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REGULAR VARIATION IN THE TAIL BEHAVIOUR OF
SOLUTIONS OF RANDOM DIFFERENCE EQUATIONS

By D. R. GREY

University of Sheffield

Let @ and M be random variables with given joint distribution.
Under some conditions qn this joint distribution, there will be exactly one
distribution for another random variable R, independent of (@, M), with
the property that @ + MR has the same distribution as R. When M is
nonnegative and satisfies some moment conditions, we give an improved
-proof that if the upper tail of the distribution of @ is regularly varying,
then the upper tail of the distribution of R behaves similarly; this proof
also yields a converse. We also give an application to random environment
branching processes, and consider extensions to cases where @ + MR is
replaced by ¥(R) for random but nonlinear ¥ and where M may be
negative.

1. Introduction. A random first order difference equation takes the
form
R, .=Q,..+M, R, n=0,1,2,...,

where {(@,, M,); n = 1,2,3,...} are independent and identically distributed
(i.i.d.) random pairs with some given joint distribution and R, is independent
of these with some given starting distribution. If the joint distribution of @,
and M, (denoted by @ and M when there is no ambiguity) satisfies appropri-
ate conditions, the distribution of R, will converge as n — « to a limit that
does not depend upon R, and that will be the unique solution to the random
functional equation

R=p Q + MR,

where =, denotes equality in distribution and, on the right-hand side, R is
independent of (@, M).

Kesten (1973) (generally working in many dimensions), Grincevi¢ius (1975)
and Goldie (1991) (working with a more general functional equation) have
studied how the tail behaviour of the distribution of R is determined by the
joint distribution of @ and M. They show essentially that if there exists
k > 0 such that E|M|“ =1, E|M|“log*|M| < © and E|Q|" < «, then

P(|IR|>¢t) ~ct™ ast—>

for some ¢ > 0. The key to this result is that when |R,|is large, {log| R, [} may
be compared to a random walk with negative mean increment E log| M|, for
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170 D. R. GREY

which the asymptotic behaviour of the probability of reaching a high level is
well known from renewal theory.

It will be noted that if the foregoing regularity conditions hold, then it is
the distribution of M that is important in determining the tail behaviour of
R (by defining k). Theorem 1 of Grinceviéius (1975) covers perhaps the most
tractable case where k does not exist, namely, where M is nonnegative, there
exist B> a > 0 such that EM* < 1 and EM”? < », and the upper tail of the
distribution of @ is regularly varying with index —a. (Here k cannot exist
because to satisfy EM* = 1 it would have to be greater than «, and then
E|Q|" < » would not hold.) Grinceviius’ Theorem 1 states that the upper tail
of the distribution of R is also regularly varying and comparable to that of Q.
Thus it is now the distribution of @ that is important in determining the tail
behaviour of R.

More recently, Resnick and Willekens (1991) have generalised this result
to the multidimensional case, although under the assumption that @ and M
are independent. It may be possible using their definition of multivariate
regular variation to extend the results of the present paper to more than one
dimension, but this possibility is not pursued here.

GrinceviCius’ theorem is an elegant result but the proof given is unneces-
sarily complicated in places and appears flawed in its final stages. The
theorem deserves a more streamlined and accurate proof. This is given in
Section 2, attention being drawn to the point at which Grincevicius’ proof
seems lacking, and the technique used yields the added bonus of a converse to
the theorem with little extra effort. It is a synthesis of the ideas of Grincevi¢ius
and those developed (in temporary ignorance of the earlier result) by the
author.

In Section 3 we give an explicit example that shows that it is possible for
both @ and M to play comparable roles, and in Section 4 we consider an
application to random environment branching processes. In Section 5 we look
at the possibility of extension to cases where @ + MR is replaced by a
random and not necessarily linear transformation ¥(R), as studied in some
detail by Goldie (1991). In Section 6 we indicate how our basic result may be
adapted to cases where M may be negative.

2. The basic result.

THEOREM 1. Let (Q, M) be jointly distributed random variables with
Elog®|Q| <o, P(M>0)=1, EM*<1 and EMP? < © for some B> a > 0.
Let R be a random variable independent of (@, M). Then there exists exactly
one distribution for R such that @ + MR has the same distribution as R. If R
has this distribution and L is a function slowly varying at infinity, then the
following two statements are equivalent:

P(Q>t) ~t°L(t) ast—w
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and

P(R>t)~ t™°L(t) ast— ».

