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EMPIRICAL SPECTRAL PROCESSES AND THEIR
APPLICATIONS TO STATIONARY
POINT PROCESSES

By MicHAEL EICHLER
University of Heidelberg

We consider empirical spectral processes indexed by classes of func-
tions for the case of stationary point processes. Conditions for the measur-
ability and equicontinuity of these processes and a wéak convergence
result are established. The results can be applied to the spectral analysis
of point processes. In particular, we discuss the application to parametric
and nonparametric spectral density estimation.

1. Introduction. In the context of spectral analysis of time series,
Dahlhaus (1988) introduced empirical processes where the spectral distribu-
tion function of a stationary process takes the part of the probability distribu-
tion. The asymptotic theory of these empirical spectral processes provides a
method for proving limit theorems for statistics which depend on the spectral
distribution. »

In this paper, we are interested in empirical spectral processes derived
from stationary point processes. Here a point process on R is defined as a
random counting measure N where N(A) denotes the number of point events
occurring in some Borel set A C R [cf. Daley and Vere-Jones (1988)]. In a
fundamental paper by Brillinger (1972), it was shown that the spectral
analysis of such processes based on finite Fourier transforms leads to similar
results as in time series analysis. As an important difference from the case of
time series, we note that the cumulant spectra of point processes are func-
tions on R which do not vanish for high frequencies and thus are not
Z2integrable.

Consider a stationary point process N on R. If N satisfies certain mixing
conditions, the spectral density f, of N exists and is given by

(1.1) fa(X) = (2m) 7" [Rexp(—i)tu) dCy(u), AE€R.

Here C; denotes the reduced cumulant measure of second order, which is
defined by the equation

(12) cum{N(4,), N(Ap)} = [ [ dCi(t, — t,) dty
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1162 M. EICHLER

for all A;, A, € #. Now many interesting functionals in spectral analysis can
be written in the form

A(d’o) = '[Rd’o(’\)fz(A) da,

with parametér 6 € ® ¢ R?. Examples we have in mind are the spectral
distribution function F,(a) = [§fo(A) dA, the covariance density function
qo(uw) = [rexp(iuAXfo(A) — p/(27)) dA and the variance time curve V(¢) =
Var{N((0, 1]} [e.g., Brillinger (1975)]. '

If the process has been observed on the interval [0, T'], the spectral density
can be estimated by the periodogram

IM(X) = {2rHP(0)} " dD(1) dD(- 1),
where

dT(A) = [R RO(t)exp(—irt)[dN(¢) — pD dt]

is the finite Fourier transform of the point process, A7(¢) = h(¢/T) is a data
taper with Fourier transforms
HP(A) = [ AD(t) exp(—iAt) dt
R
and

PO = (H{DO) [ 10(2) dN(2)

is an estimate for the mean intensity p of the process. The taper function A:
R — R is of bounded variation, vanishes outside the interval [0, 1] and should
be smooth with A(0) = A(1) = 0. However, our results also include the classi-
cal case where A(¢) = 1, ;,(¢). We further define

H, = th(t)k dt.

Substituting the periodogram I™ for the spectral density, we obtain, as an
estimate for A(¢,),

AD(y) = [ d(NID(X) dA.

For finitely many 6 such quadratic statistics have been studied, for example,
by Brillinger (1972, 1978) and Tuan (1981). In these papers, the asymptotic
normality of the estimate A7’(¢,) has been derived for the nontapered case.

The present paper deals with the case where the parameter space ©®
consists of infinitely many parameters. More generally, we establish a func-
tional central limit theorem for the empirical spectral process

Ef(g) = VT [ g(W[ID(A) = fu(H]w(X) dr,

where g: R — C is from a suitable class of functions. The weight function w,
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introduced for technical reasons, should take values in [0, 1] such that high
frequencies are downweighted or cut off. If there exists a smooth function ¢:
R — R with Fourier transform ¢ such that w(A) =|$(A)% the product
f2(Mw(A) can be viewed as the spectral density of the smoothed stochastic
process [rd(t — u) dN(w).

