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Choudhury and Lucantoni recently developed an algorithm for calcu-
lating moments of a probability distribution by numerically inverting its
moment generating function. They also showed that high-order moments
can be used to calculate asymptotic parameters of the complementary
cumulative distribution function when an asymptotic form is assumed,
such as F°(x) ~ axPe™"* as x — . Moment-based algorithms for com-
puting asymptotic parameters are especially useful when the transforms
are not available explicitly as in models of busy periods or polling systems.
Here we provide additional theoretical support for this moment-based
algorithm for computing asymptotic parameters and new refined estima-
tors for the case B # 0. The new refined estimators converge much faster
(as a function of moment order) than the previous estimators, which
means that fewer moments are needed, thereby speeding up the algo-
rithm. We also show how to compute all the parameters in a multiterm
asymptote of the form F(x) ~ L7, a,xf %" le~ 7% We identify condi-
tions under which the estimators converge to the asymptotic parameters
and we determine rates of convergence, focusing especially on the case
B # 0. Even when B =0, we show that it is necessary to assume the
asymptotic form for the complementary distribution function; the asymp-
totic form is not implied by convergence of the moment-based estimators
alone. In order to get good estimators of the asymptotic decay rate n and
the asymptotic power 8 when B # 0, a multiple-term asymptotic expan-
sion is required. Such asymptotic expansions typically hold when B8 = 0,
corresponding to the dominant singularity of the transform being a multi-
ple pole (B a positive integer) or an algebraic singularity (branch point, B
noninteger). We also show how to modify the moment generating function
in order to calculate asymptotic parameters when all moments do not
exist (the case n = 0).

1. Introduction. In many applied probability settings we are interested
in small tail probabilities. For example, in the performance analysis of
computer and telecommunication systems we might be interested in comput-
ing the 99.9th percentile of a critical delay or we might want to design a
buffer that has a loss probability of 10~°. Quite often it turns out that the
small tail probabilities are adequately approximated by the asymptote of
the complementary cumulative distribution function. For example, Abate,
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Choudhury and Whitt (1994a, 1995a, 1996) show that the tail probabilities of
the waiting time, sojourn time and workload in infinite-capacity queueing
models with the first-come first-served discipline are often well approximated
by an exponential asymptote for 80th percentiles or above. Indeed, there have
been quite a few recent papers suggesting the use of asymptotes for com-
puting small tail probabilities in the context of statistical multiplexers in
communication networks; for example, see Botvich and Duffield (1995),
Choudhury, Lucantoni and Whitt (1995), Duffield and O’Connell (1995) and
Whitt (1993) and the references therein. The asymptotics are useful when
exact computation is difficult (e.g., as in the case of models of statistical
multiplexers with many sources) and even when exact computation is not
difficult [e.g., when it is straightforward to perform numerical transform
inversion, as in Abate and Whitt (1992)], because the simple formulas help
convey understanding. In fact, the asymptotic analysis complements the
direct numerical inversion, because the direct numerical inversion tends to
have numerical difficulties far out in the tail, where the asymptotic analysis
performs well. The two approaches also serve as checks on each other.

In this paper we present simple methods for computationally determining
the asymptotic behavior of probability distributions based on moments.
Choudhury and Lucantoni (1993, 1995) have shown that it is possible to
compute moments (of high as well as low order) by numerically inverting the
moment generating function, which requires the computation of the
Laplace—Stieltjes transform or z-transform of the probability distribution at
several complex values of the argument, but does not require knowledge of
any of the properties of the transform (e.g., the location and type of its
singularities). Our methods may be used with this algorithm or any other
algorithm for computing moments.

Of course, asymptotic parameters can often be obtained directly by per-
forming appropriate asymptotic analysis with the transforms, perhaps using
symbolic mathematics programs such as MAPLE and MATHEMATICA, for
example, as described in Chapter 5 and the Appendix of Wilf (1994). The
moment-based algorithm is an attractive alternative either when the trans-
form is not available explicitly or when someone is not familiar with asymp-
totic analysis. Examples in which transforms are not available explicitly, and
for which we have applied the moment-based estimators of asymptotic pa-
rameters here, occur in the polling models in Choudhury and Whitt (1996)
and the transient behavior of the BMAP/G /1 queue (with batch Markovian
arrival process) in Lucantoni, Choudhury and Whitt (1994). Then the trans-
forms are characterized implicitly via functional equations.