1—-EM*
In order to prove this theorem, we first prove three preliminary lemmas.

LEMMA 1. Let X be a random variable with
P(X>t) =t"*Ly(t) fort>0,
where L, is slowly varying at infinity. Then given 8 > 0, there exists K > 1
such that
Ly(2t)
Ly(¢)
ProOF. If A > 1, the fact that L,(At) < A°L4(¢) follows immediately from
the fact that P(X > t) is nonincreasing in ¢. By Potter’s theorem [Bingham,

Goldie and Teugels (1987), Theorem 1.5.6], given A > 1 and & > 0, there
exists ¢, such that if A < 1, then

L,(At)

Ly(t)

Also, since 1 > ¢t *L(¢) > t;*L,(¢y) on (0,¢,], if 0 < At <t < t,, then
L,(At) Aot

Ly(¢) = to“Ly(o)t®

< max{A®, KA™%} forallt > 0,1>0.

<AA"? provided At > ¢,.

=BA* <BA®,

say. Finally if At < ¢, <, then
LM) _ Ly(M) Ly(t)
Li(t)  Ly(t) Ly(2)

AN B
<B|— A(—) = ABA 8. O
t t

LEMMA 2 [An improved version of Grincevitius (1975), Lemma 1]. If Yis a
random variable with

P(Y>t) ~ct °L(t) ast— >

for some constant ¢ > 0 and function L slowly varying at infinity, and (Q, M)
is as in Theorem 1, independent of Y, then

P(@>t) ~t “L(t) ast—o
if and only if
P(Q+MY>t)~(1+cEM*)t °L(t) ast— .
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ProoF. For ¢t > 0 write P(Y > t) = t *Ly(t), where L, is slowly varying
and L,(¢) ~ cL(t). We first choose ¢ € (0, 1) and start with the identity
P(Q+MY>t)=P(Q@>(1+¢&)t) —P(Q>(1+¢&)t, + MY <t)
+P((1-e)t<Q@=<(1+e)t,Q@+MY>t)
+P(Q<(1—-¢)t,Q+MY>t).
Write this as
J(t) = L,(¢) = I(2) + Iy(2) + I,(¢), say.
Now estimate some terms on the right-hand side. First,
0<I,(¢t) <P(Q@>(1+e)t, MY < —&t)
<P(M > t@@tPV/2B)y 4 P(Q > (1 + &)t)P(Y < —et(P)/28)
=o(t7(**B/2) 4 o(P(Q > (1 + &)t)),
using in the first term the fact that EM® <  and therefore P(M > m) =
o(m™B). Next,
P(Y>M'(t-Q))

I4(t) =t_aL2(t)E t_aLz(t)

;M>0,Qs(1—a)t},

where the expectation is taken over @ and M. The random variable in the
brackets converges pointwise to M as ¢ — « and is dominated by

P(Y > M 'et)
tLy(t) '
which by Lemma 1 with § = 8 — « is in turn dominated by
max{1, Ke P MP*}

for some K > 0. This random variable is integrable and so, by dominated
convergence, we conclude that

I,(t) ~EM®t *Ly(t) ~ cEM°t™*L(t) ast — .
We are now in a position to prove the “only if” part of the lemma. Suppose
that
P(Q>t) ~t °L(t).
Then
I(t) ~ (1 + &) “t °L(¢),
I(t) = o(¢™*L(¢t)) since ¢t (**A/2 = o(¢t~*L(¢)),
0<I(t) <P((L-e)t<@Q=<(1+¢e)t)
~((1-28)t) “L((1—&)t) — ((1+ &)t) “L((1 + &)t)
~{(1-e) "= (1+¢&) “}tToL(2).
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Thus
li (t) 1+¢) “-0+ {1 o 1 — EM
- < — — — + + «
11:1_>s;1p L) ( €) {( €) ( e) “J+e
and
lim inf ——— + T*_ + o
I?—l»tonft‘“L(t) >(1+e¢) 0+0+cEM

Now letting & | 0 yields the required result.
Now consider the “if” part of the lemma. Suppose that

J(t) ~ (1 + cEM*)t “L(t).
Then subtracting off our known estimate of I,(¢) yields that
I(t) — Iy(¢) + I3(t) ~ ¢7°L(2).

