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For Gaussian processes there is a simple and well-known relationship
between the fractal dimension of sample paths and the fractal index of the
covariance function. This property is of considerable practical interest,
since it forms the basis of several estimators of fractal dimension. Moti-
vated by statistical applications involving non-Gaussian processes, we
discuss the relationship in a wider context. We show that the relationship
fails in some circumstances, but nevertheless does hold in a variety of
cases.

1. Introduction and summary. The mathematical notion of fractal
dimension provides a scale-free measure of roughness, with a rich variety of
practical applications. For example, it may be used to rank surfaces in terms
of increasing roughness, for purposes of quality management or wear moni-
toring. These applications often require estimates of the fractal dimension, D,
of linear “sections” of the surface by vertical planes. (We shall call these
sections line transects.) Such estimates can be difficult to produce directly, by
appealing to the definition of D. An alternative approach is to calculate an
estimate of a quantity called fractal index, «, which is determined by the
behaviour of a covariance function at the origin and is generally more
accessible than D itself, and then compute an estimate of D by using a
formula that expresses D as a function of «. Relatively simple estimates of «
may be based on the variogram or the periodogram of a line transect trace, or
on the length or level crossings of a smoothed version of that trace. If the
trace can be modelled by a stationary Gaussian process, then D and a are
related by the formula

(1.1) D=2-1la

[see, e.g., Adler (1981), Chapter 8], and so an estimate of « leads immediately
to an estimate of D.

Equation (1.1) is crucial to much of the applied work that has been done
in the context of estimation of fractal properties. That work revolves around
the issue of so-called scaling laws, which describe the way in which rather
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elementary physical measurements vary with the size of the measuring unit.
We shall have more to say about this in Section 3, where we shall discuss the
role of (1.1) in explicit mathematical detail. However, let us note here two of
the simplest scaling laws, those based on the length of an approximating
polygonal path and on the variogram. The first of these is perhaps the
“classical” scaling law, very commonly associated with physical fractal prop-
erties. It declares that if (1.1) holds, then the length I(s) of a polygonal
approximation to a fractal curve, constructed on a grid of edge width s,
should vary in such a way that log I(s) increases like (D — Dllog s| as s
decreases: '

(1.2) log I(s) = (D — 1)llog s| + constant + o(1)

as s — 0. In practice, ] may be estimated from data, and D estimated by
fitting a simple linear regression model to a sequence of observed values of
the pair (log I, log s). For a rich and varied discussion of the applications of
such length-based scaling laws to real data, ranging from measuring the
roughness of polished metal, oxidized metal and brick surfaces to measure-
ments of the roughness of coastlines, the reader is referred to Ling (1987,
1989, 1990) and Brown, Charles, Johnsen and Chester (1993). Related work
of Majumdar and Bhushan (1991) discusses two-dimensional scaling laws.

The variogram method of estimating fractal dimension is founded on the
observation that if v(s) equals the mean square of the difference between two
values of a fractal process at points distance s apart, then in the presence of
(1.1), llog v(s)| should increase like 2(2 — D)llog s| as s decreases:

(1.3) [log v(s)| = 2(2 — D)llog s| + constant + o(1)

as s — 0. Once again this equation forms the basis for many practi-
cal estimates of fractal dimension. For example, its applications to data on
mineralogy, rainfall, geography and the measurement of surface roughness
have been discussed by Serra (1968), Delfiner and Delhomme (1975), Journel
and Huijbregts (1978), Burrough (1981), Constantine and Hall (1993) and
authors cited in these articles.

The importance of (1.1) to the validity of results such as (1.2) and (1.3), and
hence to the physical application of such scaling laws, cannot be understated.
The latter two formulae hold if and only if (1.1) is valid. In particular, they
are valid for many processes that tend to have heavier tails than Gaussian,
but not for processes that tend to have shorter tails, such as powers of
Gaussian processes when the exponent is less than 1, as we shall prove.

