there
were just two activity subgroups giving eight variables (assuming fixed num-
bers in each subgroup) we would need a set of 44 equations to determine all
their second order properties. If individuals were allowed to change subgroup,
then the number of equations would increase further.

Further modifications to the basic model. In the models for AIDS de-
scribed so far, it has been assumed that infected individuals will take steps not
to transmit HIV infection once they have progressed to full AIDS. However, it
seems likely that most such individuals will be aware of their infected status
and cease transmission of infection at an earlier stage. To investigate the effect
of this we suppose that the third infectious stage is shortened to have a mean
of three years (v, = 0.3) rather than 5 (v, = 0.2) even though full AIDS will
not develop for another two years on average. In Table 4 figures are tabulated
showing the effect of this, when a = (1,0, 1). Note that this choice means that,
for the first set of columns (repeated from Table 3), the mean total infectious
period is 10 years and the reproductive ratio is 6 while in the second set the
mean total infectious period is eight years and the reproductive ratio therefore
drops to 4. In the third set of columns we increase « to (1.5, 0, 1.5) so that the
reproductive ratio is kept at 6 even though the mean total infectious period is
only eight years. In all three cases we tabulate the numbers of susceptibles X,
those who are infectious (transmitting infection) Y* and those who are
infected but no longer transmitting infection Z*. In the first case, these
numbers are the variables X, Y, Z as before, but in the second and third cases
Z* includes those with AIDS but also those in the final part of their incubation
period to AIDS. These latter are of course excluded from Y*. The evolution of
the number Y* of infectives for the three cases is illustrated in Figure 4.

From the table we see that when the infectious period is shortened (mean
eight years) so that R, drops to 4, the infection spreads through the popula-
tion a little more slowly (as is to be expected). If however the reproductive ratio
is kept fixed (R, = 6) while the incubation period is shortened, the increased
initial infectiousness (@; = 1.5) raises dramatically the speed at which the
epidemic spreads, illustrating again the vital influence of the transmission
probability (B;) at the beginning of the incubation period on the rate at which

the epidemic affects the population.
* Another modification to the basic model which we might wish to make is the
following. The argument for taking the infection rate in the AIDS interpreta-
tion of the general stochastic epidemic to be BxX(#)Y(¢#)/n is that new
partnerships involving susceptibles occur at a total rate «X(¢) and it is
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TABLE 4
Comparison of results when transmission of infection ceases before the end of the incubation
period, with n = 1000, X(0) = 990 and Y(0) = Y(0) = 10!

v = (1,0.25,0.2) v = (1,0.25,0.3)

Time a=1(1,0,1), R, =6 a=(1,0,1),Ry=4 «=(15,0,15), R,=6
(Years) X Y=-Y* z=-2z* X Y*  Z* x Yy oz
t=0 990 10 0 90 10 0 990 100
t=2 967 33 0.54 967 32 084 934 65 11
11 11 073 11 11 091 24 24 11
t=4 919 77 38 923 72 56 758 232 11
31 31 21 31 20 26 84 81 45
t=7 740 238 21 769 203 29 314 604 81
87 80 83 83 11 86 64 25
t=10 446 480 74 516 391 93 89 648 264
108 86 25 113 83 33 28 27 49
t=15 106 604 291 178 491 330 14 356 630
38 27 58 55 28 71 51 40 43
t=25 76 211 781 33 152 815 32 50 947
3.4 34 36 85 33 38 19 10 10
t=35 3.2 43 954 22 25 954 26 52 992
1.9 10 10 57 80 10 17 25 30