Since I,(t) + I;(¢) > P(Q > (1 + &)t), whereas I,(¢) is bounded above by the
sum of two terms, one of which is o(¢t ®L(¢)) and the other of which is
o(P(Q > (1 + &)t)), this simplifies to

I(t) + Iy(¢) ~ t~°L(¢).

However, I,(t) + I;(¢) is bounded between P(Q > (1 + &)t) and P(Q > (1 —
e)t). It follows that

P(Q > (1+ &)t)

lim su <
et °L(t)
and
P(Q > (1- &)t
liminf 29> A= )
tow® t aL(t)

Changing variables yields easily that
P(Q > ¢) P(Q> 1)

1 _ a 1. . —_— < 1. N 7
(1-e) < Eminfo=ray < ISP o=t

Letting & | 0 now completes the proof. O

<(1+e)".

LEMMA 3. Under the conditions of Theorem 1, if
P(Q>t) ~t °L(t) ast— x,
then there exists a random variable Z, independent of (Q, M), with
P(Z>t).~ct °L(t) ast—>
for some ¢ > 0, such that
Q+MZ<, Z,

where < denotes “is stochastically not greater than.”
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ProOOF. Choose c* > (1 — EM®)™! and let Y be any random variable
satisfying
P(Y>t) ~c*t “L(t) ast — .

Then by Lemma 2,
P(Q+MY>t)~(1+c*EM*)t “L(t) ast — o,
Hence, since c¢* > 1 + ¢c*EM ¢, the inequality
P(Q+MY>t) <P(Y>t)

is certainly true for ¢t >t,, say. Now let Z have the distribution of Y
conditional on Y > ¢,. Then Z possesses the required tail behaviour, where
¢ =c*/P(Y > t,). Also, for t > t,,

P(Q+MZ>t)=P(Q+ MY >t]Y > t,)
P(Q + MY >t)
=T P(Y >t
P(Y>t)
S'—""—
P(Y > tg)
=P(Z>1t).

This inequality is also trivially true for ¢ < ¢, since then P(Z > ¢) = 1. This
completes the proof. O

ProOF OF THEOREM 1. It is known [Kesten (1973), Goldie (1991); see also
the review of this topic in Vervaat (1979)] that if {(@,, M,); n = 1,2,3,...}
are i.i.d. pairs with the given joint distribution of (@, M) and the sequence
{R,; n=1,2,38,...} of random variables is defined recursively by

Rn+1=Qn+1+M+1Rn’ n=0’1,2,~~-,

where R, is arbitrarily chosen independently of {(®,, M,)}, then under the
weak condition E log*|Q| < «, the sequence {R,} converges in distribution
and the limit distribution does not depend on R,. Moreover, if R has the
limit distribution, then the equation

R=p Q@+ MR

is satisfied. This easily yields the existence and uniqueness.

The implication from R to @ in the theorem now follows immediately from
putting Y =R and ¢ = (1 — EM*)~! in the “if” part of Lemma 2. It remains
to prove the implication from @ to R.

The idea here is to bound R stochastically above and below by sequences of
. random variables with known tail behaviour. (It is here that Grincevicius’
proof is unnecessarily complicated in the bounding above, and apparently
incomplete in the bounding below.)

It is clear in the foregoing recursion that if R, can be found such that
R, >, R,, then {R,} is a stochastically nonincreasing sequence, so that
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R, >, R for all n. We shall use this fact and the preceding results to bound
the tail of the distribution of R from above.
Choose Z distributed as in Lemma 3 and let R, = Z. Then

R, =@, + M\iR, <p R,

and so {R,} is stochastically nonincreasing. By Lemma 2 and induction we
have that

P(R,>t) ~c,t °L(t) foralln
where ¢, = ¢ and {c,} is a sequence satisfying the linear recurrence relation
Chy1=1+c,EM* forn=0,1,2,...
and having the limit
1
T 1-EM*
It follows from P(R > ¢) < P(R, > t) that

. P(R > 1) 1
< .
TSP =eL(t) T 1-EM®

Co

To obtain a lower bound we use the slightly different argument that if
R, <p R, then R, <;, R for all n. (It does not seem easy to find a stochasti-
cally nondecreasing sequence.)