In Section 2, we obtain dur main result on the weak conivergence of E{*’ by
proving the measurahility and stochastic equicontinuity of E{*> and the weak
convergence of its finite-dimensional distributions. As in Dahlhaus (1988), we
use a proof for the stochastic equicontinuity which is based on uniform
bounds for the moments of the increments of E{). However, our method of
deriving these bounds is different as problems arise from the nonintegrability
of point process spectra, The derivation is technical and therefore put into an
appendix. The conditions for measurability are stated in Theorem 2.2. This
result is also valid in the case of stationary time geries.

In Section 3, we give some applications of these results to the statistical
analysis of point processes, In particular, we discuss parametric and nonpara-
metric spectral density estimates obtained by maximizing an approximation
to the log-likelihood function.

2. Weak convergence of the empirical spectral process. For some
measurable function w: R — R, let #2(R) denote the space of all complex-
valued functions g on R for which the seminorm

1/2
p.(8) = ([ng()t)lzw(n d)\)

is finite. Further, if & is a subset of Z2(R), let 2 be the space of all bounded,
complex-valued functions on & which are uniformly continuous with respect
to the seminorm. We equip 2” with the Borel field %, generated by the open
sets corresponding to the uniform norm | x|l. = sup|x(g)| for x € 2.

Now, if the spectrum f, is bounded, it follows from the Cauchy—Schwarz
inequality and the boundedness of I™ that the sample paths E{*)(w,-) are
uniformly continuous with respect to p,. Therein the empirical spectral
processes differ from ordinary empirical processes, which, in general, have
discontinuous sample paths. The difference is important as we make use of
continuity for proving the measurability of E{*’ with respect to Z,.

The limit process of E{”> for T — « is defined by its finite-dimensional
distributions. Therefore, we call a stochastic process E};") a spectral process if
its sample paths are in 2 almost surely and its finite-dimensional distribu-
tions are normal with mean 0 and

Cov{E(g), EY(h))

H, :
(21 _2:,[; fwg( Nw(NR(R)w( ) f(A, =4, n) drdp
‘ 2

7H, 2
77 JEDwN)ERDw(R) +R=Dw(=1) (1) dA,
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where f, is the cumulant spectrum of order 4 of the point process N. The
higher-order cumulant spectra f, and the corresponding reduced cumulant
measures C} are defined analogously to (1.1) and (1.2), respectively [cf.
Brillinger (1972)].

For the results in this paper, we need to impose conditions on the strength
of the dependence of the data and on the size of the index class #. The latter
is determined by the covering number of %, which we denote by

N(3,p,,%)
- inf{m eNFgy,....8, EZX(R)VY g€F: min p,(g —&;) < 5}
1<k<m

[e.g., Pollard (1984)]. If & is a totally bounded subset of Z2(R), N(8, p,,, ) is
finite for all 6 > 0.

ASSUMPTIONS.

(A1) N is an orderly, stationary point process on R with finite mean
intensity p and reduced cumulant measures Cj such that there exists a
constant C with

-/l;xk—l(l + IuJI)I dC;e(ula"-’ uk—l)l < Ck

forall je({1,...,k— 1} and & > 2.

(A2) h: R — R is a Borel-measurable function of bounded variation with
h(x) = 0 for all x & [0, 1].

(A3) w: R — R is nonnegative, bounded and .#'-integrable.

(A4) & is a totally bounded subset of Z2(R) such that for all g € the
product g - w is bounded and the covering numbers of # satisfy

fl[log{N(u, Pw ,-7)2/11}]2 du <. 00,
0
We now state our main theorem.

THEOREM 2.1. Suppose that assumptions (A1)—(A4) hold. Then the empiri-
cal spectral process E{) g), g € F, converges weakly on 2 to the spectral
process E{")(g), g € 7.