The purpose of this note is to determine the validity of (1.1) for certain
processes that are not Gaussian but may be expressed as functions of
Gaussian processes. The study was motivated by a problem concerning wear
of rollers used to produce aluminum sheet. Figure 1 depicts a line transect
trace from the surface of an unused roller, and above it, a nonparametric
estimate of the distribution of roller height above its mean. A Gaussian
density with the same mean and variance as the data is also plotted, for the
sake of comparison; it is strikingly close to the nonparametric estimate. The
data illustrated in Figure 2 are from the same roller, but are recorded after
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Fic. 1. Surface trace and height density for unworn roller. The trace at the bottom represents a
line transect sample obtained by drawing a stylus across a very small part of the surface of a new,
unused roller. The trace is 4 mm wide and the standard deviation of its fluctuations equals
0.5 mm. The unbroken bell-shaped curve above the trace is a kernel estimate of the marginal
density of height of the surface above its mean, computed using bandwidth equal to the fraction
0.03 of the length of the trace and employing the standard normal kernel. (The density estimate
was obtained by integrating the continuous trace, analogous to summing for discrete data.) The
broken bell-shaped curve is the Gaussian density with the same mean and variance as the data.
The fractal index was estimated from the periodogram to be.& = 0.3, leading to an estimate of
fractal dimension equal to D=2- 36 =185,

a period of wear. Note the asymmetry of both the line transect and the
nonparametric estimate of the density of height for this new data set. This
time the fitted density is chi-squared rather than Gaussian.

Fitting distributions to data such as those in Figures 1 and 2 is an
essential part of studying the properties of roller surfaces. Among other



244 P. HALL AND R. ROY

FiG. 2. Surface trace and height density for worn roller. The roller was the same one studied in
Fig. 1, except that it was measured after a period of seating. All other specifications, including
bandwidth and kernel, are the same as for Figure 1, except that the broken curve represents a x%,
density with fitted location and scale. Fractal index and fractal dimension for these data were
estimated to be & = 0.5 and D = 2 — 3& = 1.75, respectively.

things, it provides a means of assessing the validity of formula (1.1), on which
an estimate of D would most likely be based, and yields valuable information
about proportions of the roller surface that exceed various levels. Of course,
modelling real data traces by deterministic functions of Gaussian processes is
Testrictive, but there are few alternatives if the data are, for all practical
purposes, continuous. This is particularly so when it is desired to draw
inferences about surface roughness from properties of covariance, as is fre-
quently the case when fractal dimension is being estimated. An assump-
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tion close to that of “Gaussianity” is necessary to draw a connection between
moment and sample path properties.

If the recorded line transect were exactly Gaussian, or a known function of
a Gaussian process, then both the covariance function and the fractal dimen-
sion of sample paths could, with probability 1, be determined without error
from an arbitrarily short section of trace. However, the assumption that an
empirical data trace is a realization of a function of a Gaussian process is
only a convenient mathematical abstraction, as also is the notion that the
process is genuinely self-similar. Nevertheless, provided we do not analyse
the data at a level that reveals the imperfections, for example, by examining
the trace on too fine a scale, the prescriptions for model-fitting outlined in the
foregoing text can produce valuable statistical information about the struc-
ture of a roller surface and the effect of wear on that surface.

We shall show that formula (1.1) fails in some instances, but that there do
exist simple conditions under which it is valid. In particular, it is valid under
the chi-squared process model suggested for the data in Figure 2. Our results
also demonstrate that (1.1) is valid for convolutions of squares of Gaussian
processes with different centers and scales; such convolutions are used in
practice to model heavily worn roller surfaces, whose marginal densities have
“shoulders” on the left-hand side. These results are stated in Section 3 and
proved in Section 4. Brief definitions of fractal dimension and fractal index
are given in Section 2. All our results have direct analogs in higher dimen-
sions, with virtually identical proofs. However, since we do not have strong
practical motivation for the higher dimensional case, we shall not treat it
here.

