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STATE-DEPENDENT CRITERIA FOR CONVERGENCE OF
MARKOV CHAINS!

By SEAN P. MEYN AND R. L. TWEEDIE

University of Illinois and Colorado State University

The standard Foster—Lyapunov approach to establishing recurrence
and ergodicity of Markov chains requires that the one-step mean drift of
the chain be negative outside some appropriately finite set. MalyShev and
Men’sikov developed a refinement of this approach for countable state
space chains, allowing the drift to be negative after a number of steps
depending on the starting state. We show that these countable space
results are special cases of those in the wider context of ¢-irreducible
chains, and we give sample-path proofs natural for such chains which are
rather more transparent than the original proofs of MalyShev and
Men’sikov. We also develop an associated random-step approach giving
similar conclusions. We further find state-dependent drift conditions suf-
ficient to show that the chain is actually geometrically ergodic; that is, it
has n-step transition probabilities which converge to their limits geomet-
rically quickly. We apply these methods to a model of antibody activity
and to a nonlinear threshold autoregressive model; they are also applica-
ble to the analysis of complex queueing models.

1. Background. We consider a time-homogeneous Markov chain & =
{®,, n € Z.} evolving on a general space X, equipped with a o-algebra Z(X).
The transition probabilities of ® are defined by a Markov transition function
denoted by P = {P(x, A), x € X, A € #(X)}, with iterates

P*(x,A) =P(P,€A), nelZ,, xeX, Ae®B(X).

We will assume that ® is ¢-irreducible, that is, there exists a finite measure
¢ such that ¥, P"(x, A) > 0 for all x € X whenever ¢{ A} > 0. Such Markov
chains in the general state space setting are discussed in [12] or [10].

Our goal is to develop new criteria for such a chain to be Harris recurrent,
positive Harris recurrent (which is often also called, under slight extra
conditions, Harris ergodic) and geometrically ergodic. The following are mini-
mal definitions of these stability concepts.

If the stopping time o, is defined for a set A € #(X) by o, = inf{k > 0:
®, € A}, then the ¢-irreducible chain ® is called Harris recurrent if P (o, <
o) =1 for all x € X whenever ¢{A} > 0. It is easy to see that this is
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equivalent to P, (74 < ) = 1, where 7, = inf{k > 1: ®, € A}, and this is often
used as an alternative definition.
A o-finite measure 7 on (X) with the property

m{A) = wP{A} & [7(dx)P(x, A), AecH(X),

is called invariant. It is well-known (see Chapter 10 of [10]) that if ® is
Harris recurrent, then a unique (up to constant multiples) invariant measure

7 exists.
We define a Harris recurrent chain to be positive Harris recurrent if the

measure 7 is finite.
If we also assume that the chain is aperiodic ((10], Chapter 5), then the
existence of such a finite measure is equivalent (see Theorem 13.0.1 of [10]) to

(1) I1P*"(x,) —all - 0,
for all x as n — o, where || - || denotes the total variation norm.
Finally, an aperiodic ¢-irreducible positive Harris chain is called geometri-

cally ergodic if the convergence in (1) occurs geometrically quickly, in which
case there exists a function M(x) and a p < 1 independent of x such that

(2) IP*(x,-) — wll < M(x)p",
for all x and all n € Z,. (See Chapters 15 and 16 of [10] for details.)
In this paper we develop state-dependent drift criteria for such forms of

stability. These extend a number of state-independent forms which have
proved of wide application.

For ¢-irreducible chains it is known that recurrence is implied by the
existence of a suitably unbounded function V and a suitably finite set C
(where these finiteness conditions are made more explicit below) satisfying

(3) JP(x, dy)V(y) <V(x), =xeCv,

and indeed the existence of such a solution to (3) is equivalent to Harris
recurrence under some extra conditions (see, e.g., [7] and [10]).

Positive recurrence is equivalent [18, 10] to the existence of a solution to
Foster’s criterion: there exist some V > 0 and some.suitably finite set C such
that

(4) [Pz, V() < |

It is perhaps less well known that the existence of a solution V > 1 to

AV(x), x €C°,
b < o, xelC

V(x) -1, zxecC",
b < oo, xeC.

(5) [P, V() < |

for some A < 1 and some suitably finite set C, first developed by Popov [14]
for countable space chains, is equivalent to geometric ergodicity, and that
M = RV then provides the bound in (2) for some constant R < «; see [19], [5],
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[11] or [10] for detailed approaches to these conditions and for considerable
strengthenings of this brief description.

Specifically, these criteria are defined for general chains in terms of sets C
which are petite. These play the part taken by finite sets in the countable
space context, in the sense that drift toward petite sets suffices for recurrence
and ergodicity conditions to hold.

A set C € #(X) is called petite if there exist some nontrivial measure » and
some probability distribution a on Z, such that

(6) Y a(n)P"(x,B) > v(B), «x€C,Bec®X).

Petite sets generalise the “small sets” of Nummelin [12]. For ¢-irreducible
chains, it is known ([12] or Proposition 5.5.5 of [10]) that there is a countable
cover of X by small sets; and in [11] or Chapter 6 of [10], relatively weak
continuity conditions are found under which all compact sets are petite if the
space X admits a suitable topology. Thus it is not unnatural that drift toward
petite sets might provide the results we seek.