'The two lines in each band give the means and standard deviations of the numbers of susceptibles
(X), those transmitting infection (Y *) and those who have ceased to transmit infection (Z*) for
each of the given parameter sets.
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Fi1c. 4. Comparison of expected numbers of infectives E(Y*) when transmission of infection
ceases before the end of the third stage of the incubation period: (a) third stage of infectious per-
iod has mean 5 years, with v =(1,0.25,0.2), a = (1,0,1), R, = 6; (b) Third stage of infectious
period has mean 3 years, with v = (1,0.25,0.3), a = (1,0, 1), R, = 4; (¢) Third stage of infectious
period has mean 3 years, with v(1,0.25,0.3), a = (1.5,0,1.5), R, = 6.
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TABLE 5
Comparison of results for models with standard and modified infection rates, with n = 1000,
X(0) = 990, Y(0) = YO(0) = 10, v = (1,0.25,0.2), a = (1,0, 1) and R, = 61

Time Standard model Modified model
(Years) X Y VA X Y VA
t=20 990 10 0 990 10 0
t=2 967 33 0.54 967 33 0.54
11 11 0.73 11 11 0.73
t=4 919 77 3.8 919 7 3.8
31 31 2.1 31 31 2.1
t="17 740 238 21 737 242 21
87 80 8.3 89 82 84
t=10 446 480 74 426 498 75
108 86 25 113 920 26
t=15 106 604 291 70 630 300
38 27 58 34 30 60
t=25 7.6 211 781 0.12 197 802
3.4 34 36 0.35 34 34
t=235 3.2 4.3 954 0.00 36 964
1.9 10 10 0.01 8.8 8.8

!The two lines in each band give the means and standard deviations of the numbers X,Y, Z in
each of the three main classes. The infection rate for the standard model is (a;Y® + @, Y@ +
a3Y @)X /n while that for the modified model is (¢, Y™ + a,Y® + a3 YO X/(X + YD + YD +
YO),

1000
800

600

population

400

200

Fig. 5. The expected numbers of susceptibles [ E(X), lower curve] and susceptibles + infectives
[E(X + Y), upper curve] for the stochastic model with three-stage incubation period and n = 1000,
X(0) = 990, Y(0) = YP(0) = 10, v =(1,0.25,0.2), v=(1,0,1), R, =6: (i) (unbroken curves)
standard model with infection rate (a;Y® + a,Y® + a3Y®) X/n; (ii) (broken curves) modified
model with infection rate (a;Y® + ayY® + aYO)X /(X + YD +Y® + Y®), |
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assumed that each susceptible chooses a partner at random from the popula-
tion so that the probability that the chosen partner is an infective is Y(¢)/n.
Implicit in this is the assumption that those who are infected and have
developed AIDS [of whom there are Z(¢)] will not transmit infection to any
partners although they will still form new partnerships. But it could be more
realistic to assume that these individuals play no further part in the epidemic,
that is, that they cease to form new partnerships. In this case the appropriate
infection rate is B« X(#)Y(¢)/[ X(¢) + Y(¢)], subject to whatever other modifi-
cations are made to the model. Thus, for example, if the incubation period

TABLE 6
Comparison of results with increasing population size n and with X(0) = 0.99n,
Y(0) = YV(0) = 0.01n, v = (1,0.25,0.2), « = (1,0,1) and R, = 6!

Time 1000X / n 1000Y /n 1000Z /n
(Years) Mean St. Dev. Mean St. Dev. Mean St. Dev.
t=0 990 10 0
t=2 967 11 33 11 0.54 0.73
967 5.1 33 4.9 0.54 0.33
967 3.4 33 3.5 0.54 0.23
967 1.6 33 1.5 0.54 0.10
t=4 919 31 77 31 3.8 2.1
918 14 78 14 3.8 0.94
918 9.9 78 9.7 3.8 0.66
918 44 78 4.3 3.8 0.30
t=17 740 87 238 80 21 8.3
732 38 247 35 21 3.7
731 27 248 25 21 2.6
730 12 249 11 21 1.2
t=10 446 108 480 86 74 25
423 46 501 36 76 11
420 32 503 25 77 7.9
418 14 505 11 77 3.5
t=15 106 38 604 27 291 58
94 15 606 13 300 25
93 11 606 9.1 301 18
92 4.7 606 4.1 302 7.8
t=25 7.6 3.4 211 34 781 36
7.1 1.4 204 14 789 15
7.1 0.99 203 10 790 10
7.1 0.44 202 45" 791 4.6
t=235 3.2 1.9 36 8.8 961 9.1
3.1 14° 41 4.2 956 4.3
3.1 0.58 40 3.0 956 3.0
3.1 0.26 40 1.3 957 1.4

