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A PROBLEM OF SINGULAR STOCHASTIC CONTROL
WITH DISCRETIONARY STOPPING!

By M. H. A. DAviS AND M. ZERVOS
Imperial College of Science, Technology and Medicine

In this paper a simple problem of combined singular stochastic control
and optimal stopping is formulated and solved. We find that the optimal
strategies can take qualitatively different forms, depending on parameter
values. We also study a variant on the problem in which the value
function is inherently nonconvex. The proofs employ the generalised It6
formula applicable for differences of convex functions.

1. Introduction. Problems of combined continuous control and optimal
stopping have been studied by several authors. Krylov [(1980), Section 6.4]
gives some general conditions for optimality, while in a recent paper Bene$
(1992) gives an explicit solution for an “LQG”-type problem with discre-
tionary stopping. Here we study a variant of this problem in which the
continuously acting control takes the form of singular control rather than the
controlled drift of Benes (1992). Singular control arises when the control acts
additively on the system model and a cost is paid for the total variation of
control effort, representing the use of fuel. Several problems of this sort have
been solved in recent years; a typical example, taken from Karatzas (1983), is
described in Section 2. Discretionary stopping in singular control arises in at
least two applications. One is in target tracking problems where one has to
decide when one is “sufficiently close” to the target. A second application is in
consumption /investment problems of financial economics. It is shown in
Davis and Norman (1990) that trading strategies are naturally of singular
control type in models including transaction costs, and if an American option
is held in a portfolio, then its exercise time—a stopping time—is an addi-
tional decision variable.

The purpose of this paper is to analyse a simple model involving both
singular control and discretionary stopping, with a view to discovering what
the nature of optimal strategies is for such problems. The model is described
in Section 3, where the main results of the paper are stated. Briefly, we find
that qualitatively different kinds of optimal behaviour can occur, depending
on parameter values. Proofs are given in Section 4 and involve the use of a
generalised Itd formula applicable to differences of convex functions. A vari-
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ant of the problem, whose value function is inherently nonconvex, is studied
in Section 5.

2. An example of singular control. Let (Q, %, P) be a probability
space equipped with a filtration {#},., satisfying the usual conditions of
right continuity and augmentation by P-negligible sets and carrying a stan-
dard one-dimensional {Z}-Brownian motion {w,}, . . Also, let ¥ denote the
set of {#;}-adapted, right-continuous processes ¢ such that with probability 1
the sample path ¢ —» ¢,(w) has bounded variation on any compact subset of
[0, ), and &, _(w) = 0. A process £ € @ will be represented as &, = & — &,
t > 0, where the processes ¢ *€ & are nondecreasing and the representation
is mmlmal so that the total variation § of ¢ on the interval [0, ¢] can be
written in the form ft &+ £ . Also, note that throughout this paper, we
use the notation “[¢” for integrals of the form [, ;.

For £ € # and xeR define

(1) x,=x+w,+ ¢

and

(2) J (&) = Efwe"”[)txtz dt +df)],
0

where A, 8 > 0 are given constants. The problem is to minimise J,(¢) over
£ € Z. The solution to this problem is described as follows [Karatzas (1983)].
Suppose that an even C2 function v satisfies, for some 5 > 0,

(3a) $0"(x) — dv(x) + Ax2=0, xe€[-b,b],
(3d) v(x) =x—b+v(b), x>0,
(3¢) v(x) = —x—b+v(d), x < —b.

The C? property implies that v'(b—) =1 and v"(b-) = 0. Now define the
process &, == & — §t , where the processes §ti are the unique solution to the
pair of functional equations

(4) £ = max|0, max{ x—ws+§~s_—b}]
O<s<t

and

5 E = 0, + +"+—b].

(5) & = max|0, max v+ w, + & - b)

It can be shown by an_application of the Doléans-Dade-Meyer change of
variables formula that §, is optimal in € and that v(x) = J,( £).