ProOF. We will prove the stochastic equicontinuity and the measurability
of the empirical spectral process and the weak convergence of its finite-
dimensional distributions to that of E{*). Then the weak convergence of Ef*")
follows by Theorem 10.2 in Pollard (1990) in which the outer measure P* can
be replaced by the measure P due to the measurability of E{*). O

For the proof of the measurability of E{”, let (Q, %, P) be the underlying
probability space.
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THEOREM 2.2. Suppose that assumptions (A1)-(A3) hold and let F be a
totally bounded subset of Z2(R). Then the empirical spectral process E{*)(:, g),
& € %, is a measurable mapping into (¥, %,).

PrOOF. We first prove the measurability of the finite-dimensional projec-
tions of the empirical spectral process. For fixed g €%, we have, due to
dominated convergence,

Ef (0, 8) = kli_r)xlf_kkg()l)[I(T)(w,)t) —~ f(M)]w(2) dA

pointwise for all w € ). Thus, it suffices to show measurability of the
integrals on the right-hand side. For this, let C[ —%, k] denote the space of all
continuous functions on [ —%, k] endowed with the topology of uniform con-
vergence. Then the corresponding Borel field %;_; ;, and the o-field gener-
ated by the projections 7,(x) = x(¢) coincide. Hence, the periodogram 17 is
a measurable mapping into C[ — £, k] since all projections I?’()) are measur-
able. Further, it follows from the Cauchy—Schwarz inequality that the map-

ping
x - ,/Tj[_k LENE[(R) = f(1)] dA

is continuous and thus (%g_; 3, Fc)-measurable where % is the Borel field
of C. This now implies the (&, &.)-measurability of the above integrals.
Now since # is totally bounded, 2’ is separable and thus the measurability
of the empirical spectral process follows from the uniform continuity of its
sample paths and the measurability of its finite-dimensional projections. O

Note that for the uniform continuity of the sample path it is sufficient that
the spectrum f, is bounded. Therefore, the assertion of the theorem holds
also in the case of stationary time series under the assumptions stated in
Dahlhaus (1988).

THEOREM 2.3. Suppose that assumptions (A1)—(A4) hold. Then the empiri-
cal spectral process E{*(g), g €%, is stochastically equicontinuous; that is,
for each m > 0 and & > 0 there exists 6 > 0 such that

lim sup P{supmlE;“’)(g - h)| > n} <e,
T—
where [8] = {(g, h) € #2|p,(g — h) < 8}

The proof of Theorem 2.3 is technical and therefore put into the Appendix.
For the next theorem, we only require finiteness of the integrals in assump-
tion (AD).

THEOREM 2.4. Suppose that assumptions (A1)~(A3) hold. Further, let
81> 8 €EZL(R) be such that the products g; - w are bounded. Then

{Ef(8)))1,.0 2o {E};"’(gj)}j=1

.....
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A similar central limit theorem has been proved in the nontapered case by
Tuan (1981). However, in order to prove the same result in the tapered case,
which is of much practical importance [e.g., Dahlhaus (1990)], we require the
concept of L™-functions, which are used to deal with data tapers [cf. Dahlhaus
(1983, 1990)]. We therefore give a sketch of a proof, which is put into the
Appendix, as we use the same techniques as in the proof of Theorem 2.3.

3. Application to the spectral analysis of point processes. In this
section, we present some applications of the above results to the statistical
analysis of point processes. Throughout this section, we assume that (A1) and
(A2) hold.

Exampie 3.1. Let & ={1, ,IA €[0, 1]} and w(A) =15, ,(A). Then &
satisfies assumption (A4) and we obtain a functional limit theorem for the
empirical spectral distribution function on the interval [0, A,]. More gener-
ally, we can set ¥ = {1,|D €9}, where 2 is a Vapnik—Cervonenkis class
[e.g., Génssler (1983), page 22] of subsets D c [0, Apl, to get the same result
for the empirical spectral measure [}, f,(A) dA for all D € 9.