The notion of a fractal or Hausdorff dimension for a stochastic function
goes back at least to work of Taylor (1955). Its applications in the physical
and engineering sciences have been discussed by, among others, Berry and
Hannay (1978), Sayles and Thomas (1978), Coster and Chermant (1983),
Mandelbrot, Passoja and Paullay (1984) and Thomas and Thomas (1988).
Statistical properties have been the subject of increasing recent interest; see,
for example, Taylor and Taylor (1991) and Smith (1992).

2. Definitions of fractal dimension and fractal index. Let f denote
a function defined on an interval .7, tracing out the path .= {(¢, f(¢)):
t €.7). The fractal or Hausdorff dimension of . may be defined as follows.
Given &£ > 0, an e-covering of . is defined to be a countable collection & of
disks S; with respective diameters §; > &, whose union covers .%. For d > 0,
define

A(d) = lif% ingSid,

. where the infimum is taken over all s-coverings of .. It may be shown that
there exists a unique number D with the property that A(d) = « for all
d <D and A(d) =0 for all d > D. Necessarily, 1 <D < 2. We call D the
fractal dimension of .%.
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There is a variety of other definitions of fractal dimension, for example,
that based on capacity. However, in the context of the stochastic sample path
examples considered in this paper, the definitions produce identical values of
D with probability 1.

A function f is said to satisfy a Lipschitz condition of order L on .7 if
(2.1) sup | f(s) — f(2)| = O(ub),

s, tef: |s—tl<u
as u — 0. In this event the fractal dimension of .% satisfies D < 2 — L.
Furthermore, D > d if

2.2 Is — ¢l +|f(s) = F(£) [} ¢ dsdt < o.

(2:2) LI HORIO)

Thus, the notion of fractal dimension is closely related to that of Lipschitz
continuity.

Let X, denote a stationary square-integrable stochastic process, with
variogram

(2.3) v, = E(X, - X,)* = 2{1 — cov(X,, X,)}.
If there exists a € (0, 2] satisfying
a =sup{B:v, = O(tP) as ¢t |0} = inf{ B: t# = O(v,) as t 10},

then « is called the fractal index or fractional index of the process X,.

Formula (1.1) may be proved by noting that if X, is Gaussian W1th fractal
index «, then with probability 1 the sample paths of f(t) = X, satisfy (2.1)
for each L < ja and satisfy (2.2) for each d < 2 — La. All results mentioned
in this section are elucidated by Adler [(1981), Chapter 8].

In many cases of practical or theoretical interest, the variogram of a
process X, with fractal index a satisfies v, ~ const.|t|* as ¢t — 0. Of course,
two processes X, and Z, whose variograms satisfy E(X, — X;)? ~ const.
E(Z, - Z,)?, will share the same fractal index. However, this close relation-
ship between the processes’ covariances is only sufficient, not necessary,
for commonality of fractal dimension, as is plain from the definition of
dimension.

3. Relationship between fractal dimension and fractal index. Gen-
erally speaking, the sample paths of a smooth function g of a stochastic
process Z have the same fractal dimension as the paths of Z. This may be
seen by simple Taylor expansion, as follows. If g has a continuous derivative,
then there exists a point ¢* € (0, ¢) such that

(3.1) 8(Z,) —8(2o) =8'(2:)(Z, — Zo) ~ 8'(Z,)(Z, - Z,)

‘as ¢ —> 0. It follows that, provided P{g'(Z,) = 0} = 0, the process X, = g(Z,)
has the same Lipschitz behaviour, and hence the same fractal d1mens1on D,
as Z,. For example, it may be shown from (3.1) that if the process Z, has
fractal index B € (0,2) and if we define f(¢) = X,, then with probablhty 1,
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(2.1) holds for all L < 1B and (2.2) holds for all d < 2 — 3B. This ensures
that sample paths of X, share the fractal dimension D = 2 — 1B of the paths
of Z,. However, the fractal index a of the process X, can be different from its
counterpart for Z,, so that the relationship D = 2 — 1a may not be valid.