We will call a function V unbounded off petite sets if the sublevel sets
{V < v} are petite for each v € R, : such functions generalise functions which
tend to infinity in the case X = Z,.

Although the equivalences in (3)-(5) have proved powerful in analyzing
many practical models, for more complex models the analysis of the one-step
drift

AV(x) = [P(x,dy)[V(y) = V(2)]

toward petite sets is often somewhat difficult; see [9], where drift functions
which depend on the whole history of the chain are used, or [17] or [3], where
m-step skeletons {®,,,} are analysed.

In this paper, we consider consequences of state-dependent drift conditions
of the form

(7 [P (x, dy)V(y) <g[V(x),n(x)], =xeCv,

where n(x) is a measurable function from X to Z,, g is a function depending
on which type of stability we seek to establish and C is a petite set. We also
consider state-dependent drift conditions of the form

(8) [La.(n)P(x, dy)V(y) <g[V(x)], =xeC",

.where a,(n) is a distribution on Z_, and again g is an appropriate function
and C is a petite set. This allows the analysis of models by using drifts at
times which are not only state dependent, but which may in fact be random
rather than fixed.
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In Section 4 these approaches enable the analysis of different types of
models, including competition models, nonlinear SETAR autoregressions and
multidimensional queueing models.

2. State-dependent drifts and the embedded chain ®. The results
we prove for fixed state-dependent times are summarised in Theorem 2.1,
and those for random state-dependent times are in Theorem 2.2. In the
countable space context, Theorem 2.1(i) was first shown as Theorem 1.3 and
Theorem 2.1(ii) as Theorem 1.4 of [6]. The proofs there, especially of Theorem
2.1(ii), are somewhat more complex than those we exhibit below, which are
based on sample path arguments. Theorem 2.1(iii) is new, even for countable
space chains.

THEOREM 2.1. Suppose that ® is a ¢-irreducible chain on X, and let n(x)
be a measurable function from X to Z ,.
() The chain is Harris recurrent if there exist a nonnegative function V
unbounded off petite sets and some petite set C satisfying
9) [P« dy)V(y) < V(x), xecCe.

(ii) The chain is positive Harris recurrent if there exist some petite set C, a
nonnegative function V bounded on C and a positive constant b satisfying

(10)  [P"(x,dy)V(y) < V(x) —n(x) +blo(x), xEX,
in which case, for all x,
(11) E.[7c] <V(x) + 0.

(iii) The chain is geometrically ergodic if it is aperiodic and there exist
some petite set C, a nonnegative function V > 1 and bounded on C, and
positive constants A < 1 and b satisfying

(12) [P"O(x, dy)V(y) < AV () + ble(x)].

When (12) holds,
(13) Y.r*|lP*(x,) — wll < RV(x), =x€X,

for some constants R < © and r > 1.

The proof of this theorem is in Section 3.

In order to prove these results we work with an “embedded” chain ®. Let
" n(x) be a measurable function from X to Z +, and define the new transition
law {P(x, A)} by

(14) P(x, A) = P"®(x, A), xe€X, AcBX),
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and let ® be the corresponding Markov chain. This Markov chain may be
constructed explicitly as follows. The time n(x) is a (trivial) stopping time.
Let s(k) denote its iterates; that is, along any sample path, s(0) = 0, s(1) =
n(x) and

s(k + 1) =s(k) + n(dyy,)-

Then it follows from the strong Markov property that
\
(15) ch = (I)s(k)’ k > 0,

is a Markov chain with transition law P.
Let %, = %4, be the o-field generated by the events “before s(k)”; that is,

F 2 {A: An{s(k) <n} €F,,n >0}

We let 7, and &, denote the first return and first entry index to A,
respectively, for the chain ®. Clearly s(k) and the events {g; > k) and
{7, > k} are &, _,-measurable for any A € B(X).

Note that s(7;) denotes the time of first return to C by the original chain
® along an embedded path; that is,

7o—1
(16) s(7c) = L n(®)
0

and so from (15) we have for every y,

(17) s(7c) = 1¢, s(0g) = o, as. [Py].

These relations will enable us to use the drift equations (7), with which we
will bound the index at which ® reaches C, to bound the hitting times on C
by the original chain.

For random state-dependent times we will consider the chain whose next
position when ®; = x is given by &, , where {, is a random variable with
distribution a, on Z ; the results above are thus for the special case where ,
is degenerate at n(x). We define the transition probabilities for this randomly
sampled chain by

K, (x,A) £P,(®, €A) = Ya,(n)P"(x, A).

For any nonnegative function V let us define the function W by
L—1

W(x) = Ex[ ZO: V(®)|-

In establishing state-dependent random time criteria for stability it will be
necessary to have conditions such that

(18) W(x) <o, x € X.
We will show one such common condition to be that
(19) Y a,(i) <B,a,(k), keZ,;

i>k
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if {, is geometric or is uniform on {0, 1,..., M} for some M, then (19) is
satisfied, and so our results will hold for all such distributions. Note, how-
ever, that if £ is degenerate at n(x) (the situation in Theorem 2.1), then in
fact (19) does not hold.

The random time result we will prove in Section 3 is as follows.

THEOREM 2.2. Suppose that ® is a ¢-irreducible chain on X, and let {, be
a random variable on Z, for each x, independent of the chain.