In fact, equations (3a)—(3c) have a unique C? solution. The general solu-
tion of (3a) is

A

A
" (6) v(x)=Acosh\/2_6x+Bsinh\/2_8x+§x +—83

If v is even, then B = 0 and the boundary conditions v'(5) = 1 and v"(b) = 0
provide a pair of transcendental equations for the two remaining parameters
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b and A. It is shown in Karatzas (1983) that these equations have a unique
solution.

Note from (4) and (5) that the optimal strategy involves three “tactics”:
move, wait and reflect. If we start from x > b (or x < —b) there is an
immediate move to b (or —b). The controller takes no action (i.e., waits)
while x, € (—b, b), whereas at +b it takes “minimal action” (reflect) to keep
x, inside [ b, b].

3. Discretionary stopping. We now include the possibility of stopping
in the above problem, thus adding stop to the above repertoire of tactics. Let
J be the class of all {#}-stopping times. For ¢ € @ and 7 €., define

(7) J(&,7) = E{[Te“”[)txtz dt + dé| + e_’STaxz}
0

where a >0 is a further parameter. We now seek a pair (£, 7) to minimise
J (&, 7).

Some immediate simplifications can be made to this problem formulation.
First, it is clear that the process should be stopped at 0 if 0 is ever reached
and that it cannot be optimal to “jump across” 0, that is, to introduce a
control ¢, such that for some ¢, x,_> 0 and x, < 0 or conversely. Also, a
simple contradiction argument shows that no control with d¢; > 0 when
x,> 0 or d§; < 0 when x, < 0 can be optimal. All of these assertions can be
checked post facto. For these reasons, we can assume for the rest of this
section that x > 0 and that the processes x, evolve on the positive half-line
R* with monotone control & = —¢; (the situation for starting points x < 0
being just the mirror image of this).

By convention, fo_= 0 so that ¢, denotes the jump in ¢, at ¢ = 0. Since
the stopping cost ax? is minimum at x = 0, it is natural to envisage that the
opt1ma1 stopping set is a neighbourhood of zero. One possible strategy is

“move-and-stop”, that is, for some a > 0, take fo =0if x < aq, fo =x—aif
x > a, and 7 = 0. The cost of this strategy is

2

(8) Jx(g,%)={ax s ) x<a,

x —a+ aa®, x>a.
Clearly, the best choice of a is the abscissa of the point at which a straight

line with slope 1 is tangent to the function ax?, thatis @ = 1/2« (see Figure
1). Thus the cost of the best move-and-stop strategy is the C! function

_ x<1/2a,
®) v(x) = {x—-l/4a, x>1/2a.

Is inove-and-stop the best strategy? Answer: Yes, if a8 < A (see Theorem 1).
Bearing in mind the solution when 7= «© of Section 2, another possible
strategy is to introduce a stopping barrier at some point ¢ > 0 and a
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1/2c

Fic. 1. Optimal “move-and-stop” policy.

reflecting barrier at some point b > a. The corresponding controlled process
is

(10) £ = max[O, max {x + w, — b}

O<s<t
and the corresponding stopping time is
(11) 7 =inf{t > 0: x, € [0, a]}.
By the recurrence property of Brownian motion, P[7 < «] = 1 for all x € R.
We conjecture that if this strategy is optimal for some a and b, then the
corresponding cost function v(x) = J (€, 7) will be C? at b (as in Section 2)
and C! at a (the “smooth pasting” condition of optimal stopping). Since there
is no control in the open set (a, b), v will satisfy
(12) Lv"(x) — Sv(x) + Ax2=0, «x¢€(a,b),
and the conjectured boundary conditions are
v(a) = aa?, v'(b) =1,
v'(a) =2aa, V'(b)=0.
The general solution of (12) is of the form (6), and we therefore have four

boundary conditions (13) to settle the four parameters @, b, A and B.
Outside (a, b), v is described by

(13)

. (14) v(x) =ax?,  x€[0,a],
and
(15) v(x) =x—b+uv(db), «x=0b.

