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A LIMIT THEOREM FOR MATCHING RANDOM
SEQUENCES ALLOWING DELETIONS!

By Yu Zuanc
University of Colorado

We consider a sequence matching problem involving the optimal
alignment score for contiguous sequences, rewarding matches by one unit
and penalizing for deletions and mismatches by parameters & and p,
respectively. Let M,, be the optimal score over all possible choices of two
contiguous regions. Arratia and Waterman conjectured that, when the
score constant a(u, 8) <0,

M,
P( —>2b) =1
log n

for some constant b. Here we prove the conjecture affirmatively.

1. Introduction. Let A,, A,,... and B,, B,,... be two independent
sequences of ii.d. random variables such that A; and B; have the same
distribution on a finite number set {0,1,...,7}. Let I =(A,,,,..., A,,;) and
J=(Byi1,.--» By ) withl<g+l<g+i<nandl<h+1l<h+j<n.
The alignment score S(I, J) is defined to be

1
(1.1) S(I,J) = max{—6(i —l+j-0+ kgls(Aa(k),Bb(k))},

where the maximum is taken over all alignments, given by increasing se-
quences

g=a0)<a(l)<a(2) < - <a(l)<a(l+1)y=g+i+1
and
h=5b(0) <b(1)<b(2)< - <b(l)<b(l+1)=h+j+1.

In particular, if we restrict a(0) =g, a(l)=g+1,..., a(l)=g+1 and
b(0)=h,b(1)=h +1,..., b(l) = h + [, the corresponding score is called the
nonalignment score or the score without deletions. The score function s(x, y)
for aligned pairs is 1 if x =y and —pu if x # y. In words, each match is
rewarded by 1, each mismatch is penalized by u and each deletion by 8. Let
S, =S(A,,...,A,,B,,...,B,). That is, I=A,,...,A, and J=B;,...,B,.
By a standard subadditive argument (see [2]), it is easy to see that, for
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M, 8 = 0, there exists a nonrandom constant a( u, §) such that

S
(1.2) lim — =a(u,8) as.andin L,.

n-o N

Here a( u, 8) is called the score constant. On the other hand, denote the large
deviation rate by

n

—log P(S,=qn) . (—log P(S, =qn)
e terthze)

(13)  r(g) = lim

where log means the natural logarithm. The limit in (1.3) exists and equals
the infimum also using the subadditive property. Let M, be the optimal
aligned score over all possible choices of two contiguous regions I and </ for
Ic{A,,...,A}and J C{B,,...,B,}). Formally,

(1.4) M, = Ia}]xS(I,J).

Let b = max,, ,q/r(q). It can be proved by applying the Borel-Cantelli
lemma along a suitable skeleton in Lemma 2 in [2] that, if a( u, §) < 0, then

. liminf—" < li —_— 8.
(1.5) b <limin Tog 1 shmsuplogn <2b as
On the other hand, it was also proved in [2] that, if a(u, §) > 0,

. Mn ’ .

lim — =a(u,8) as.andin L,.

n—oo n
The phenomenon of the two different behaviors of M, is called a phase
transition. When a( u, §) < 0, one of the most important problems is to decide
whether M, /(log n) converges. In fact, Arratia and Waterman conjectured
that M, /(log n) converges to 2b in probability. Note that it was verified in
[1] that the conjecture is true for the nonaligned case. Furthermore, Dembo,
Karlin and Zeitouni [3] gave a more general discussion for the nonaligned
case. In the following theorem we prove that the conjecture is true for any 6
and pu.

THEOREM 1. For each nand 8, if a(u, 8) < 0, then

n

(1.6) lim =2b a.s.

n— o log n

REMARK 1. Here we prove that the theorem holds on a finite number set.
We can also show that the theorem holds on Polish. alphabets by the same
proof of the theorem and Theorem 4’ in [3]. On the other hand, the theorem
also holds for a more general score function s(x, y).