(i) The chain is Harris recurrent if there exist a nonnegative function V
unbounded off petite sets and some petite set C satisfying

(20) JEu(x, d)V(y) <V(x), =xecCe

(ii) The chain is positive Harris recurrent if there exist some petite set C, a
nonnegative function V bounded on C and a positive constant b satisfying

(21) JE(x,dy)V(y) <V(x) = 1+ble(x), x€X,

provided (18) holds; in which case, for all x,
(22) E.[7c] < W(x) +b.

When (21) holds, then (18) holds as required if a, satisfies (19).

(iii) The chain is geometrically ergodic if it is aperiodic and there exist
some petite set C, a nonnegative function V > 1 and bounded on C and
positive constants A < 1 and b satisfying

(23) [E.(x,dy)V(y) < AV(x) + blg(x),
provided a, satisfies (19) with B, < B < » independent of x. In this case
(24) Y. r*lP*(x,) — wllvy <RV(x), xe€X,

n

for some constants R < © and r > 1, where the V-norm |- |ly is defined for any
signed measure u by

lully 2 sup [u(dy)g(y).
lglsV

It seems reasonable to expect that both Theorems 2.1 and 2.2 are special
cases of a more general result covering random times not necessarily meeting
the growth condition (19). The correct generalization is not, however, obvious.
In the light of the random time result one might well hope, for example, to
replace (10) with .

(25) [P"(x,dy)V(y) < V(x) = 1+blg(x), x€X,

and thus have a less stringent criterion for ergodicity.
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It is, however, not the case that this can be done. For consider a chain on
the countable quadrant Z,X Z,, with deterministic motion up the jth col-
umn for m(j) steps followed by a deterministic drop to (0, 0), and with such a
drop from every height above m(j) also, for specificity. That is, for each j > 0,

P((J,0),(J, 1)) =1, P((J,1),(5,2)=1,...,
P((J, m(Jj) - 1), (J, m(Jj))) = 1,
P((j, m(4)),(0,0)) =1, P((j, m(j)+1),(0,0)) =1,....

Also assume that P((0, k), (0, 0)) =1 for all £ > 0.

Let n(x) denote the (deterministic) first hitting time to (0, 0) for x # (0, 0),
and let n(0, 0) = 1. If we choose V(j, k) =1 for all (j, k) # (0, 0) and
V(0, 0) = 0, then clearly for all (j, k) # (0, 0) we have (25) satisfied.

Now choose

P((0,0),(J,0)) =a;,

for some distribution a; on Z, with a, = 0. Then again (25) is satisfied, with
b=2

However, we have

Eooplmon] =1+ > aj[m(j) +1],
Jj=1

so if ;. ; a;m(j) = », the chain is not positive.

Although it seems that there should be a general result covering both the
random time and the fixed time approaches, the form of such a result
remains an interesting open question.

3. Hitting times and drift criteria for stability. In this section we
give the form of some general hitting time results on which the proofs of
Theorems 2.1 and 2.2 rely, and then give those proofs for each type of
stability separately.

(a) Harris recurrence. The results that enable Harris recurrence to be
verified in terms of hitting times on petite sets are as follows.

THEOREM 3.1. (i) If ® is a ¢-irreducible chain on X, then ® is Harris
recurrent if there exists a petite set C with P, (1o < ©) =1 for all y.
(ii) If ® is a ¢-irreducible chain on X, then

(26) X=HUN,

where H = N¢ is either empty or absorbing, and in the latter case ® restricted
to H is Harris recurrent and ¢(N) = 0. If ® is not Harris recurrent, then the
set N € #(X) is nonempty and, for any petite set C C N and every x € N,

(27) P(®,€N,k=0,1,...) >0,
(28) P.(®, € Ci.0) =0.
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PrROOF. The first result follows from Proposition 9.1.6 of [10].

If the chain is ¢-irreducible, then from Theorem 8.0.1 of [10] it is either
transient or recurrent, and in the former case we can take N = X; that
theorem also shows the expected number of visits to every petite set is then
uniformly bounded so that (28) follows immediately.

In the latter case, where the chain is recurrent but not Harris recurrent,
Theorem 9.1.4 of [10] shows that a nonempty N satisfying (27) exists. If C is
any petite set contained in N, then (28) follows from Proposition 9.1.6 of [10].

O

In the case of a countable space X, the alternative to Harris recurrence for
irreducible chains is simply transience, of course, so in this case we can take
N = X in this proposition, and every finite set is petite.

PROOF OF THEOREM 2.1(i) Define the chain ® as in (15). We can write (9),
for every y and every k, as

E[V(®,.1)%] < V(®,) as.[P,],

when oo >k, ke Z,. _
Let U; = V(®)1{g; > i}. Using the fact that {5, > k} €.%,_,, we have that

E[U%-1] = 1T, = RE[V(T,)I15 4] < 1T = k}V(D,_,) < Uy,

Hence (U,, %) is a positive supermartingale, so that there exists an almost
surely finite random variable U, such that U, - U, as k& — ». From the
construction of U, either o < «, in which case U, = 0, or g, = %, in which
case limsup,, |, V(®,) = U, < © as.

Suppose that N in (26) is nonempty. Then on the set N, = {®, € N, k = 0,
1,...}, we have V(®,) — « a.s. for any initial measure; this follows from (28)
and the fact that the sublevel sets of V are assumed petite. Necessarily, then,
on this set lim, _,,, V(®,) = » a.s., and s0 5 < ® on N,. Hence also s(,;) < ®
on N, and therefore o, < © on N,.