It turns out that a strategy of this form is optimal whenever aé > A.
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THEOREM 1. For the process x, given by (1), consider the problem of
minimising the cost function given by (7) over all strategies £ € & and T €Y.

Case 1. If ad < A, then the move-and-stop strategy, that is, ;= max
{0, —x — a}, £&;= max{0, x — a} and 7 = 0, is optimal, with stopping barrier
a=1/Qa).

Case 2. If ad > A, then there exist a and b with 0 < a < b < © such that
the strategy (&, 7) described by & = max[0, max,_, . {—x — w, — b}], & =
max[0, max,_,_dx + w, — b}] and 7=inflt > 0: x, €[—a, al} is optimal
with cost v(x) which is an even function of x and satisfies (12)-(15). The
parameters a and b are uniquely fixed by the requirement that v(x) satisfy
(12), (14) and (15) and be C* at a and C? at b.

The proof of Theorem 1 is given in the next section. We have to show (in
Case 2) that the free boundary problem (12), (13) has a unique solution and
then (in either case) that the conjectured solutions are indeed optimal.

4. Proof of Theorem 1. Denote the infimum of J, (¢, 7) by v(x). It will
become clear in the development of the proof of Theorem 1 that the optimal
cost v(x) must satisfy the following variational inequalities:

) v(x) < ax?;
G1) v'(x) < 1
(i) 3v"(x) — dv(x) + Ax2 > 0;
Gv) (v(x) — ax®)(|v'(x)] — D(Gv"(x) — dv(x) + Ax2) = 0.
In the next three lemmas we consider the “reduced” problem where x > 0.

The following lemma describes the C! solution to the variational inequalities
(1)-(iv) when the move-and-stop strategy is optimal.

LEMMA 2. The function defined by

ax?, 0<x<1/2a
16 = ’
(16) v(x) x — 1/(4a), 1/(2a) <x,
satisfies inequalities (i) and (i1) for all x € R*, and equation (iv) for all
x € R"—{1/(2a)}. Also, it satisfies inequality (iii) for any x € R*—{1/(2a)}
if and only if a8 — A < 0.

PrOOF. It is straightforward to verify the first three assertions. Inequality
(iii) is equivalent to the following two inequalities:

» - 1
17 (a8 =Nz +a>0, 0<x<—,
' a
18 Ax? — 8x + ® >0 ! <
( ) x x 4o 20 oo x.
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If @6 — A < 0, then (17) holds trivially, and (18) holds because the quadratic
appearing on its left-hand side has no real roots or one double root [since its
discriminant is A = §(ad — A)/a < 0]. On the other hand, assuming that
ad — A > 0, it is easy to verify that 1/(2a) is strictly smaller than the largest
root of the quadratic on the left-hand side of (18), and so (18) cannot hold. O

The next lemma proves that the free boundary value problem described in
Section 3 has actually a unique solution.
LEMMA 3. The differential equation
(19) 3f"(x) — 8f(x) + Ax2 =0
with boundary values
f(a) = aa?, f(b) =1,
f(a) =2aa, f'(b) =0,
has a unique solution with b > a > 0 if and only if ad — A > 0.

(20)

Proor. The general solution of the differential equation (19) is

(21) f(x) = Aexp(xV28) + B exp(—xV25) + %x2+ %

The boundary values (20) give rise to the following system of transcendental
equations:
1

W[a(aa— Na? + V25 (ad — Aa — Al;

(22) Aexp(av28) =
(23) Bexp(—a\/2_8)=2—22[8(a8—)t)a2—\/2_8(a8—)\)a—)\];
(24) Aexp(bV25) = 4—;2[—2)\—\/%(2)@—8)];

(25) Bexp(—bv25) = %[-—2)« + V28 (210 — 6)]

If A > 0, then (24) implies —2A > V258(2Ab — 8) and so B < 0 by (25). On
the other hand, if B > 0, then (25) holds if V25(2Ab — §) > 2A and hence
A < 0 by (24). Consequently, at least one of A, B must be negative.