In addition to developing an algorithm to compute higher-order moments,
Choudhury and Lucantoni (1993, 1995) developed estimators for the asymp-
totic parameters. Our primary purpose here is to prove that these estimators
" do indeed converge under suitable conditions to the asymptotic parameters as
the moment index increases, and to obtain even better estimators in certain
circumstances. We start with a cumulative distribution function (cdf) F(x) on
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the nonnegative real line with associated complementary cdf F°(x) =1 —
F(x), nth moment

(1.1) m, = [ 2" dF(z) = [ nx""'F(x) de,
0 0
Laplace—Stieltjes transform (LST)
(1.2) f(s) = [ e7**dF(x)
0

and moment generating function (mgf)

=<} n

N m,z
(1.3) M(2) =f(-2)= L —
oo n!
where m, = 1. The algorithm in Choudhury and Lucantoni (1993, 1995)
computes the moments m, by numerically inverting the mgf M(z) in (1.3).

The principal form of the asymptotics considered here is
(1.4) Fe(x) ~ axPe™™ as x —» o,
where f(x) ~ g(x) as x > % means that f(x)/g(x) > las x > ©. In(14), »
is the asymptotic decay rate, B is the asymptotic power and « is the
asymptotic constant. The parameters o and n are assumed to be strictly
positive, while 8 can be positive, negative or 0. We discuss the case in which
n is 0 in Section 3.

In many contexts, we obtain the special case of (1.4) with g = 0. This
corresponds to the Laplace transform f(s) in (1.2) having a dominant singu-
larity that is a simple pole; see Section 5.2 of Wilf (1994). For example, this
form often occurs with the steady-state waiting-time distribution in queueing
models with the first-come first-served (FCFS) discipline; see Abate,
Choudhury and Whitt (1994a, 1995a, 1996). On the other hand, nonzero B
often arises as well. Nonzero 8 occurs when the dominant singularity of f(s)
is a multiple pole (positive integer B) or an algebraic singularity or branch
point (noninteger B); see Section 5.3 of Wilf (1994). Indeed, nonzero B tends
to be the rule rather than the exception for queueing models with non-FCFS
service disciplines; for example, see Abate, Choudhury and Whitt (1995b) for
last-come first-served (LCFS) and Choudhury and Whitt (1996) for polling
models. This is primarily because the busy-period distribution has asymp-
totics with nonzero B; see page 156 of Cox and Smith (1960), page 167 of
Abate and Whitt (1988) and Abate, Choudhury and Whitt (1995b). Hence,
nonzero f3 is also very much of interest and that will be our main concern.

When B # 0, we often have a stronger asymptotic form than (1.4); in
particular,

’

m-—1
(15)  F(x)— Y apxfFtlen*~ g xP mtle % a5 x - o
E=1

for m > 1. [For m = 1, (1.5) reduces to (1.4) with a; = a.] Asymptotic expan-
sions of the form (1.5) are associated with Heavyside’s theorem; see page 254
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of Doetsch (1974) and page 139 of Van der Pol and Bremmer (1995). The
successive terms in (1.5) have powers decreasing by 1. Variations of our
methods apply to the case in which the powers decrease in a more general
pattern, as on page 254 of Doetsch (1974), but (1.5) seems to be the form most
commonly arising: in applications. A familiar example is the M/M /1 busy-
period distribution, for which 8 = —3/2; see page 167 of Abate and Whitt
(1988). Choudhury and Lucantoni (1993, 1995) showed that their moment-
based estimates of 8 converge to —3/2 for this M/M/1 example. Cox and
Smith (1960), page 156, showed that the M /G /1 busy-period distribution has
the same asymptotic form (with B8 = —3/2). We should point out that
numerical experience and the form of the asymptotics with a slower rate of
convergence indicate that the quality of the approximation when B # 0 is not
as spectacular as in the case 8 = 0. Nevertheless, from a practical stand-
point, the asymptote is usually quite accurate for tail probabilities smaller
than 1073, so that it is important to be able to identify 8 and the other
asymptotic parameters.