Thus the chain is not transient with H empty, for if it were we would
have, in contradiction, o, < ® P -a.s. for all x € N = X and since C is petite
the chain would be Harris recurrent from Theorem 3.1(i).

Now, since H is nonempty, there exists a petite subset D of H with
o(D) > 0, for ¢(N) =0 from Theorem 3.1(ii). For x € H we know from
Harris recurrence on H that P (o, < ©) = 1. However, since H is absorbing,
, the event NS =U_{®, €H, k-=m, m + 1,...} and thus on N° we have
op < P -as. for all x.

" Finally, we have that E = D U C is itself petite from Proposition 5.5.5 of
[10], and we have shown that o < » P,-a.s. for all x; so the chain is Harris
recurrent as required. O



STATE-DEPENDENT CRITERIA FOR CONVERGENCE OF MARKOV CHAINS 157

The last two steps in this proof are required by the fact that we do not
know that petite sets for ® are also petite for @ in general. In the case of a
countable space, we have (following the proof of Theorem 8.4.3 of [10]) that (9)
immediately implies that &, < © since V(j) - © as j — «; the result then
follows immediately from the fact that s(7;) > o, as.

ProOOF OoF THEOREM 2.2(1) This follows exactly as in the previous proof,
using the chain with transition law K,. O

(b) Positive recurrence. The state-dependent drift criterion for positive
recurrence is a direct consequence of the following results, taken from
Theorems 13.0.1 and 14.2.2 of [10].

THEOREM 3.2. (i) Suppose that ® is ¢-irreducible. Then the chain is
positive Harris recurrent with invariant probability w if and only if there exist
some petite set C € B(X) with P (1, < ©) = 1, for all x, and M, < « such that

(29) supE, [7.] < M.

xeC

(i) Without any irreducibility or other conditions on ®, if V and f are
nonnegative measurable functions and

(30) JP(x,d0)V(y) <V(x) = f(x) +ble(x), =x€EX,

for some set C, and some b < «, then for all x € X,

(31) Ex[nilf(«bk)] <V(x) +5.
k=0

PrOOF OF THEOREM 2.1(ii) Again define the chain ® as in (15). From (10)
we can use Theorem 3.2(ii) for ®, with f(x) taken as n(x), to deduce that

Fo—1

x n(ik)

k=0

(32) E, < V(x) +b.

However, we have by adding the lengths of the embedded times n(x) along
any sample path that from (16)

?C_]'

Y n(f_Dk) =s(7) = 10 .
k=0

Thus, from (32) and the fact that V is bounded on the petite set C, we have
that @ is positive Harris using Theorem 3.2(i), and the bound (11) follows. O

It is worth noting explicitly that we have not had to establish the positive
recurrence, or indeed even the irreducibility, of the chain @ in order to prove
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positivity of ®. The step that is crucial in our proof is the so-called f-regular-
ity, for f = n(x), given by the bound in Theorem 3.2(ii).

PrROOF OF THEOREM 2.2(ii)) When (18) holds we have

[P(x,dy)W(x) =E,

gy

£ vio)
k=1

= W(x) = V(x) +E,[V(2,)]

<W(x) = V(x) +[V(x) =1+ bl.(x)],

since (21) holds. Thus the chain is positive recurrent from Theorem 3.2, using
(30) with f= 1, and (22) holds from (31).
Suppose further that a, satisfies (19). Then we have

(33)

e}

i-1
X a.(i) X P*V(x)
k=0

i=0

W(x)

II
&
Tt

PkV(x)[ > ax(i)]

i=k+1

(34) -

<B, Y P*V(x)a,(k)
£E=0

= B.E,[V(®,)]

<B,[V(x) + 5],

so that (18) holds as required. O

Note that if B, < B independent of x in (19), then we have the bound
(35) E.[7¢c] <BV(x) +b.

Note also that this same proof establishes that if there exist some petite set
C, nonnegative functions V, bounded on C, and f, and a positive constant b
satisfying

(36) [Ku(%,dy)V(y) < V(x) = f(x) +blc(x), zEX,

then, provided (18) holds, we have f-regularity in the sense that (31) holds,
and then (Theorem 14.0.1 of [10]) in the aperiodic case

[Pz, dy)f(3) = [7(d)f(5) <=, xeX

This gives us a state-dependent criterion for the existence of moments of the
stationary distribution 7, and convergence of the time-dependent moments to

[m(dy)f(y).
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(c) Geometric ergodicity. We turn thirdly to geometric ergodicity. In the
general state space case we have from Theorem 15.0.1 of [10] the following
criteria for geometric ergodicity, which we shall use somewhat as we used
Theorem 3.2 in proving positive recurrence.

THEOREM 3.3. Suppose that ® is ¢-irreducible and aperiodic. Then the
following conditions are equivalent, and the chain is then called geometrically
ergodic:

(i) The chain ® is positive Harris recurrent with invariant probability ,
and, for somer > 1, some R(x) < » and all x,

(37) Y. rrlP™(x, ) — wll < R(x).