It is often possible to express a non-Gaussian process, say X, in terms of a
stationary Gaussian process Z, by the relationship

(3.2) X, =8(Z,),

where g is a smooth function. For example, if X is a stationary process with
a continuous marginal distribution F, then we may choose to define Z, =
(®~F)XX,), where ® denotes the standard normal distribution function. This
guarantees that at least the one-dimensional marginals of Z, are Gaussian
and that (3.2) holds with g = F~!®, but of course not that Z, is actually
Gaussian. We may assume without loss of generality that E(Z,) = 0 and
E(Z?) = 1, and we do so in the following text. '
We suppose that

for some £> 0, E(X, — X,)? = O(¢%) as t —» 0, g’ exists
and is continuous almost everywhere, g’ is not identically
zero and, with probability 1, Z, is a continuous function
of ¢.

Our first result states conditions on g that are sufficient to ensure that the
processes X, and Z, have identical covariance behaviour near the origin, and
so have identical fractal index. Since the sample paths of X, and Z, have
identical fractal dimension [see the argument following (3.1)], then the rela-
tionship between fractal dimension and fractal index for X is, under the
conditions of Theorem 3.1, the same as for a Gaussian process:

(3.4) fractal dimension of X, paths = 2 — ; (fractal index of X;).

Let N denote a random variable having the standard normal distribution.

(3.3)

THEOREM 3.1. Assume condition (3.3) and that for some ¢> 0 and all
A>0,

(3.5) E{g'(N)’N?} < =, E{ sup |g'(z)|2+f}<oo.
[z|<AIN|
Then

(36) E(X,—X,)" = E(Z, — Z,)*E{g'(Z,)"} + o[ E(Z, - Z,)")

ast — 0.

We noted in Section 2 that a very close relationship, such as that in (3.6),
. between the covariances of X, and Z, is not essential for us to be able to
equate the fractal indices of these processes. Our next theorem shows that
condition (3.5) may be slightly relaxed, to such an extent that (3.6) may fail to
hold [see the case r = % in (3.10)], yet not so much as to invalidate (3.4).
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THEOREM 3.2. Assume condition (3.3) and that for all 0 < £ < 2 and all
A> 0,

(3.7) E{ sup |g'(z)|2‘f}<oo.
|z]<AIN]

Suppose too that all moments of X, are finite. Then

(3.8) lim inf E( X, — X)) /E(Z, - Z,)" > 0
t—

and forall 0 < ¢ <1,

(3.9) limE(X, - X,)*/{E(Z, - Z,)") ' =o.

In view of our definition of fractal index in Section 2, formulae (3.8) and
(3.9) imply that the processes X, and Z, have the same fractal index. Since,
by (38.1), their sample paths have the same fractal dimension, then the
classical Gaussian process relationship between fractal index and fractal
dimension is valid; that is, the identity (3.4) holds.

Theorem 3.2 has a corollary that applies to convolutions of functions of
Gaussian processes, such as the chi-squared process used to model the data
depicted in Figure 2. To appreciate this point, let Z,,,...,Z,,, denote inde-
pendent, stationary, continuous Gaussian processes and let g,,...,g,, be
functions such that each g; exists and is continuous almost everywhere, g’ is
not identically zero,

max E{ sup |g}(z)]2_§> < forall0 < ¢< 2,

1<j<m 12| < AIN]

and

max E{g,(Z;) _gj(Zj())}2 =0(t*) forall ¢>0,

l<j<m

ast — 0. Put X, = ¥, g,(Z;,). Then by Theorem 3.2,
' m
lim inf E( X, - X0)2/{ Y E(Z;, - zjo)z} >0,
t— j=1

and forall0 < £ < 1,

m 1-¢
) 2
thnéE(Xt - X0)2/{ Z E(th - ZJO) } = 0.
— j=1

It follows that (3.4) holds, and the fractal dimension of X equals the greatest
of the fractal dimensions of Z,,..., Z,,. Hence, if the data in Figure 2 are
chi-squared, then an estimate of the fractal dimension, D, of the trace may
be obtained as 2 minus half the value of an estimate of the fractal index of
the process generating the trace. The value of D quoted for Figure 2 was
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obtained in precisely this manner, using an estimate of fractal index based on
the periodogram.