Even though the asymptotic parameters of primary interest already ap-
pear in (1.4), we show that the stronger multiterm asymptotic expansion in
(1.5) is important for obtaining good moment-based estimates of the basic
asymptotic parameters when 8 # 0. (Our “estimates” should not be confused
with statistical estimates; we do not work with statistical data.) Here are
candidate moment-based estimates of the asymptotic parameters in (1.4):

(1.6) 5 = not
n mn
N nm,

(1.7 B, = -n,

) m,_
B+n

A TI m"

(1.8) e P

The idea is first to estimate 1 using (1.6), then to estimate 8 using (1.7) and
the “known” 1 and finally to estimate a; = a using (1.8) and the “known”
values of n and 8. We will show that 9, and &, , converge under assumption
(1.4), but [§n does not. Instead, [§n converges under assumption (1.5).

The estimates in (1.6)—(1.8) are chosen for simplicity rather than numeri-
cal accuracy. They are convenient for deriving the asymptotic parameters
analytically (by hand) when explicit expressions for the moments are avail-
able. To illustrate, we give an example from'Abate and Whitt (1996). From
Proposition 3.2 there, we know that there is an infinitely divisible probability
distribution, called the Caley—-Einstein-Pélya (CEP) distribution, with mean
1 and Laplace—Stieltjes transform f(s) which satisfies the equation

(1.9) f(s) = exp(—sf(s))
and has moments

(1.10) m,=(n+1)""" nx1l
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The CEP distribution is well known via (1.9), but evidently no closed-form
expression is known. However, we can apply (1.10) to deduce that the
estimates in (1.6)—(1.8) converge to proper limits as n — «. Hence, the
asymptotic parameters in (1.4) are

(1.11) n=et, B=-3/2, a=ye®/2m,
assuming that the asymptotic relations in (1.4) and (1.5) are valid.

However, for computational purposes (on the computer), the estimates in
(1.6)-(1.8) tend not to be satisfactory. First, when B # 0, the estimate for 5
in (1.6) tends to converge quite slowly, having an error of O(n™!). Indeed,
under (1.5) it follows from Theorem 5.3 below that

A _ + -1 -2
(1.12) B=n(1+ent +cn
oty n™ P+ 0(n" " 7Y)) asn > o,
where ¢; = —B. (The situation is usually much better when B = 0; see
Theorem 4.3 below.) Hence, when B # 0 and we want an accurate estimate of
1 based on relatively few moments (e.g., n < 20), it is often possible and
necessary to do much better than (1.6). Fortunately, dramatic improvements
can be obtained by exploiting extrapolation based on the asymptotic expan-
sion in (1.12).

Given (1.12), we use a variant of Richardson extrapolation, sometimes
referred to as the Wimp—Salzer algorithm. That is,

(1.13) WB) = X A (m k- 1), ka1,
Jj=0
where
(-1’(n-j)"
(114) wj(n,k) = —-J'—(k—_JT—,

for example, see pages 35-38 and 67-75 of Wimp (1981), pages 375-378 of
Bender and Orszag (1978) and page 231 of Smith and Ford (1979). For ease of
use, it is significant that the weights in (1.14) do not depend on the sequence
of estimates {7,}. Hence, we can use the extrapolation (1.13) with any
sequence having the form (1.12). Given (1.12), the estimates 7,(k) in (1.13)
have error of order O(n~*). We call %,(k) the kth-order approximation of .
[Note that #,(1) = 7,.]