Either of the quadratic forms which appear on the right-hand side of
equations (22) and (23) has one positive and one negative root. Hence, since
at least one of A, B is negative, ¢ must be smaller than the largest of their

roots .
' V28 (ad— \) +V/28(a%? — A2%)
(26) a < = pl'
28(a8— A)

Consequently, if (19) and (20) have a solution, then a € [0, p;) and B < 0.
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Dividing (24) by (22), and (23) by (25) yields
—21 — V25(2Ab — 8)
2[8(ad — \)a® + V25 (ad — Ma — A

(27)  exp[V28(b —a)] =

and

2[6(ad — V)a? — V25 (ad — N)a — A]
—2A +v25(2Ab - 9)

Equating the right-hand sides of (27) and (28) leads to

(28)  exp[V25(b —a)] =

(29) 26(21b — 8)% = 48%(ad — V)[2a — (a8 — N)a?]a?.

If ad — A <0, the right-hand side of this equation is negative, and so there
can be no solution. On the other hand, if a8 — A = 0, (29) and (22)—(25) imply
a = b. Hence, (19) and (20) do not accept a solution with b >a > 0 for
ad — A < 0. Note also that it is straightforward to verify that p? < 2a/(aé —
M.

Equation (29) gives rise to two possible cases.

Case 1. V26(21b — 8) < 0. Assume that the system of equations (27) [or
(28)] and (29) has (at least) one solution. Since B < 0, b > a implies B exp{—b
V28} > B exp{—aVy28}, and, using (23) and (25),

(30) —V28(21b — 8) < —26(ad — N)a® + 2V28(ad — A)a.

The left-hand side of this inequality is nonnegative by assumption, and so the
inequality is equivalent to the one obtained by squaring its two sides. Hence,
using (29) and after some simple calculations, (30) is shown to be equivalent
to

8(ad — A)a% —vV28(ad—Na—Ar>0,
but then B > 0 by (23), which is a contradiction.
Case 2. V25(21b — &) > 0. In this case, equation (29) gives

al) 5 5+¢2_5(a5—A) 2a )
(31) ~ o or NVas—ar ¢

Substitution into equation (27) yields

gi(a) = [—A—&(aé—)\)a a;f/\ —az] |

x[8(ad - A)a? + V25 (ad - Na —A] "

28 8(ad-1)) [ 2a )
—exp{ o + Iy a a6—)t_a —\/2_6a

(32)
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The numerator of the function g, is bounded and negative in the interval [0,
py). The denominator of g, has a root in [0, p;)—denote it by p,—and is
negative in the interval [0, p,) and positive in the interval ( p,, p;). Conse-
quently, since g,(0) = 1, the function g, is increasing from 1 to +« as a
moves from 0 to p, and is negative in the interval (p,, p;). On the other
hand, the function g, is bounded and positive in [0, p;). Hence, since
g,(0) = exp{6V28 /2 A} > 1, equation (32) has at least one solution which lies
in (0, py). It is a tedious but straightforward exercise to verify that
dIn g,(a)/da > d In g,(a)/da for any a in the interval of interest. Hence the
equation.In g,(a) = In g,(a) which'is equivalent to (32) has a unique solution.
Also, note that since the unique solution of (32) lies in (0, p,), we have A,
B <0.

In order to see that b > a, observe that since A < 0, b > a if and only if
Aexp(bV28) < Aexp{aV28}. Using (22) and (24), this is equivalent to

(33) — V25 (21b — 8) < 28(ad — A)a? + 228 (ad — Na.

However, this inequality holds identically since its left-hand side is negative
by assumption and its right-hand side is positive. 0O

REMARK 1. In order to obtain some qualitative feeling about how big the
“gap” b — a can be, fix @ and A and parametrise @ and b by § > A/a. With
reference to inequality (26), observe that lim;_. p(8) =0, and hence
lim, _,,, @(8) = 0. On the other hand, (31) implies that lim, _, ., 5(8) = «. We
conclude that the “gap” b — a can be arbitrarily large, depending on how
large & is. As an example, in Figure 2 we plot the barriers a and b as

35
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F16. 2. Barriers a and b as functions of 8 with fixed o = 1, A = 2.
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functions of 6 for @ = 1, A = 2. Similar observations hold if we parametrise a
and b by a or A. O

The following lemma describes the C* solution to the variational inequali-
ties (1)—(@iv) for Case 2 of Theorem 1.