(ii) There exist some petite set C € #(X) and k> 1 such that, for all
x € X,

(38) E,[r7] <

and, for some My < »,

(39) supE,[«k™] < M.
yel

(iii) There exist a petite set C, constants b <~ and B> 0 and a finite
function V > 1 satisfying

(40)  [P(x,dy)[V(y) = V(2)] < —BV(x) +blc(x), x€EX

ProOOF OF THEOREM 2.1(iii)) Suppose that (12) holds, and define
Vi(x) =2(V(x) —3) = 1.
Then we can write (12) as
P(x,dy)V'(y) < \"®[2V(x) + 2b1.(x)] — 1
ay JPE V) SHORV() +2061(x)]
= NM®D[V'(x) + 1+ 2b1c(x)] — 1.
Thus without loss of generality we will assume that V itself satisfies
(42) JP(x,dy)V(y) < 2"®[V(x) + 1+ ble(x)] - L.
Define the random variables
Zk = Ks(k)V(ak)

for k € Z,. It follows from (42) that, for k = A~%, since x***1 is F,-measura-
ble,

E[Zk+1|'977e] KS(k“)E[V(Ek”)l'g_’;]
Ks(k+1){K‘n(¢k)[V((I)k) +1+ blc(q)k)] - 1}

= Zk - Ks(k+1) + Ks(k) + Ks(k)blc(q)k).

IA
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Using Dynkin’s formula (see Proposition 11.3.2 of [10] for details) this gives

To—1 Te—1
E.| ¥ [ks**D — Ks(k)]] <Zy(x) + Ex[ Y Ks(k)blc(c_b_k)].
k=0 k=0

Collapsing the sum on the left-hand side and using the fact that only the first
term in the sum on the right-hand side is nonzero, we get

(43) E [« — 1] < V(x) + blg(x).

Since V < « and V is assumed bounded on C, and again using the fact that
s(7¢) = 7o, we have from Theorem 3.3(ii) that the chain is geometrically
ergodic.

The final bound in (13) comes from the fact that, for some r, an upper
bound on the state-dependent constant term in the rate of convergence (37) is
shown in Theorem 15.4.1 of [10] to be given by

E.[«7] < E,[k09] < (2 + b)V(x)
since V>1. O

For the random time result the proof is not so subtle, because of the
conditions imposed on the growth of the distributions a,.

PROOF OF THEOREM 2.2(iii) If (19) holds with B, < B, then from (34) we
have, for some B’,

(44) V(x) < W(x) <B'V(x),
since (23) is stronger than (21) and V > 1. Write (23) as

[Eu(x, dy)V(y) < V(x) = 8V(x) + ble(2).
Then we have, as in (33),

[P(x, dy)W(x) = W(x) — V(x) + E,[V(®,)]
(45) < W(x) — V() + [V(x) — eV(x) +blg(x)]
< W(x)[1 = &/B'] + bly(x),

and thus the chain is geometrically ergodic, from Theorem 3.3.
It is then the case that the chain is W-uniformly ergodic in the sense that

(46) Y. rollPY(x,) — wllw < RW(x), «x€X,

for some constants R <» and r > 1, from Theorem 15.0.1 of [10]; the
V-uniform ergodicity then follows directly from the bounds in (44). O

.4, Various applications. For the countable space results developed in
[6], the applications we know of have not used the full power of the results of
Theorem 2.1, but have typically been on orthants where negative drift can be
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established easily in the interior of the space and drift with a fixed number of
steps established on the boundaries of the space. Thus for these models only a
finite set of values of n(x) is required, essentially corresponding to one-step
drift in the interior of the orthant and multistep drift at each edge. In
principal a single n-step test could be constructed using such results, and the
correspondence [17] between stability of the n-skeleton and the chain
invoked.

However, even in such cases much simplification may well be afforded by
the use of state-dependent drift criteria here.

We develop two more detailed applications below, one for a countable space
model and one for a continuous space model. Both of these seem difficult to
analyse directly with a fixed step criterion. We also mention two rather more
complex applications in queueing models.

(a) An invasion/antibody model. We first analyze the positive recur-
rence of an invasion/antibody model on a countable space.

Models for competition between two groups can be modelled as bivariate
processes on the integer-valued quadrant Z%2= {i,j € Z,}. Consider such a
process in discrete time with the first coordinate process ®,(1) denoting the
numbers of invaders and the second coordinate process ®,(2) denoting the
numbers of defenders.

Here we have in mind the situation where the defenders and invaders
mutually tend to steadily reduce the numbers of the opposition when both
groups are present, even though “reinforcements” may join either side; so we
have (at least for i, j > 1) that, for some ¢, &; > & > 3,

(47)  E [®1) +9,(2)] <(i— &) +(j—g)<i+j—2s, i,j>1

Such a behaviour might model, for example, antibody action against invasive
bodies where there is physical attachment of at least one antibody to each
invader and then both die; in such a context we would have &; = &, = 1.

Analysis of this model in the interior of the space is not difficult. By using
(@) with V(i, j) =[i +jl/e on I ={i,j = 1}, we have [18] that E; [7.] <
(i +j)/&. The difficulty with such multidimensional models is that even
though they reach I¢ in a finite mean time, they may then “escape” along one
or both of the boundaries. It is in this region that the tools of Theorem 2.1 are
useful in assisting with the classification of the model.

We define the boundary action of the invader /antibody model by assuming
the following. .

(A1) When the defender numbers drop to 0, if the invaders are above a
threshold level d the body dies, in which case the invaders also die and the
chain drops to (0, 0), so that

(48) P((i,0),(0,0) =1, i>d;
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otherwise a new population of antibodies or defenders of finite mean size is
generated. These assumptions are of course somewhat unrealistic and clearly
with more delicate arguments can be made much more general if required.