Finally, we consider a number of examples that elucidate our main results
and show that condition (3.7) is close to being necessary and sufficient for
(3.4). In broad terms, each of (3.4), (8.5) and (3.7) is very nearly equivalent to
the condition that E{g’'(Z,)?} < «. The exceptional cases are those where
E{g'(Z,)?} is either “just finite” or “just infinite.” To appreciate this point, let
g(x) =|x + al"h(x) or g(x) = sgn(x + a)lx + al"h(x), where a is any real
number, » > — % and the function % satisfies i(a) # 0 and has two deriva-
tives that are bounded on compact intervals and increase no faster than
polynomially on unbounded intervals. [The assumption that r > — 1 is nec-
essary to ensure that X, = g(Z,) has finite variance.] Then it may be proved
by elementary calculus that as ¢ — 0,

E(Z,-Z,)", ifr>1

(3.10) ifr=%
r+(1/2)

{E(Zt_ZO)2} i 1/2, ifr<g,

where the constant is positive and depends on g. Similarly it may be shown
that (8.5) holds if and only if » > %, and (8.7) is true (for all 0 < ¢ < 2) if and
onlyif r > 5 From these facts it may be seen that the three conditions (3.4),
(8.7 and r > 7 are all equivalent, and that the three conditions (3.6),
E{g'(Z)% < < and r > % are all equivalent. We may deduce from (3.10) that
when r < 1, the fractal index of X, equals r + 1 times the fractal index of Z,.
Therefore, (3.4), which is not true for r < 1, should be replaced by the
formula

fractal dimension of X, paths

=2 — (2r + 1) (fractal index of X,).

The examples just treated include many instances where g = F1®,and F
and ® are the respective marginal distributions of X, and Z,. In particular,
this is the case when g is increasing, for example, if g(x) = sgn(x + a)|x +
a|"h(x), where r > 0 and & is symmetric about a and increasing on (a, ®).

In conclusion, we briefly refer to the issue of scaling laws discussed in
Section 1. The reader will remember our point that formula (3.4) is crucial to
statistical analyses based on those laws, and our claim that if (3.4) is invalid
(as it is, for example, if » < 3), then many traditional estimators of fractal
properties are not statistically consistent. We are now in a position to be
explicit about this matter. Suppose that r < 3, so that (3.11) holds instead of
(3.4). Then it may be proved-that in place of the fundamental equations (1.2)
. and (1.3), we have, respectively, the following formulae:

log I(s) = {$(2r + 1) D — 2r}llog s| + constant + o(1),
[log v(s)| = (2r + 1)(2 — D)llog s| + constant + o(1).

(3.11)
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If one ignores the differences between these formulae and their counterparts
when (3.4) holds, and tries to estimate D by linear regression of log I(s) or
logv(s) on [log sl, then the estimates will be inconsistent.

4. Proofs of Theorems 3.1 and 3.2.

ProoF OF THEOREM 3.1. There exists t* € (0,¢) with the property that
X, —X,=8"(ZZ, - Zy). Let .# =(r’,s’) denote any interval that does
not contain a zero of g’ and let .# = (r, s) be any interval interior to .#':
r'<r<s<s'.Put ’

C, = zirelf;g’(z)z > 0.
Then
Ci'E(X, - X,)* = C1'E{g'(2,)"(Z, - Z,)")
> E((Z, - 2,)"1(2, €7,0 < u < t)}
= E[1(Z, € 7)E((Z, - Z,)*|Z,)]
— E[I(Z, €.7)
XE{(Z, - 2,)*1(Z, ¢.7, s0me 0 < u < t)|Z,)]

(41) > B[1(2, €.5)E{(Z, - Z,)*|Z,}]