ExampLE 3.2. For the estimation of the covariance density of a point
process, we consider

ﬁ(T)
(3.1) 48 (u) = jR exp(iu)t)[I(T)()t) -~ E]w()o da,

with symmetric and smooth weight function w such that w(0) =1 and
w(A) = O({1 + [A} =3 %) for some & > 0. Further, we define q5® by (3.1) with
f; and p substituted for I™ and p®, respectively. Then g{* is related to
the true covariance density by

(32) @) = 2m) ™ [ (u =~ v)as(v) do,

where & is the Fourier transform of w. Thus, the weight function in the
frequency domain corresponds to a smoothing kernel in the time domain.

Let = {g,lu €[0,u,} with g,()) = exp(iu)). Since p,(g, —g,) <
Clu — v| for some constant C > 0, the class # satisfies assumption (A4)
and therefore by Theorem 2.1 we obtain the functional convergence

T (@) = (w)) = B8 + VT (57 ~ p) =5 Z0(u)
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for u €[0,u,], where Z®*)(u) is normally distributed with mean 0 and
covariance

mH, iur—iy
HZ [Rze “w(Mw( p)fu(r, —A, w) drdu
27H,
Hy

Cov{Z™)(u), Z™(v)} = 2

jl;a(ei(u+v)/\ + ei(u_v))‘)w()t)zfz()t)z dA
(3.3)

+ Hs f (e (v) + e b (u))w(A)fs(A, —A) dA
H\H, 'r nw
w(u)b(v)

+ ———£5(0).
2 £(0)

As we can see now, the weight function w balances variance and smoothness

of the estimate: as the bandwidth of the smoothing kernel in (3.2) increases,

the weight function gets more concentrated and the variance decreases.
The above result can be used to derive a simultaneous confidence band for

G (u), u € [0, u,]. Application of the continuous mapping theorem yields

VT sup [§§(u) — ¢§”(w)l »5 sup 1Z®(u)l.
uel0,u,] uel0,u,]

Then

(34) {G8(u) + T_l/zzt(xw')}uE[O, 2ol

is an asymptotic simultaneous confidence band, where z{*’ denotes the upper
a - 100 percentile point of the limit statistic sup, (g, ,,)|Z®“’(w)I. The problem
now is to obtain the distribution of sup, ¢, uo]IZ(“’)(u)I, which appears to be
extremely difficult. However, if we generate realizations Z{*),..., Z{"’ of the
process Z™) on a suitably fine grid, we can use the empirical distribution of
SUP, c (0, 4,125 (W), b =1,..., B, as an approximation. For this, we have to
estimate the covariances (3.3). For the first integral, a consistent estimator
has been presented by Taniguchi (1982); the other integrals can be estimated
similarly.

As an illustration, we apply this method to some data which describe the
state of activity of a computer: an event was recorded whenever the computer
changed its state from busy to idle, which was defined by the absence of
any user interaction for more than five minutes. The data set consists of
1539 events which occurred in an interval of length T = 1,695,236 s (about
20 days).

Figure 1 shows the covariance density estimate ¢$*’ and the corresponding
simultaneous confidence band (3.4) with a = 0.05 for the data. Here, the
weight function has been set to w(\) = exp(— A% 2/2) with o = 500 s, which
corresponds to a Gaussian smoothing kernel. The covariance density exhibits

’ two significant positive peaks: one for time lags smaller than 3 h and another
for a delay of about 7 d. The former peak indicates that the process tends to
form clusters, while the latter suggests some weekly structure in the data.
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Fic. 1. Estimated covariance density §§> (solid line) with simultaneous 95% confidence bands
(dashed lines) for the computer data.

We now turn to the problem of spectral density estimation. Suppose that N
is a stationary point process with spectral density f5. Given a realization of
the process on the interval [0, T'], we want to fit a spectral density f € F, to
the data. It is well known [e.g., Brillinger (1972)] that the random variables
IT27j/T) are asymptotically independent and exponentially distributed
with mean f3(2#j/T). This suggests approximating the log-likelihood func-

tion by
() = -+ }: {1 f( 27”) (T’(27TJ'/T)}
T =\ f(2mj/T)

and estimating ff by maximizing ZF(f) with respect to f<.%,. This
approach has been proposed by Hawkes and Adamopoulos (1973) and further
discussed by Brillinger (1975) and Tuan (1981) for parametric families, for
which the procedure is a point process version of a procedure suggested by
Whittle (1953) for the analysis of time series.