!The four lines in each band give the results when the population size n takes values 1000, 5000,
10000 and 50000 respectively.
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consists of three exponential stages with corresponding transmission probabili-
ties B;, By, B3, infections will occur at rate

K(BYD(t) + BY () + B,YO(t))/
(X(t) + YO(2) + YO(t) + YO(1)).

(5.1)

The equations which determine the normal approximation to the model are
given in the Appendix [(A.3)-(A.5), (A.7)].

In Table 5 we see the effect of this modification for the case already
illustrated in Table 2, with v = (1,0.25,0.2), @ = (1,0, 1) so that R, = 6, with
n = 1000 [ X(0) = 990, Y(0) = 10]. It is clear that initially the effect of using
n — Z(¢) rather than n as the denominator in (5.1) is very small, but gradually
the infection rate in the former case gains on that for the latter case and the
corresponding epidemic spreads more quickly. However, at least with these
parameter values, the effect of the modification to the model is relatively small.
This effect is shown graphically in Figure 5.

~ -+
t=2 n= 1000 L
n= 5000
n=10000
n=50000 R S
- =+
t=7 —‘::"—'_—_——
t=10 —?—
e
t=15 = =
25 |
t=35 |
0 200 400 600 800 1000

1000X/n

Fi1c. 6. Comparison of results with increasing population size n and with X(0) = 0.99n,
Y(0) = YOO(0) = 0.01n, v = (1,0.25,0.2), a = (1,0, 1), R, = 6. At each time point the square ®
gives the expected value of 1000X/n and the bar shows the interval +2(standard deviation of
1000X/n) for four values of n: 1000, 5000, 10000 and 50000.
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The effect of increasing the population size. Finally, in Table 6 we illus-
trate the effect of the diffusion approximation by increasing the population size
n. To make the comparison straightforward we tabulate the proportions
X/n, Y/n, Z/n each multiplied by 1000, for n taking values 1000, 5000,
10,000 and 50,000 with the initial proportions X(0)/n = 0.99, Y(0)/n =
Y®(0)/n = 0.01 fixed and the other parameters as before (Table 2, Table 5).
By comparison with Table 2 it is clear that, to the degree of accuracy given, the
stochastic mean when n = 50,000 is the same as the solution of the corre-
sponding deterministic model. While the stochastic means increase in direct
proportion to n, the standard deviations increase in proportion to Vn and
therefore the coefficient of variation decreases as 1/ Vn . The convergence is
represented diagramatically in Figure 6.

6. Discussion. In this paper, some of the recent work on stochastic
models for epidemics and their deterministic counterparts has been reviewed.
We have concentrated particularly on the development of simple models for
the AIDS epidemic and the sort of behaviour these exhibit. In particular, the
method of approximating the distribution of the state of an epidemic by a
multivariate normal observation based on a diffusion approximation is a
valuable one. It makes it possible to improve on the solution of the correspond-
ing deterministic model as an approximation to the mean of the stochastic
process. This may be particularly important when the population or the many
subpopulations into which the population is divided are small. But we also
obtain approximations to the second moments of the state of the epidemic
which, at least for the sorts of parameter sets investigated so far, appear to be
a reliable guide to the true moments. These approximations are straightfor-
ward to determine and can be found with relatively little computational effort.
It is apparent that the variability between realisations of the same epidemic
model is in general high, and this has implications for prediction. In particular,
this provides another reason (in addition to that of uncertainty about model
assumptions and parameter values) why prediction more than a very short
while ahead is probably inadvisable.