Note that P(R > 0) > 0. This is because, if it were not true, since R is
certainly not degenerate at zero, there would be some negative ¢ such that
P(Q + Mt < 0) = 1, contradicting the fact, implicit in our assumptions, that
the upper tail of the distribution of M is of smaller order than that of Q.
Hence, the following statement is nonvacuous: for all ¢,

P(R>t)=P(Q+MR>t)>2P(R>0)P(Q>1t).

If we choose R such that

P(Ry;>t)=P(R>0)P(Q>t) fort>0
and

P(Ry>t)=P(R>t) fort<0
[which makes 1 — P(R,, > ¢t) a legitimate distribution function], then clearly
R, <5 R. By Lemma 2 and induction we again have

P(R,>t) ~c,t “L(t) forall n,

where now ¢, = P(R > 0), but the sequence {c,} satisfies the same linear
recurrence relation as before and has the same limit

1

“=1_EM*"
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It follows from P(R > ¢) > P(R, > t) that

o P(R>1) 1
> .
e t°L(t) ~ 1- EM"

Putting these two bounds together now completes the proof that

P(R>t) ~ t*L(t). 0

1-EM*°

3. Another example. Rarely will it be possible to obtain an explicit
solution to the functional equation

R=,Q+ MR,

but there is one obvious nontrivial case where it is possible: If @ and M are
independent with, respectively, gamma distribution Ga(a,, 8) and beta dis-
tribution Be(ay, @), then it is easy to check using standard distribution
theory that the preceding equation is satisfied when R has gamma distribu-
tion Ga(a, + a,, B). [See Tollar (1988) for further properties of this model;
also Letac (1986).] This distribution has the property that

P(R >t) ~ B ltuter-le Pt a5t > o0

and so the presence of all three parameters «;, a, and B (assumed positive)
in the exponents indicates that the distributions of @ and M both play a role
here. Note also that the tails of the distributions of @ and R are not
comparable as they were in Section 2. This is a case where P(0 <M < 1) =1,
which is the reason for the nonexistence of « > 0 satisfying EM* = 1.

4. An application to random environment branching processes.
In a branching process in ii.d. environments [Smith and Wilkinson (1969)],
suppose that all possible family size distributions are modified geometric with
fractional linear probability generating functions of the form

A+(1-A-B)s . 0.1
= IS
£(s) — or s < [0,1],

where A, B €[0,1). We have written the parameters A and B in capital
letters to emphasize that in random environments they become jointly dis-
tributed random variables. In Grey and Lu (1994) it was shown that if g(¢)
is the random variable denoting the probability of ultimate extinction start-
ing with a single ancestor conditional on environment sequence {, then
R = q({)/Q — q()) satisfies the random functional equation

R =, Q + MR,

where
M A 1-B
(Q, M) _D(l—__AaE__A)~
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Since the mean family size and probability of zero family size are given,
respectively, by
(1) = 222 and £(0) -4

it follows that the conditions EM* < 1, EM? < © and P(Q > t) > t *L(¢)
translate into

Ef'(1) " <1,
Ef'(1) f <
and
P(f(0) >1—v) ~v?L(v'!) asv]O.

If these conditions hold then it follows from Theorem 1 that
P(q(Z)>1-v) ~{1-EF(1)"") vL(v") asvlo.

If q, = Eq({)* denotes the unconditional probability of extinction starting
with k& ancestors, it then follows from an Abelian theorem that

gy ~T(a+1){1 - Ef (1)) "k °L(k) ask - .

The qualitative message of this result is that if the frequency of dangerously
bad environments (where the probability of zero family size is close to 1) is
sufficiently high, then it is this frequency that is important in determining
the behaviour of the extinction probability for large initial population sizes.

5. Extension to nonlinear transformations. The main development
of Goldie (1991) is to show that under the “existence of «” condition we can
replace the random linear transformation ¢ — @ + M¢ by a much more
general one, ¢ > ¥(t), provided that in a carefully defined sense ¥(¢) = Mt
for large t. It is worthwhile considering whether a similar thing can be done
under our conditions. One possibility is the following.

THEOREM 2. Let ¥ be a random nondecreasing function that may be
expressed as

V(t) =Q + Mt + N(t),

where Q, M and N(t) are random variables determined by ¥, (Q, M) satisfies
the conditions of Theorem 1, the range of V(t) is unbounded above for all real
t and

IN(¢)| < No(¢),

where N is a nonnegative random variable satisfying ENP < © and ¢ is a
fixed nondecreasing nonnegative function satisfying ¢(t) = o(¢) as t - «. Let
R be a random variable independent of V. Then there exists exactly one
distribution for R such that V(R) has the same distribution as R. If R has
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this distribution and L is a function slowly varying at infinity, then
P(@>t) ~t ™ *L(t) ast—> o
if and only if

P(R>t) ~ t™°L(t) ast— .