Subsequently, we will use the following continuous version of Z:

oo 1IN
(3'5) Z )(f)__j;x{k)gf(’\)'l— f()t) }w(/\)d)‘,

with w: R — R satisfying assumption (A3) and w(A) = 0 for all A < 0. Let
f@ denote a sequence of functions maximizing ™. Substituting £ in (8.5)
for I™, we obtain the corresponding theoretical function .#(f), which is
maximized by fj. The next theorem states the consistency of £ as an
estimate for f3.
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THEOREM 3.3. Let F, be a subset of Z*(R) with envelope F € Z(R) and
f¥ € F,. Then, if F = {f'|f € F;} satisfies assumption (A4),

Pw(f(T)—f;) —p 0 asT >

PrROOF. As in Example 3.2 in Dahlhaus (1988), we obtain from Theorem
2.1 and the continuous mapping theorem [cf. Pollard (1984), Theorem 4.12]
sup |[LD(f) —2(f)l = SuP IT=12E$(f~ 1) =5 O,
e, e,
which implies Z(fT) — A(f*) —p 0. Now, if A(f,) converges to Z(f5) for a

deterministic sequence f,, we obtam with a Taylor expansion that p,(f, —
f¥) - 0, which proves the result. O

Uniform convergence of 7 to f, requires further assumptions about %,.
If, for example, ., is equicontinuous, then, for any compact set K C R,

sup|fT(A) = fF(A)| »p 0 asT — .
A€K

In the next example, we present an explicit nonparametric function class
which satisfies the requirements of Theorem 3.3.

ExaMpLE 3.4. Consider the class # ,(S) =, ,(S;c,...,¢,,c) of smooth
functions f on S C R such that

lFO(x)l < ¢

for 0 <i<rand

IF (%) = FP(y)] < clx —yI%

Further, suppose that w(x) < C(1 + |x)~7, where y > 2(r + @) + 1 and r +
a > 2. Then & ,(R") satisfies assumptlon (A4). This can be seen by con-
structing an &-covering of F; R") from g,-coverings of & ,(I,), I, = [k, k +
1) with & < &, for some large k., € N. Using the umform norm on I,, the
entropy of & (I ,) is of order O(s 1/(r+a)) [¢f. Kolmogorov and Tikhomirov
(1961)]. If we choose g, = ek P with r + @ < B <(y — 1)/2 and k, such that
(1/2)e72/@"D <k, < & /8, then ¢, increases sufficiently fast to guarantee

IOg N(EJ pw’ r, a(R+)) <J8_1/(r+a)

Now the function class & = { flfed (R, f=c} with ¢ >0 is itself a
subset of some class 9 LR*) with dlﬁ'erent constants, and it therefore also
fulfills assumption (A4)

A stronger result than Theorem 3.3 can be obtalned in the case where we
fit a parametric model given by the class of spectral densities o= {f,l0 € B}
When dealing with parametric estimation, a point of view is to regard the
parametric model only as an approximation to the true process. Therefore, we
do not assume that the true spectral density f5 belongs to the model class
F,. If we measure the distance between a fitted model specified by 6 and the
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true process by —%(0), the parameter 6, which maximizes #(6) then
determines the best approximation to the true process. By maximizing
ZT)(8), we obtain an estimate 97 for 6,.

AssuMPTIONS. Let #, = {f;|60 € ©} be a parametric family.

(B1) .#(0) has a unique maximum 6, which is an interior point of ® c R?,

(B2) There exists a compact subset 0, of ® such that

lim inf R{.‘Z(eo) ~ inf ™) > 80} -1
T— ge @2

for some &, > 0. Further, the functions f,(A) are continuous in (6, ) € 0, X
R and there exist constants c;, ¢, such that 0 < ¢; < (M) < ¢, < » for all
0 ®, and A € R.