LEMMA 4. Let a8 — A > 0, and let the positive real numbers a and b and
the function f: [a, b] > R* solve the problem stated in Lemma 3. The
function defined by

ax?, 0<x<a,
(34) v(x) = {f(x), a<x<b,
x—b+ Ab2/8, b<ux,

satisfies inequalities (i) and (i) for all x € R*, and inequality (iii) and
equation (iv) for any x € Rt —{a}.

ProOOF. The first step is to prove that v is convex. Clearly, v"(x) > 0 for
x € [0, @) U [b, ©). For x € (a, b), use equations (22) and (23) to obtain

2V28
v"(x) = _8_{[8( ad — A)a? — A] sinh V258 (x — a)

+v26(ad — A)acosh V26 (x —a)}.

(35)

Equation v”(x) = 0 is then equivalent to

V26 (ad — A)a
8(ad—AN)a? -2~

(36) tanh V26 (x — a) = —

The right-hand side of (36) is positive and smaller than 1, and so (36) has a
unique solution, denoted r. Since v"(a+) = 2(ad — AM)a? > 0, v"(b—) = 0 and
v"(a+) = 4(ad — Ma > 0 by (85), r € (a, b) and v"(x) increases (strictly)
from some positive constant as x moves from a to r and then decreases
(strictly) to zero as x moves from r to b. Consequently, v"(x) > 0 for any x
in (a, b). Hence, the function v is convex.

Since ad — A > 0 is equivalent to 2A/8 < 2a, and the parameters A and
B appearing in the proof of Lemma 3 are both negative, v"(x) < 21/8 < 2a,
Vx € (a, b). Consequently, v"(x) < 2« for any x, and so v(x) < ax? for all x
[since v(0) = 0 and v'(0) = 0].

For x > b, v'(x) =1.For 0 <x < b, 0 < v'(x) < 1 because the function v’
is increasing, since v is convex. Hence, v satisfies inequality (ii) for any
x> 0. .
The facts that v"(x) < 2a for any x, v"(a+) = 2(aé — M)a? and that v” is
strictly increasing at x = a + imply

(87 (ad — N)a® < a.
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For x € [0, a),
(38) 2v"(x) —dv(x) +Ax2=a—(ad—N)x®>a— (ad—A)a®>0,
with the last inequality holding because of (37). For x € (a, b), 3v"(x) —
8v(x) + Ax?% = 0 by construction. For x € [b, »),
Lv"(x) — Sv(x) + Ax? = (x — b)[AM(x + b) — 8]
> (x — b)(2Ab — 8)>0,

with the last inequality holding because of Lemma 3 (see Case 2, in which the
solution is attained). Consequently, inequality (iii) holds for any x € R*—{a}.

Finally, equation (iv) holds trivially for all x € R*—{a} by the construction
of the function v. O

(39)

ProoF oF THEOREM 1. First, extend the functions v appearing in Lemmas
2 and 4 in the whole real line by even symmetry, and note that the
“extended” functions are C? at 0. In the case that a8 — A < 0, consider the
function v described in Lemma 2, and in the case that a8 — A > 0, consider
the function v described in Lemma 4.

Since the function v is C! and its second derivative is piecewise continu-
ous, it can be written as the difference of the convex functions

vi(x) =v(0) +xv'(0) + j;)xj;)y[f"(r)]+ drdy
and
vz(x)=j0x[0y[f"(r)]‘ drdy.