(A2) Much more critically, when the invaders fall to level 0, and the
defenders are of size j > 0, a new “invading army” is raised to bring the
invaders to size N, where N is a random variable concentrated on {j + 1,
j+2,...,j+ d} for the same threshold d, so that

d
(49) kZ P((0,7),(J+k,j))=1;
=1

this distribution being concentrated above j represents the physically realis-
tic concept that a new invasion will fail if the invading population is not at
least the size of the defending population. The bounded size of the increment
is purely for convenience of exposition.

Note that the chain is § g -irreducible under the assumptions Al and A2,
regardless of the behaviour at zero. Thus the model can allow for a stationary
distribution at (0, 0) (i.e., extinction) or for rebirth and a more generally
distributed stationary distribution over the whole of Z;. The only restriction
we place in general is that the increments from (0, 0) have finite mean.

Let us, to avoid unrewarding complexities, add to (47) the additional
condition that the model is “left-continuous,” that is, has bounded negative
increments defined by

© (50) P((i,j),(i—-1,j—k)) =0, i,j>0, k,1>1;

this may be appropriate if the chain is embedded at the jumps of a continuous
time process, for example.

The marginal behaviour of the “invaders” is modelled here to a large
extent on the rabies model developed in [1], although the need to be the same
order of magnitude as the antibody group is a weaker assumption than that
implicit in the continuous time continuous space model there.

We use the test function V(i, j) = [i + j1/8, where B8 is to be chosen. Then
as remarked above, on the interior I = {i, j > 1} we have that (10) holds with
n = 1 in the usual way, provided B8 < &.

Starting at B,(c) = {(i, 0), i > ¢}, the infinite boundary edge above c, we
have that the value of V(®,) is zero if ¢ > d, so that (10) also holds with
n = 1, provided we choose ¢ > max(d, 871).

On the other infinite boundary edge, denoted B,(c) = {(0, j), j > c}, how-
ever, we have positive one-step drift of the function V. Now from the starting
point (0, j), let us consider the (j + 1)-step drift. This is bounded above by
[j+d—2jel/B and so we have that (10) also holds with n(j) =j + 1,
provided

[j+d-2je]l/B< —j—1,
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which will hold provided B8 < 2& — 1, and we then choose ¢ > (d + B)/(2& —
1-p).

Consequently we can assert that, writing C = I U By(c) U By(c) with ¢
satisfying both these constraints, the mean time

E(i,j)["c] <[i+jl/B

regardless of the threshold level d.

Thus by irreducibility the mean hitting time on (0, 0) is also finite and in
this sense the invading strategy is. successful in overcoming the defense.

Note that in this model there is no fixed time at which the drift from all
points on the boundary B,(c) is uniformly negative, no matter what the value
of ¢ chosen. Thus, state-dependent drift conditions appear needed to analyse
this model.

Under an assumption of uniformly bounded geometrically decreasing tails
on the increment distributions of the invaders and defenders, it is possible to
show that the chain is geometrically ergodic also, using Theorem 2.1(iii).
Alternatively, this can be shown using the methods in [16]. We omit the
details.

(b) A nonlinear SETAR model. Second, we illustrate the state-depen-
dent methods by the analysis of geometric ergodicity of a nonlinear SETAR
(self-exciting threshold autoregressive) model, where it is also not obvious
what the structure of a one-step test function should be.

This model is defined by

(51) X, =¢+ (X, )X, 1+ W, (J), ri<X,_i=rin

where —o =r, < - <ry <ry,, =~ and {W,(j)} forms an ii.d. zero-mean
sequence for each j, independent of {W, (i)}, for i #j.

The SETAR model with constant coefficients in each region is analyzed in
increasing detail in a series of recent papers. Positive recurrence and tran-
sience results are essentially covered in [13] [2]; nonpositivity is analysed by
[4].

Here we will illustrate the use of state-dependent drift conditions when the
coefficients 6,(x) are not necessarily constant. Our result will extend the
positivity result of [13] and [2] to the geometrically ergodic situation, even in
the constant coefficient case. For ease of exposition we will make a number of
simplifying assumptions. For models not satisfying these assumptions a more
detailed analysis will be needed, although the results will in general be valid.
Let us then assume the following.

(S1) The “end” noise variables W(1) and W(M) are of finite range to the
left.

(S2) Foreach j =1,..., M, the noise variable W(;) has a density positive
on the whole of its range, which is a nontrivial interval around zero.
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(83) The functions 6;(x) are continuous functions of x, and the constant
terms ¢, = 0.

We need to identify the petite sets for this model. We have the following
proposition, in the nomenclature of [11] or [10].

PRrOPOSITION 4.1. Under (S2) and (S3) the SETAR model (51) is ¢-irre-
ducible with ¢ taken as Lebesgue measure u*® on R, and the model admits
an everywhere nontrivial continuous component. Thus if P, (1o < ©) > 0 for
some compact set C and some x, then every compact set is petite.

PrROOF. The u'®-irreducibility is immediate from the assumption of posi-
tive densities for each of the W(;), and the fact that with ¢, =0 and
zero-mean noise variables, the chain can move from one region to the next
with no constraints.