APPENDIX

Suppose that the incubation period consists of three independent exponen-
tially distributed stages with hazards, v;, and corresponding transition proba-
bilities B;, ¢ = 1,2,3. Denote the numbers of infectives in these stages by
Y = (YD, Y® Y®) and the total infection rate by Ay y(¢). We shall consider
here two possible forms for Ay (¢):

(A1) Agyp(t) = [BYD(2) + BYP(2) + BYO(£)|xX(2) /n
and .
Axp () = [BYD(2) + BYP(2) + BYO(8) | X(£)/

('A.2)
[X(t) + YO(£) + YO(2) + YO(2)].
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The forward equations for the first- and second-order moments of the epidemic
model are as follows, where we use the abbreviated notation

E(X(t)) =nx, var(X(t)) = oxx,
E(Y®O(t)) = u;, cov(X(t),YO(¢)) = o;, cov(Y (), Y(8)) = 0
for i, j = 1,2, 3 and the dependence on time is not represented explicitly:
dux/dt = —E(Ay y),
du,/dt = E(Ax y) — vipy,

(A.3)
duy/dt = vipy — vau,,
dug/dt = vou, — Valg,
daxx/dt = E(/\X,Y) - 2COV(X, AX,Y)’
(A‘4) dO’ll/dt = E(AX,Y) + 2COV(Y(1), /\X,Y) - 21/10'11 + VI/.LI,

dog/dt = 201015 = 205055 + Vipy + vop,,
dogy/dt = 2v5095 — 2v3035 + vauy + vaus,

dogi/dt = cov(X, Ay y) = cov(YD, Ay y) = vi0x; — E(Ayy),

doyy/dt = —cov(YP, Ay ) + vioy; — vy0xs,

doygs/dt = —cov(YP,Ax ) + vy0x, — v30%3,

(A5)
doyy/dt = cov(YP, Ay y) = (v1 + v) oy, + vy0y; — vy,
doyy/dt = cov(Y®, Ax y) — v1095 + vy005 — ve0ys,
doy3/dt = v1013 + vy(0ap — 03) — V3093 — Yoy,

When Ay y is given by (A.1), the normal approximation to the joint distribu-
tion of X and Y is obtained by solving equations (A.3)-(A.5), substituting the
approximations

E(Axy) = k(B1ox1 + Baoxs + B3oxs)/n + kipxup/n,
cov(X, Ay y) = «(B1ox1 + Ba0xs + Byoxs)ix/n + koxyxup/n,
(A.6) COV(Y(I), /\X,Y) = k(Byoy; “' Byoig + Bsois)x/n + koxiup/n,
' COV(Y(2)7 )‘X,Y) = k(B1012 + B0y + By0ag)x/N + KOxoup/1,

cov(Y D, Ay y) = k(B101s + By0oas + Byoag)pux/n + kogspp/n,
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where pup = By + Byus + Bss, and which can be deduced using
cov(U, VW) = opypuw + opwhty,

which is exact when U, V, W have a multivariate normal distribution.

When Ay y is given by (A.2) the normal approximation is obtained by
solving (A.3-A.5), in conjunction with approximations for E(Ay y),
cov(X, Ay y) and cov(Y ¥, Ay ), i = 1,2, 3, obtained by using Taylor expan-
sions to second order, namely

E(Ayy) = kpxip/m.+ kuxpp(ox+ o+ op+ 03.) /ul
— kfoxpp + px(Bioy.+ Beoy.t B3os.)} /K
+ k(B1ox1 + Baoxs + Bsoxs) /i,
(A7) cov(X, Ay y) = k{oxxup + nx(Biox: + Ba0xa + Bsoxs)} /1
— K xR pox./Ks
cov(YD, Ay y) = k{oxinp + nx(B1oy + B20y; + B3os;)}/m.
— Kuxhp0;./K%

where u.= puy + py + g + ug, g = Bty + Bakg + Bk, 0x.= Oxx + 0x; +
Oxs + 0xg and ;.= ox; + 0;; + 035 + 035, 0 = 1,2, 3.
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