1-EM*

Proor. We first show that if {¥,,¥,,...} is a sequence of i.i.d. random
functions distributed as ¥, and R, is suitably chosen and independent of
these, then the sequence {R,, R, R,, ...} defined recursively by

Rn+1=q,n+1(Rn) forn=0,1,2,...

converges in distribution and the limit distribution is unique.
Choose ¢ > 0 such that E(M + ¢N)* < 1, and then ¢, such that

¢(t) <ct fort=>t,.

Then

Y(t) <@+ (M+cN)t fort>t,
and

V(t) <Q + No(t,) + Mt fort <t,.
Hence

P(t) < Q"+ Ng(ty) + (M +cN)t forall t > 0.

So if R, is chosen having the distribution (known to exist by Theorem 1)
satisfying the random functional equation

R, =p Q"+ No¢(ty) + (M + cN)R,,

then R, is obviously nonnegative and so from the foregoing statements we
have that

Therefore, since ¥,,¥,, ... are nondecreasing functions, it follows easily that
{R,} is a stochastically nonincreasing sequence.
In a similar way we may use

V(t) > —{Q + Np(0)} + Mt fort <0
to construct nonpositive R} satisfying
R =p — {Q — N¢(0)} + MR}
such that
R} = ¥,(Rj) =p R}

and the continuing sequence {R}} is stochastically nondecreasing.
Since R§ <, R,, it follows that

Ry <p R <p R, <p R, foralln
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and therefore that each of {R,} and {R}} converges in distribution to a limit
that is an equilibrium distribution for the Markov process with transition
functions given by those of {R,} or {R}}.

To show that such a distribution is unique, we use a coupling argument
[see, for instance, Pitman (1974)]. Suppose 7 and 7 * are any two equilibrium
distributions and redefine {R,} and {R}} as processes with R, and R}
independent with distributions 7 and *, respectively, governed by se-
quences {¥,} and {¥;*}, which are independent of each other and of R, and

&, up to the random time

T =inf{rn > 0; R, < R}}

and governed by a common sequence (say {¥,}) thereafter. If we can show
that P(T < «) = 1, since R, < R* for n > T, it follows, letting n — o, that
7 <p w*. Similarly = >, 7*. To show that P(T < «) = 1, we note that up to
time T' the bivariate process {(R,, R¥)} is a Markov process with equilibrium
distribution 7 X 7 *. Also, from the tail conditions imposed on @, M and N, it
is not hard to see that for any real s and ¢,

P(¥(s) < ¥*(t)) >0,

where ¥ and ¥* are independent. Hence any invariant class of states for the
bivariate process contains points of the form (x, y) with x <y, and so almost
surely one such state is eventually visited.

NoTE. Some conditions, such as our tail conditions, are crucial here.
Goldie has pointed out, using the example ¥(¢) = [@ + Mt], where square
brackets denote integer part, @ is degenerate at 2 and M takes the values 3
and £ each with probability 3, that uniqueness of equilibrium distribution
does not hold more generally. This corrects his assertion [Goldie (1991),
Section 8] of uniqueness for the example ¥(¢) = [@ + Mt].

It remains to establish the relationship between the tail behaviour of @
and that of R. We first note that an exact analog of Lemma 2 holds with
@ + MY replaced by ¥(Y). To show this in the “only if” direction, one may
use the “only if” part of Lemma 2 and then the inequality

|[P(P(Y) >t) — P(Q + MY >1t)|
<P((1-&)t<@Q@+MY<(1+e)t)+P(NY)l > et),
which holds for ¢ € (0, 1). Dividing by ¢~ *L(¢), letting ¢ — © and then ¢ |0
establishes that ¥(Y) and @ + MY have asymptotically equivalent tail
behaviour. For this we need to know that
P(IN(Y)|> et) < P(N¢(Y) > et)
=o(t™°L(t)),
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which follows easily from the way in which N and ¢ have been constructed.
In the converse direction, use the similar inequality

|[P(¥(Y) >¢) — P(Q + MY > t)]
<P((1-&)t<¥(Y)<(1+e)t)+P(NY) > st)

and then the “if” part of Lemma 2.