We next proye the existence of an everywhere nontrivial continuous com-
ponent.

It is obvious from the existence of the densities and the continuity of the
6,(x) that at any point in the interior of any of the regions (r;, r;1q) the
transmon function is strongly continuous. We do not necessarily have this
continuity at the boundaries r; themselves. However, as x 1 r; we have
strong continuity of P(x,-) to P(ri, -), while the limits as x | r; of P(x, A)
always exist, giving a limit measure P'(r;, ) which may differ from P(r;,-).

If we take T)(x,-) = min(P'(r;,-), P(r;,-), P(x,-)), then T} is a continu-
ous component of P at least in some neighborhood of r;; the assumption that
the densities of both W(i) and W(i + 1) are positive everywhere guarantees
that T} is nontrivial.

Now we may put these components together using Proposition 3.2 of [11]
and we have that the nonlinear SETAR model admits an everywhere nontriv-
ial continuous component.

If the hitting times on one compact set are then finite with positive
probability from some x, the chain is nonevanescent [11]; so from Theorem
3.2 of [11] we have that every compact set is petite. O

Note that this proof is rather simpler than that in [2] for linear SETAR
models, to which it is also applicable.
We shall prove the following theorem.

THEOREM 4.2. If the nonlinear chain (51) satisfies (S1)—(S3) and if also

(52) Oy (x) >0, sup Oy (x) <1,
, R xX>ry
(53) sup 6,(x) <0,

x<ry

then the chain is geometrically ergodic.
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Proor. We will prove that the hitting times 7;_p r , have geometric
tails using (12), for some sufficiently large R, and R,,. It will be convenient
below to choose a nonsymmetric interval in applying this theorem. This
establishes finiteness of 7,_p p , a fortiori, and in view of Proposition 4.1
this then further establishes geometric ergodicity as in Theorem 2.1(ii).

There are a number of simple stochastic comparison arguments which
make our computations less messy.

First, we may assume that 6,,(x) is constant and is given by 6, =
sup, s ,, 0y(x) <1; clearly a chain with nonconstant 6,,(x) will hit the
half-line (-, r;,] more rapidly than the chain with a constant coefficient and
hence will hit the interval [ —R, R] more rapidly also for large R given our
bounded noise assumption.

We may assume also that as x » —o, we have liminf 6,(x) = —; other-
wise we may use a stochastic monotonicity argument to show that the chain
hits some set [—R, R] at least as rapidly as a chain with fixed parameters

(54) 0y = sup 6y (x) <1,
x>ry

(55) 6, = inf 6,(x) <O,
x<ry

and we know from [2] that this chain is geometrically ergodic [although note
that while they establish that Theorem 2.1(ii) holds with n(x) = 1, in this
case they only claim the weaker ergodicity result of Theorem 2.1(ii) with
n(x) = 1].

Similarly, by stochastic monotonicity we may assume that 6,(x) is mono-
tone, so that as x » —o, we have lim 6,(x) = —oo.

Note that this justifies the assumption that (1) = ¢(M) = 0, for if the
constant terms are nonzero, we can always choose different 6, and 6,, which
satisfy the assumptions of the theorem and for which (outside some larger
interval [—R, R]) the chain is always stochastically closer to [—R, R]. We
may of course have to assume more then on the noise distributions to ensure
irreducibility.

Lastly, since for any set C, changing the transition probabilities for x € C
does not change the distribution of the hitting times on C from points outside
C, let us assume that 6,(x) is also given by 6,, for all x > 0, and that if &, is
the lower bound of the support of the variable W(M), then for all 0 <x <
hy /(1 — 6,,) the noise variable is degenerate at zero; that is, for such points
we have P(x, 6,,x) = 1.

Observe then that for each x > h, /(1 — 6,,) we have that P(x,-) is
supported on [0,,x — h,, ©). By iterating this we see that, defining

X, = O x — Ry [Op 4+ - +1],

P™(x,-) is supported on [x,, ©) and in particular is therefore supported on
[0 x — hy /(1 — 6,,), ©). By the degeneracy of the noise variables on (0,
hy /(1 — 6,,)) we thus ensure that for all x > 0 the motion of the chain is
supported by (0, »).
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Having made these simplifications, we can choose the simple test function,
V(x) = x|
Now let us choose the test interval [—R;, R, ] so large that —R; <r;, and

also so that —R; < 0. Then, for any R;, > 0 and x > R,;, we have, for a fixed
A€ (6y, 1),

(56) JP(x, d)V(y) = 0V (x) <AV(x).

If the noise variable W(1) has support bounded below by %, then, for initial
values x < —R;, we have that P(x, -) is supported on [|6,(x)| x| — Ay, ®); we
can obviously choose R, large enough that |6,(x)||x| — A, > h;, for each such
x, by our monotonicity assumptions.

Let us now choose

0:(x) A
(57) n(x)>1+ log( o )/log(%).

Then for initial values x < —R;, P™* (x,-) is supported on (0, ®) and we
have from (57) that

[P (x, dy)V(y) = [0 0y( )l

< A .