‘REMARK 2. Amir Dembo pointed out that the same proof of the theorem
carries over to generalized scoring and gapping, repeats in a sequence, and
matching Markov chains (see the detailed definitions in [2]).
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2. Proof of the theorem. The proof is based on Theorem 3 in [3]. For a
positive integer m, consider two independent sequences {X,} and {Y;} with
X;=(Aims1r-r Agsrym) and Y= (Bj,i1,--0 Bjinym)-

Clearly, {X,} is i.i.d. and so is {Y}}. Let X; and Y; have the probability laws 75
and 7y on finite sets I'y and I'y, respectively, where

Ty =Ty ={0,1,...,7}" = {(%4,..., %,,): x; €{0,1,...,7} fori = 1,...,m}.
Clearly,

mx(X; =2) = P((Aim+1>--» Agiym) =2)>

Ty (Y;=%) = P((Bjn+1>--» Bjinym) = %)

for # € I'y and % € I'y. A general score F: I'y X I'y —» % is assigned to each
pair (X;,Y;) and the maximal nonaligned segment score is

(2.1) M, = max { iF(XiH,YjH)}.
=1

0<i,j<n—k; k=0

It was proved in [3] that, if

(2.2) E, «..F<0 and 7y X my(F>0)>0,
then
(2.3) lognn = y(7g, my).

Furthermore, if (2.2) holds, there exists a unique positive value 6 such that
(24) E, v .le]=1
Let « denote the conjugate measure associated with 0, that is,

da

— p0F
d(7TX X 7Ty)

e,

and let ay and @, denote the marginals of a on I'y and Iy, respectively.
Dembo, Karlin and Zeitouni [3] also showed that, if

(2.5) H(almy X my) > 2max{H(axlmy), H(aylmy)},
then
A, 2
(2.6) log n K
where the relative entropy H(v|7) is defined to be
X v(b;)
H(v|m) = i=21 v(b;)log = (5))

for {b,,...,bg} = I'y X I'y. Now we apply (2.6) to our purpose. Note that the
score defined in (2.1) is nonaligned so that we have to choose some special F
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and use F to approximate the aligned score. Set
F(X,,Y;) =S8(X,,Y;) [see(1.1) for the definition of S].
If a(u, 6) <0, by §1.2) and our definition, with a large m,
@27) E, ., F=ES,< ——a(”";)m <0,
7y X my(F >0) >P(A,=B,,..., A, =B,) >0.
It follows from (2.7) and (2.3) that

n

2. ’
(2.8) log n - y(7mg,my)
for our special definition of {X} and {Y}. It also follows from (2.1) that
(29) My, < Mnm ’

where mn is the product of m and n. On the other hand, by a standard
information inequality (see (13) in [3])
(2.10) H(almy X wy) = H(axlmy) + H(aylmy).
NOte that FX=FY={O,1,...,T}m, 7TX=7TY and F(%,?)=F(?,%)=
S, %) =S(%,%) so that ay = ay. By (2.10), (2.5) holds. It follows from
(2.10) and (2.6) that, for the m satisfying (2.7),

M, 2

n
- — asn — ™,

logn 0

(2.11)

where 0, which may depend on m, is a positive constant such that

E, ., l[e’"] =1 For agiven &> 0, it follows from Theorem 2 in [2] that we
can pick g’ > 0 such that
ql
r(q’) >0 and b< + e.
(a') (2)

Furthermore, by (1.3), we can also pick m large such that
(2.12) P(F =q'm) =P(S,, = q¢'m) = exp[(—r(q') — &)m].
Note that 6 > 0 so that, by (2.12),

=E exp(6F) > exp(0q'm)P(F = q'm)

TxX Ty
> exp[m(8q’ —r(q’) — &)].
Note also that m > 1 and ¢’ > 0 so that

r(q') + ¢
(2.14) 0<05L.

(2.13)

By (2.9), (2.11) and (2.14), we choose a large n such that, for the m satisfying
(2.7) and (2.13),

M, 2 r(q’)
2.15 - > — —g>2(b- -
( ) logn = logn 6 &= 2( 2) (q") + ¢
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Note that r(q’) = r(0) and r(0) is a positive constant which does not depend
on n, m and ¢ so that, by (2.15),

M, £
(216) ‘ logn 22(6—8)(1—;—6) — &.

For any ¢t = nm + k with 2 < m, note that
M < Mt = Mn(m+1)

nm —
so that, for the m satisfying (2.7) and (2.13) by (2.16),
l. Ilf Mt l . f nm
(U > ————————————
M gt = T log[n(m + 1)]
(2.17)

= lim inf — 2(b (1 ° )

= _ > — - | - S.
im inf - > ( €) ~(0) e as
The theorem holds by (1.5) and (2.17). O
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