In some cases, it is sufficient to use the second-order approximation 7,(2)
or a related estimate based on the reciprocal; that is, let ¢, = L, let £,(k)
be the extrapolation (1.13) applied to &, and let

7(2)=£2) 7t = (n&(1) - (n — Dé,_,(1))
(1.15) M, 1M, _,

= A 2 =(rn_rn—1)_:l
m,m,_o— M,

for r, = m,/m,_;. To obtain several digits’ accuracy based on not too many
moments, we have found that ),,(5) often works well, but in some cases it
may be better to use lower-order estimates with more moments. Indeed, it is
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a good idea to print out and examine 7,(k) for all £ and n with k2 <5 and
n < 100, say. (See the example in Section 7.)
Clearly, we need a good estimate of 7 to estimate B. For example, we
cannot estimate n and 8 with (1.6) and (1.7) for the same value of n; if we
use 7, in (1.7); then we get B, = 0. Here is an estimate of B that does not
directly involve 7:

(1.16) B¥= ————-n

LA

for r, =m,/m,_, as above. The estimate (1.16) corresponds to the estimate
@?n w1th #¥(2) in (1.15) used in place of 7. In Theorem 5.3 below we show
that (1.16) has O(n~!) error under appropriate conditions. By the same
reasoning leading to (1.12), we find that ,én in (1.7) and ,é,;“ in (1.16) also have
expansions of the form (1.12). Hence, better estimates for 8 can be obtained
by extrapolating with (1.18), starting with (1.7) with the exact n or with
(1.16).

Turning to the asymptotic constant « in (1.4), we remark that in the
denominator of (1.8), n!n? is an approximation for nI'(n + B), where I'(x) is
the gamma function; that is, a more direct estimate of « is

(1.17) af , = 15" "m,/(nT(n + B)).
When B is not an integer, clearly (1.8) is preferable for analysis by hand, but
the computer has no difficulty with the gamma function in (1.17). Both &, ,
in (1.8) and «of , in (1.17) have expansions of the form (1.12), so that
extrapolation also can be used to estimate a.

Given the asymptotic expansion (1.5), we may also be interested in more
terms than the first. We can estimate the higher-order asymptotic constants
a;, in (1.5) in the same way. By essentially the same reasoning,

(118) C}ik,n =Ak,an,n’
where
a(n+B-1)(n+B—-2)(n+B—k)

(1.19) A, =— "
and

,nn+[3mn azn

Bin = a,nT(n + B) -1- a(n+B—1)

1 1

(1.20) . e
r—17M

T a(n+B-1) - (n+B—Fk+1)

is an estimate of «;, that has the asymptotic expansion in (1.12). Note that to
use @, , to estimate a;, we require that n, 8, ay,..., &, _; be known. When
' these parameters are not known accurately, the estimate &, , in (1.18) can
experience numerical problems. If we use multiple terms in (1.5), then we lose
much of the simplicity of (1.4), but gain numerical accuracy. Numerical
accuracy may also be achieved by direct numerical transform inversion, but
multiterm asymptotic formulas are useful because they give easily com-
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putable formulas for all large x, whereas direct numerical transform inver-
sion becomes less accurate as x increases. Multiterm formulas also reveal the
accuracy of fewer terms.

Here is how the rest of this paper is organized. In Section 2 we show that it
is necessary to assume (1.4); convergence of the estimates (1.6)—(1.8) does not
by itself imply (1.4). In Section 3 we show how to treat cases in which not all
moments exist, or n = 0 in (1.4), by first doing exponential damping. After
making this transformation, all moments exist, and it is easy to extract the
desired asymptotic parameters.

In Section 4 we treat the relatively elementary problems involving the
estimates of the asymptotic decay rate  and the asymptotic constant « in
(1.6), (1.8) and (1.17) based on only (1.4). Then in Section 5 we discuss the
implications that can be obtained from stronger asymptotics such as in (1.5).
Our proofs of the asymptotic relations in Sections 4 and 5 exploit elementary
direct probabilistic arguments. An alternative approach is via classical
asymptotic analysis, after recognizing that m, /n can be regarded as a Mellin
transform of F°(x); that is, from (1.1),

(1.21) “xn (%) da;

for example, see page 77 and Chapter 4 of Bleistein and Handelsman (1986).
Using techniques from the asymptotic analysis of integrals depending on a
parameter, it is possible to obtain the asymptotic expansion

m, T(n+B) a,n”
n P w (n+B)*

where the constants a, depend on the asymptotic expansion of e*x™#F°(x)
and its successive derivatives; see page 290 of Berg (1968). Hence, it is the
application of the theorems rather than their statement and proof that
constitutes the main contribution of our paper.