(B3) & ={f,'16 € 0.} satisfies assumption (A4).

(B4) f,;! admits continuous first and second derivatives with respect to 8
in a neighborhood U(6,) of 6,, denoted by the vector Vf,' and the matrix
V2f; 1, respectively. The families {Vf, 1|0 € U(6,)} and {VZf; |0 € U(6,)} sat-
isfy assumption (A4).

THEOREM 3.5. Assume (B1)-(B3). Then we have 6 —, 0,. If addition-
ally (B4) holds, then

VT(8D = 00) =5 #(0, W, 20 W5, ),

where
S0, = 27 HHG® [ V(D) V() F2 (A, =4, wyw(Nw( k) drdp
+ 277114112—2[“@ VEHA) VEH) (A w(A)? da
and
Wa, = [(FEN) = Fa(0) Vi (Ww(A) dA

+ [ Vlog fo(1) V log fy,(A)'w(A) dA.
R

PrOOF. The result follows directly from Theorem 2.1. The proof is similar
to that in Dahlhaus (1988). O

ExaMpPLE 3.6. Tuan (1981) suggested approximating the spectral density
by rational functions of the form

Do(A) p At+a A l+ e ta,
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where 0 = (p,a,,...,a,,by,..., b,) is the unknown parameter. Suppose the
parameter space © is compact. Then, if p, and g, have no zeros in R*, the
parametric class , satisfies assumptions (B1)—-(B4).

To motivate this remark, consider functions of the form g(x, y) = p(x) —
yq(x), where p and g are polynomials of fixed order. Since these functions
form a finite-dimensional vector space, the class of sets {(x, y)lg(x, y) > 0} is
a Vapnik-Cervonenkis (VC) class [cf. Pollard (1984), Lemma 2.18]. Then the
graphs G(f; 1) also form a VC class and the approximation lemma [cf. Pollard
(1984), Lemma 2.25] yields (B3). The conditions on the derivatives are
checked similarly.

APPENDIX

A key role in our proof of Theorem 2.3 is played by the function LT
R - R, T € R*, which is given by

1
T, lal < T’

(A.1) LD(a) =4 4 1
— > —.

A similar, but periodic function was introduced in Dahlhaus (1983) as a tool
for handling the cumulants of discrete time series statistics. The above
function L™ is the corresponding version for continuous-time stochastic
processes. Its properties are summarized in the following lemma.

LEMMA A.1. Suppose w satisfies assumption (A3). Further, let a, B,v,{ €
R and p € N. We obtain the following with constants K, independent of T":

() L™(a) is monotone increasing in T € R* and decreasing in o € R™.
Gi) L™(ca) < ¢ LT(a) for all c € (0,1].
Gi)) LT(B + a)LT(y — a)

<10 PE Xm0y — 0y + LB + )LD B + 7)/2).

Gv) [RLT(a)w({ + a)da < K log(T) for T > e.
® [RLT(B + )LP(y — w(¢ + @) da < K log(T)LTX(B + vy) for
T=>e
i) [RL™(a)?da < K, TP~ "
i) [RLD(B + a)PLT(y — a)? da < K, TP 'LD(B + y)P.

PROOF. The proofs are straightforward and similar to those in Dahlhaus
(1983). However, unlike its periodic counterpart, the function L™ is not
FLintegrable, and the inequalities (iv) and (v) therefore require an #'-inte-
grable weight function w. O
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Using the definition of L™, we can now derive an upper bound for the
Fourier transform of a data taper. Let V(h) denote the total variation of

the function A. Then, if 4 is of bounded variation, simple calculations yield
the inequality

(A.2) [th(t Fuy) o h(E+uy) — ()" 1dt < IRIETV(R) (lug] + - +luyl).

From this, we obtain, for the Fourier transform of A,

1 w\k 1
T) - ko _ - - k-1 -1
|HT (o) < Z[R'h(t) h(t q) dt < SIRIE V(R kerlal .