Hence, the Meyer-Itd formula [Protter (1992), Theorem IV.51, or Meyer
(1976), VLII] can be applied to yield

v(x) = v(xo-) = [v(x,.) dx, + [ Liu(da)

+ Z [v(xs)_v(xs—) _v,(xs—)Axs]’

0<s<t

where x, is given by (1) for arbitrary £ € €, x,_= x and L¢ is the local time
of the semimartingale x, at a; u is the signed measure which is the second
derivative of v in the generalised function sense. However, v € C'(R) implies
that v” exists for Lebesgue almost all x, and so

" Liu(da) = [ L2v"(a) da
(41) . -

(40)

= j:v”(xs_) ds,

the second equality following from Corollary 1 to Theorem IV.51 in Protter
(1992). Now consider the finite variation, previsible process y, = e °’ and the
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semimartingale z, = v(x,), and recall the integration by parts formula [Meyer
(1976), 1V.38]

(42) Y:2;, = Yo-30-~ fyt dz, + fzt— dy,.
0 0

Equations (42), (40) and (41) give

e °v(x,) —v(x)

= fTe“”v'(xt_) dw, +"[Te“”[%v"(xt) - 8v(xt)] dt
0 0

43 ,
(43) +f e %' (x, ) d§
0
+ Z e_St[v(xt) —v(x,_) — V(%) Axt]'
O<t<rt
Adding

fofe"”[/\x,2 dt + df:] + e Yax?

to both sides of (43), rearranging terms and using the identities (valid, since
Ax, = A¢E)

(44) &=[¢1 -[¢] + L Ax,
O<s<t

(45) &=1[¢e1 +[¢1 + X 1Ax,,
O<s<t

where £° is the continuous part of ¢ with £§ = 0, gives

'/.Te"”[)wc,2 dt + dfvt] + e Yax?
0
=v(x) + e"”[amc,2 - v(xT)] + f7e"5tv’(xt_) dw,
0
(46) +f7e'3t[%v”(xt) — dv(x,) + Ax?] dt
0

+ [+ v (s O] LT +[1 - vzl €], )

+ ), e [v(x,) —v(x,_) +|Ax,]].
O<t<rt
Now let any admissible strategy ¢ € # and 7€ 9. Since the function v
satisfies the variational inequalities (i)—(iii) (see Lemma 2 or 4 according to
‘the case), it is clear that except for the stochastic integral, all the terms on
the right-hand side of (46) are non-negative, and so

T—6t] ) .2 4 —81 .2 -8t
T = t— te
(47) fe [)\xt dt+d§t] +e “ax’>v(x) + fe v'(x,_)dw
0 0
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Taking expectations, and noting that the expectation of the stochastic inte-
gral is zero, the above inequality yields

(48) E{f7e"”[)txt2 dt + dfvt] + e ax } >v(x).
0

In order to complete the proof, a strategy with cost given by v must be
constructed, and this is possible because the functions v satlsfy equality (iv).

If a8 — A <0, then the move-and-stop strategy £ and 7 clearly yields a
cost which is equal to v(x).

Hence, consider ad — A > 0, and let x > 0. A careful inspection of equation
(46) reveals that inequality (48) will hold with equality if the stopping
strategy 7 is_equal to the hitting time of the set [—a, a], and the control
strategy £ = £*— £ is constructed so that = 0, and

(49a) x,=x+w,—&<b,
(49Db) & is nondecreasing
and

(49c) & isflat off {¢ > 0: x, < b}, that is, fI(x <ndé =

However, (49a)—(49¢) is a Skorohod equation and it admits the unique,
continuous solution [see, e.g., Karatzas and Shreve (1988), Lemma 3.6.14]

(50) & = max|0, max {x + w, — b}]
O<s<t

Finally, the situation when x < 0 is treated similarly (it is the mirror image
of the situation when x > 0). 0O