In Theorem 2, the implication from R to @ now follows immediately, as in
the proof of Theorem 1. The implication from @ to R also follows similarly.
For upper bounding, the exact analog of Lemma 3 [replacing @ + MZ by
W(Z)] works. For lower bounding, we may choose R, such that

P(R,>t)=P(R>0)P(¥(0) >¢t) fort=>0

and
P(Ry>t)=P(R>t) fort<0,

noting (which is an easy exercise) that ¥(0) = @ + N(0) has asymptotically
the same upper tail behaviour as Q.
This completes the proof. O

ExaMPLE 1. The transformation
W(t) = Q + Mt + Nvt,

considered in some detail by Goldie (1991) under his regularity conditions,
fits easily in an obvious way into our model.

ExaMmPLE 2. A transformation such as
V(t) = max{Q, Mt}

does not fit the generalisation that we have chosen, but it is not hard to see
that this transformation yields to a direct proof of the equivalent of Theorem
1, using similar but easier techniques. The details are omitted.

6. Extension to not necessarily positive M. We have so far assumed
that M is nonnegative mainly in order to be able to employ various mono-
tonicity arguments in the proofs. However, it is possible to obtain similar
results if we drop the assumption P(M > 0) = 1 and merely assume that
E|M|* <1 and E|M|? < «. We now have to take into account the simultane-
ous effects of the upper and lower tails of the distribution of @ on those of R.
Leaving aside the question of whether converses exist, we here state analogs
of Lemma 2 and Theorem 1, and in each case give an indication of how the
proof proceeds.

LEMMA 4. Let @, M be random variables with E|M|* < 1, E|M| B < oo for
some B> a > 0, and the tails of the distribution of Q satisfying

P(Q>t) ~t °L(t),
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and
P(-Q>t) ~bt °L(t) ast—>x
for some b > 0. Let Y be independent of (Q, M) with
) P(Y>t)
lntn_)silp t’—"L(t—)— =c,
and
. P(-Y>1¢)
hrtn_)sllp ———t’“L(t) =c_
for some c,,c_> 0. Then, writing u,= E(M*)* and p_= E(M")*,
) P(Q+ MY >1t)
fm s =)

<l+4+c,pu,tc_pu_

and

. P(-Q — MY > t)
T L)

A similar result holds with limit superior replaced throughout by limit
inferior, and the inequalities in the conclusion reversed.

<b+c_p,+c . p_.

SKETCH OF THE PROOF. We consider the upper tail only; the lower tail
follows similarly. The decomposition of P(@ + MY > ¢) used in the proof of
Lemma 2 still works; I,(¢#) must now be split up into two terms, correspond-
ing to the events {M > 0} and {M < 0}, and a similar analysis leads to

. 1,(2)
lim sup

—F < ¢ +c_p_.
¢ oo t—aL(t) +I"L+ 122

The remaining terms in the decomposition are dealt with in a similar manner
to that used in the proof of Lemma 2. The corresponding result for limits
inferior follows in an analogous way. O

THEOREM 3. Let @ and M be as in Lemma 4, and let R be a random
variable with the unique distribution satisfying

R =, Q+ MR.
Then
P(R>t) ~C t *L(t)
and
P(-R>t) ~C_t °L(t) ast - =,
where

1{ 1+5 1-5% }
C.,= = +
2\1-py—p. 1-pt+p
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c 1{ 1+5 1-5 }
T2 \l-pimpe 1-ptu )

and

SKETCH OF THE PROOF. Define

C -1 P(R>1t)
+T RSP TS ()

and
. P(-R >1t)
C_= lutn_)s;m _t_“L(t)
We know that these are finite from the easily verifiable fact that
—-R* <, R <5 R*,
where R* uniquely satisfies the equation
=p Q| + IM|R*.
Applying Lemma 4 yields
C.<1+C,pu,+C_pu_
and
C_<b+C_p,+C,pn_,
whence, in particular, after adding and rearranging,
1+5
*1-p—w

By a similar application of Lemma 4, the sum of the corresponding limits
inferior satisfies the opposite inequality. It follows that C, and C_ are limits
rather than merely limits superior, and that they satisfy two simultaneous
linear equations that may be solved to give the expressions in the statement
of the theorem. O

C,+C_<
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