On the other hand, we have |[H{T(a)| < RIET. Hence, we obtain as an upper
bound

(A.3) |H{M ()|l < K*LT(a)

for all £ € N and a constant K independent of 7'
For the sake of simplicity, we assume for the proof of Theorem 2.3 that the
mean intensity p is known and therefore replace d™(A) by

dD(A) = /Rh(T)(t)exp(—i)tt)[dN(t) - pdt].

At the end of the proof, we indicate the modifications needed for the case that
p is estimated by p™.

The next lemma, which is a slightly stronger version of Theorem 4.1 in
Brillinger (1972), gives an approximation for the cumulants of d™(A).

LEMMA A.2. Under assumptions (Al) and (A2), there exists a constant
¢ > 0 such that, forall Aj,..., A, €ER and k > 2, :

|cum{d®(2,), ..., dD (1))
—(@2m) T HE A + o A 0) F( g5 A1) | < €t

ProoF. The lemma is an immediate consequence of relation (A.2) and
assumption (Al). O

Note that because of assumption (A1) we can choose the constant ¢ such
that also |f,(Ay,..., A,_)l < c* for all & > 2.

PROOF OF THEOREM 2.3. We start by proving that there exists a constant
¢g such that

(A4) leum ,{ E$”(g)}| < (2k)!ck p,(&)"
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for all K € N, where cum {E{")(g)} denotes the kth cumulant of Ef*)(g).
Using Lemma A.2, we obtain

45) leum {E{(g)}l < VT leg(A)Iw(A)IEI(T’( A) — (Al dA
2(20HNVT) p,(£)pu(1)-
For k > 2, we find

loum, {E4 ()}
(46) < [2rHD©O] T4 [ 1g(M)lw(h) - lg(A)lw(A)

x|cum{d®(A,) dD(=1y), ..., dD(A,) dP(=A)}|dA; ... dA,.

In order to apply the product theorem for cumulants [cf. Brillinger (1981),
Theorem 2.3.2], let L;, denote the sum over all indecomposable partitions
P,,..., P, of the table

AT
A’k _')tk
with p; = IPI > 2 as E{d™ (W)} = 0. Further, if P, = {B;1,..., B; p;}» We write
ﬁJ Bjj1+ B pe Then, using Lemma A.2, we find for the cumulant in
(A.6)
|cum{d®(A;) dD(= 1), ..., dD(N,) dD(-A)}|
<X Jl‘[ (@) HD (B fof B Brpy-1)l + P},
ip.J=
which, by using f,(A;,..., A,_1) < c* and (A.3), is less than
(A7) Z(2w)2kc2kK2’“ Y T129(B),

JcM JE€J

where M = {1,..:, m}. Substituting (A.7) in (A.6), we obtain as an upper
bound

Y ¥ (2mc2K?Hy 1) T4/ j l_[lg(A)lw(A)l—[Lm( ;) dAy - day.

ip. JcM

For J = O, the integral is equal to

k |
([ e aa) < (o) pu(0*,

‘Similarly, if m = 1 and J = {1}, the integral is bounded by Tp,(g)%,(1)*
since LY(B,) = T.For J + @ and m > 1, we split {1,..., k} into disjoint sets
I and IC and J into disjoint sets J, and J§ to be selected later. Using the



1174 M. EICHLER

Cauchy-Schwarz inequality, the integral now is less than

. _ 1/2
f ng()tj)lzw()tj) 1 w()tj) 1 L(T)(ﬂj)2 dA; - dA,
Rkjel jEIC JEJOC

(A.8) N
><(fwjle_llclg(Aj)lzw()tj)jI;[Iw()tj)j];[JOL(T)( Ej)Z dhy - d)‘k) )

Now we have to make a suitable choice for I, I, J, and JE. Since o is not
empty, we can define J, = {j,} for some arbitrary j, € J. Then there exists i,

such that A, or —A, is in P, , and we can set I = {i)}. We obtain with

Lemma A.1(vi) and (vii) for the first integral in (A.8)