REMARK 2. Note that the proof of Theorem 1 essentially contains a new
verification theorem for one-dimensional problems [e.g., it is not a special
case of Theorem VIII.4.1 in Fleming and Soner (1993) because the optimal
cost function v is not required to be twice continuously differentiable on the
set {x: |[v'(x)| < 1}]. To see this, consider some general functions A(x) and
g(x) (satisfying certain smoothness assumptions) in place of the functions
Ax? and ax?, respectively. If a C! function w satisfies the inequalities
(1)—(iii), then it can be shown as until equation (48) that w(x) is smaller than
or equal to the optimal cost v(x). On the other hand, satisfaction of equality
(iv) suggests that w is indeed the optimal cost function, with optimal strategy
which “switches” among the tactics described in Sections 2 and 3 according to
whether inequality (i), (ii) or (iii) holds with equality. Note also that convexity
of the value function was established in the proof of Lemma 4 only in order to
show that |v'(x)| < 1. Convex1ty plays no role in the “verification” argument
given above.

5. A problem with inherently nonconvex value function. In this
section we sketch the solution to a further problem involving singular control
and discretionary stopping. Again, we find qualitative dependence of the
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optimal strategy on parameter values, but the real interest lies in the fact
that this example exhibits a genuinely nonconvex character.

Everything else being the same as before, consider the minimisation of the
cost

(51) L(&,7) =E{f;e‘“[)tdt +dé,| +e“87axf}.

By considering the cost associated with the two extreme strategies, namely,
stop immediately and do nothing, we can see that in this problem the optimal
cost function v must satisfy, for all «x,

A
(52) v(x) < min{axz, E}
Hence, being bounded, equal to 0 at x = 0 and positive elsewhere, the
optimal cost function cannot be convex.
The variational inequalities for this problem are inequalities (i) and (ii) of
the previous section and

W) 32v"(x) — dv(x) + A >0,
i) (v(x) — ax®)|v'(x) — DGv"(x) — Sv(x) + A) = 0.

As in Section 3, consider (without real loss of generality) x > 0. One possible
strategy is to “do nothing” while being inside the set (a, «) for some a > 0,
and to stop as soon as the process hits the set [0, a]. Noting that the solution
of the differential equation 1f"(x) — 8f(x) + A = 0 is

(53) f(x) = Aexp(xv25) + Bexp(—xv25) + %,

the cost of this strategy is given by the function

ax?, 0O<x<a,
(54) v(x) = Bexp(—x%) +A/8§, a<x,
where we have used A = 0 since v has to be bounded. Assuming C! fit at the
point a, we obtain a system of two equations for the unknowns a and B. The
solution to this is

—a+ ya(a+22) B 2aa exp()/23).

(55) a= 25 , = "5

Using rather simple analytic arguments, we can show that the function v
. defined by (54) and (55) satisfies the variational inequalities (i), (ii), (v) and
(vi) if and only if

0+ 2av26
A ——m.

(56) i
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Because of this condition, we have to look for a further possible strategy. The
natural generalisation of the strategy just described is to consider two barrier
points 0 < a < b. Whenever the process is inside the set (b, ), the controller
takes no action at all. If the process is inside the set (a, b], the controller
moves it immediately to the point a. Finally, the process is stopped as soon as
it hits the set [0, a]. The cost associated with this strategy is then given by

ax?, 0<x<a,

(57) v(x) ={x—a+ ad?, a<x<b,
Bexp(—x\'/%) +A/8, b <ax.

Again, assuming C! fit at both points a and b, we obtain a system of three
equations for the three unknowns a, b and B. The solution to this system is

(58) a=—1—, b=i+i—i, B=—iexp(b1/2_8).
2a 4 & V28 V28
From (58) we can easily calculate that ¢ < b if and only if
(59) A5 2H 220
4a

which is the logical complement of condition (56). Again, we can easily show
that in this case the function defined by (57) and (58) satisfies the variational
inequalities (i), (ii), (v) and (vi) [using also inequality (59)].

Finally, the verification that the strategies described above are indeed
optimal [according to whether (56) or (59) holds] can be done in exactly the
same way as in the proof of Theorem 1 (see also Remark 2).

At this point, note that 6 - « as § — 0, showing that the “move-and-stop”
strategy as described in Section 3 is always optimal for the cost function (51)
with no discounting (8 = 0). This has the same form as the cost function
considered by Bene$ (1992).
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