Thus from (56) and (58) we have that (12) is satisfied and the chain is
geometrically ergodic as claimed. O

(58)

By symmetry, under the parameter combinations

(59) 0:(x) >0, sup 6,(x) <1,
x<ry
(60) sup 0, (x) <O,
x>ry

the chain is also geometrically ergodic if the drift to the right is bounded.
In [2] it is shown that if

(61) 6,(x) =06(1) <1, Oy(x)=0(M) <1, 6(1)e(M) <1,
then since there exist positive constants a, b such that

1>060(1)> —(b/a),

1>6(M)> —(a/bd),
then by taking

' ax, x>0,
V(x) = {blxl, x <0,

it is possible to show that (12) holds with n(x) = 1 under (61) for all |x|
sufficiently large.
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We have only developed the analogue of this with nonconstant coefficients
when the signs of the coefficients are opposite; the situation if both coeffi-
cients are positive is obvious, but if both are negative so the chain essentially
oscillates in sign, then the general situation with nonconstant coefficients is
not so clear.

(¢) Operations research applications. We conclude by indicating two other
applications of the methods in this paper.

The random time criteria of Theorem 2.2 take on a simple form when (, is
independent of x and uniform on {0, 1,..., M} for some M. In this case we
have that (10), for example, can be written as

(62) Z PH(x, dy)V(y) < V(x) — 1 + blo(x).

M+1,

A continuous time analogue of this specific formulation has been used in
Meyn and Down [8] to show that the Jackson network model is ergodic in
appropriate circumstances.

Although it is too complex to spell out here, we mention also that Sadowski
and Szpankowski [15] have recently applied the methods developed here to
analyse complex operations research models. By applying Theorem 2.1(ii),
they establish positive Harris recurrence of a multiserver queueing model
where there are ii.d. interarrival times and ii.d. batch sizes for arriving
customers, and where each server may have a different service time distribu-

tion.
Thus in operations research the analysis of stability can be made simpler
by the use of state-dependent drift conditions.

REFERENCES

[1] BarToSzYNSKI, R. (1975). On the risk of rabies. Math. Biosci. 24 355-371.

[2] CHAN, K. S., PETRUCCELLI, J., ToNG, H. and WoOLFORD, S. W. (1985). A multiple threshold
AR(1) model. J. Appl. Probab. 22 267-279.

[8] CHEN, R. and Tsay, R. S. (1991). On the ergodicity of TAR(1) processes. Ann. Appl. Probab.
1 613-634.

[4] Guo, M. and PETRUCCELLI, J. (1991). On the null recurrence and transience of a first-order
SETAR model. J. Appl. Probab. 28 584—-592.

[5] HOrRDIK, A. and SPIEKSMA, F. M. (1992). On ergodicity and recurrence properties of a
Markov chain with an application. Adv. in Appl. Probab. 24 343-376.

[6] MALYSHEV, V. A. and MEN’§IKov, M. V. (1982). Ergodicity, continuity and analyticity of
countable Markov chains. Trans. Moscow Math. Soc. 1 1-48.

[7] MERTENS, J.-F., SAMUEL-CAHN, E. and ZAMIR, S. (1978). Necessary and sufficient conditions
for recurrence and transience of Markov chains, in terms of inequalities. J. Appl.
Probab. 15 848-851.

[8] MEYN, S. P. and Down, D. (1993) Stability of generalized Jackson networks. Ann. Appl.
Probab. 4 124-148.

[9] MEYN, S. P. and Guo, L. (1992). Stability, convergence, and performance of an adaptive
control algorithm applied to a randomly varying system. IEEE Trans. Automat.
Control AC-37 535-540.



168 S. P. MEYN AND R. L. TWEEDIE

[10] MEYN, S. P. and TwEeEDIE, R. L. (1993). Markov Chains and Stochastic Stability. Springer,
London.

[11] MEYN, S. P. and TWEEDIE, R. L. (1992). Stability of Markovian processes I: Discrete time
chains. Adv. in Appl. Probab. 24 542-574.

[12] NuMMELIN, E. (1984). General Irreducible Markov Chains and Non-Negative Operators.
Cambridge Univ. Press.

[13] PETRUCCELLI, J. and WOOLFORD, S. W. (1984). A threshold AR(1) model. J. Appl. Probab. 21
270-286.

[14] Porov, N. (1977). Conditions for geometric ergodicity of countable Markov chains. Soviet
Math. Dokl. 18 676—679.

[15] Sapowsky, J. S. and SzpANKOWSKI, W. (1993). The probability of large queue lengths and
waiting times in a heterogeneous multi-server queue Part II: Positive recurrence and
logarithmic limits. Purdue University. Unpublished manuscript.

[16] SpieksMa, F. M. and TWEEDIE, R. L. (1993). Strengthening ergodicity to geometric ergodicity
for Markov chains. Stochastic Models 10. To appear.

[17] Ts@sTHEIM, D. (1990). Non-linear time series and Markov chains. Adv. in Appl. Probab. 22
587-611.

[18] TwEEDIE, R. L. (1976). Criteria for classifying general Markov chains. Adv. in Appl.
Probab. 8 737-771.

[19] TweEDIE, R. L. (1983). Criteria for rates of convergence of Markov chains with application
to queueing and storage theory. In Probability, Statistics and Analysis (J. F. C.
Kingman and G. E. H. Reuter, eds.). Cambridge Univ. Press.

UNIVERSITY OF ILLINOIS DEPARTMENT OF STATISTICS
COORDINATED SCIENCE LABORATORY COLORADO STATE UNIVERSITY
1308 W. MaIN ST. Fort CoLLINS, COLORADO 80523

URrBANA, ILLINOIS 61801