- B(1(2, «.7)[ E((2, - 2,)"12,)
XP(Z, €7, some 0 < u < 11Z,)] ")
> E[1(Z, €7)E{(2, - 2,)"12,)]
~(E[1(2, € 5) E((2, - 2,)"12,)|

1/2
XP(Zy€r5,Z, & 7,50me0 < u < t)) .
Since the process Z is continuous, then
P(Zyer,Z, #5,some0<u<t)—>0

as t = 0. There exist constants C,,C; > 0, depending on .#, with the prop-
erty that for all sufficiently small ¢,

E{(Z, - 2,)"12, = 2} = CLE(Z, - Z,)*,

, E{(Zt - Z0)4|Z0 = z} = C3{E(Zt - Zo)z}2
uniformly in z €._7. Hence, by (4.1),

(4.2) E(X, —X,)? > C,C,{1 + o(1)}E(Z, — Z,)*

as t — 0.
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Result (4.2) implies that E(Z, — Z,)* = O(¢t¢) as t — 0, for some ¢ > 0.
Hence, by Fernique’s lemma [e.g., Leadbetter, Lindgren and Rootzén (1983),
page 219], for constants C,,C5 > 0 and all x > 0,

(4.3) P( sup |Z,|> x) < Cyexp(—Csx?).

O<u<l1

Therefore, by the assumptions on g,

E{ sup g/(2,)[""") <=

O<u<l1

for some 1 > 0. The dominated convergence theorem and continuity of Z now
imply that

1+7
S, = E{ sup |g'(Zu)2 *g'(Zo)ZI } -0

O<u<t

as t — 0. Hence,
E(X, - X,)" = E{g'(2.:)"(Z, ~ Z,)’}

(4.4) , ,
— B(g'(2,)"(2. - Z,)") + R,

where, with p =1+ nand g =1+ 77!,

Rl =|E[{g'(2.)" - &'(2:)*)(Z, - Z,)"]
< 8}/7(EIZ, - Z,*7) "
- o{(EIZ, - zo|2‘I)1/"} = o[E(Z, - Z,)?).
With y = vy, = cov(Z,, Z,), we have
E{g'(Z,)(Z, - Z,)"} = E|g'(Z,)*E{(Z, - Z,)°12,}|
= (1- [+ v)E{g'(2,)%)
+(1 - ) E{g'(2,)* 28]
~2(1 - v)E{g'(Z,)’)

as t » 0. More simply, E(Z, — Z,)?> = 2(1 — vy). Combining the results from
(4.4) down, we conclude that, as ¢t — 0,

E(X, - X,)" ~ 2(1 - v)E{g'(Z,)"}. O
PrOOF OF THEOREM 3.2. The proof of Theorem 3.1, up to (4.2) and (4.3),
may be followed as before. In particular, we have

lim inf E( X, — X,)2/E(Z, - Z,)" > 0.
t—
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In place of the argument leading to (4.4), we note that, if 0 < { < 2 and ¢ is
very small, then for each p;, p, > 1and ¢; =(1 —p; )71,

E(X, - X,)* = E{|g"(2)['12, - 2,7 °1X, - X,I¢)

eV

(4 5) < {Elg'(zt*)(zt _ZO)I(Z {)Pl} pl(EIXt —Xolgql)l/ql
. - ( )

< (Elg'(2,)|® 97} P Bz, - |0 Orie) 102

X (EIX, — Xo|*)

Choose p;, p, so close to 1 that p; p, = (2 — 3¢ X2 — )7L, In view of (4.3)
and the assumptions on g,

sup E{Ig’(Zt*)

0<t<1

for each 0 < ¢ < 4. Therefore, by (4.5),
E(X, - X,)* = O{(EIZ, — 2,7

1/q;

< oo

2—(1/2){}

1/1’1‘12}

- 0|{E(2, - 2,)"
Since E(Z, — Z,)?> — 0, then for all ¢ > 0,
2 21-¢

E(X, - X,) /{E(Zt_Zo) } -0

}1 -(1/2);]

ast— 0. O
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