/ng()tio)lzw()‘io){/w—l.l_IIcw(Ai) nCL(T)( Ej)z l_[ d)ti} d)tio

JjeJ§ iel€

< [ 1g(,)Pw(h ) (Il =t p,(1)** " (KT) ) an,,

= Pw(g)z{”wlllé’"1 pw(l)z(k_lJ‘)(KT)lJl—l}’

where we have used the indecomposability of the partition. Similarly, the
second integral in (A.8) is equal to

fo s TL8 )P0 (3 Z7(B,)" dn, | TT an,

iel€
< p,(&)** P{lwlKT).
Thus, we obtain, as an upper bound for cum ,{ E{},

T ¥ (2mc?K2HZ 1) T2y (oY) (1) F|w]t/ 2K/
ip. JcM

ca\k
<n(@'L T (7).
. ip. JcM
which implies (A.4) since the sums include at most 2* subsets of M and
(2%)!12* indecomposable partitions.
Analogously to the proof of the stochastic equicontinuity in Dahlhaus
(1988), relation (A.4) leads to a uniform bound for the moments of E§*’, from
which we obtain the exponential inequality

P{ES"(g — k)| > mp, (g — h)} < 96 exp(—y/n/D),

with a constant D for all g, €% and 5 > 0. Application of a chaining
drgument now yields the assertion of the theorem.
In the general case where p is estimated by p, we have

(A.9) dD(A) =dD(r) - HO(W)HT0) ! dD)(0).
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Therefore, we obtain, by using Lemma A.2,
cum{d®(1,),...,dT (1)}

= X (-)¥HOO) CTTHOO)
Scfl,:.., k} JjeS

E-1
X(2m)" THD(Ag y + s, ) fe(As 155 As 5-1) + R,

where |R| < (2¢)* uniformly in A,,..., A, and Ag; = A\;1sc(;). Because of
Lemma A.1(ii) and (iii), the sum over all subsets S of {1,..., &} is bounded by

(2m)* THR(40) ' KPLD (0 + - +A,).

Thus, the cumulant in (A.6) with d™ substituted for ™ has again an upper
bound of the form (A.7) with different constants. The case & = 1 is treated
similarly. O

PrOOF oF THEOREM 2.4. We prove the convergence of the cumulants of
first, second and higher order to the corresponding cumulants of the limit
distribution. For the first cumulant, F{E$*)(g)} = o(1) is an immediate conse-
quence of (A.5) and Lemma A.1 since (A.9) yields

cum{d®(A), dP(p)} = cum{d (1), dP( )} + O(T LX) LD w)).

A similar equation with remainder of order O(L™()) + L™ ( u)) holds for the
cumulant cum{d™(A), d™(— 1), dP(u), dTX(— ). Thus, we find, by using
the product theorem for cumulants and Lemma A.2,

Cov{E}w)(gi) > ng)(gj)}

27H _
77 o BN (VE (1)

(A.10)
X[f4()" —A, /~")
H(PEO(A + p) + PP = ) fo( V) fo( )] drdu
+ o(1).

where ®{()) = H{M(WHEP(—A) /(27 H{T(0)]. Now it follows from the con-
volution properties of H{") and Lemma A.1(vi) that ®{ is an approximate
identity and thus we have, for f, g € Z%(R),

L SDwNe(ww(w @ (A - ) dAdp

= [Rf(h)g(A)w(A)z dA + o(1).

Therefore, (A.10) converges to (2.1).
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For the cumulants of higher order, we obtain by using (A.7), which also
holds for d™ as noted before,

|cum{E$(g,),... E§~w)(gk)}|

< I°L o[ l—[IgJ(A)lw(A)HL‘T)( ) A, - diy.

ip. JcM

With Lemma A.1(iv) and (v), the integral now is of order O(T log(T)"Y!-?) if
|J| = m and of order O(log(T)V)) if |J| < m. Thus, the cumulant converges
to 0. O
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