In Section 6 we discuss asymptotics of the form
(1.23) . F(x) ~ axPe """ as x —
for 8 not necessarily equal to 1. In Section 7 we give an illustrative numerical
example involving the time-dependent mean of reflected Brownian motion
(RBM), for which B8 = —3/2; see Abate and Whitt (1987). We pick a rela-
tively easy example with convenient explicit transform, so that we can verify
our results. Harder examples for which there are no readily available alterna-
tive methods are the polling models in Choudhury and Whitt (1996). In
Section 8 we consider long-tail examples with h 0 in (1.4), drawing on
Abate, Choudhury and Whltt (1994b). Finally, in Section 9 we state our
conclusions.

We close this section by mentioning other related work. We have already
mentioned the alternative asymptotic approach via Mellin transforms in
(1.22). Another body of related literature studies the asymptotic analysis of
an unknown function via the coefficients of its Taylor series. There is an
extensive literature on this problem in mathematical physics, as can be seen

(1.22)
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from Hunter and Guerrieri (1980) and Guttman (1989). What we are doing
here is closely related to the ratio method and its variants. With that theory,
the asymptotic behavior of the moments, as coefficients of the moment
generating function, can be used to obtain the asymptotic form of the
Laplace transform. We would then use the asymptotic behavior of the Laplace
transform to deduce the asymptotic form of the complementary cdf, as in
Heaviside’s theorem discussed above. However, it remains to identify and
justify appropriate technical regularity conditions. Nevertheless, this is an-
other potential route to our results.

2. A counterexample to the converse. For practical purposes, we
consider the asymptotics in (1.4) justified, as well as the parameters identi-
fied, when we establish 4, — 1, 8, — B and &, , = aasn - »via(1.6)-(1.8)
or via an extrapolation. However, we actually need to assume the form (1.4).
To make this clear, we now show that it is possible to have %, —» 71, B, = B
and &, , = a as n — » without having (1.4).

For this purpose, we use a probability density function (pdf) with B8 =0
and a sinusoidal component. In particular, let the pdf be

(2.1)  f(x) =2e%(1 —cos x) = (2sin(x/2))%e"*, x>0,
with associated cdf

(2.2) F(x)=1-e7*(2 — cos x + sin x)
and Laplace transform

y © -sx = 2 :
(2.3) 1) =f0e fx) d 1+s)(1+@1+s))’

see 29.3.27 on page 1023 of Abramowitz and Stegun (1972). From (7.16) on
page 55 of Oberhettinger and Badii (1973),
!

(1 + a?)
so that the nth moment of F' is
(2.5) m, = 2(n!)(1 - 27"V 2cos((n + 1)m/4)), n=1

From (2.5), it is elementary that 7, - n = 1, B, » B=0and Qy, > o=2
as n — «. However, we do not have (1.4) with these parameters; that is, we
do not have F¢(x) ~ 2e™* as x — » because of the sinusoidal terms. From
the perspective of the Laplace transform (2.3), the asymptotics is understand-
able, because the transform has three singularities for s such that Re(s) =

—1, namely, —1 and —1 + i. For a related example involving a Tauberian
theorem, see Example 1 on page 107 of Abate, Choudhury and Whitt (1994a).

Y cos((n + 1)arctan a™ 1),

(2.4) fwe““x” cos xdx =
0

3. When not all moments are finite. To calculate the moments from
the mgf, we need the mgf to be analytic at z = 0, which, in turn, requires
that all moments be finite. However, we may not know if this condition is
satisfied, or we may even know that the condition is not satisfied. For
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example, we may want to identify @ and B under the condition (1.4) with
n = 0, that is, for a long-tail distribution, such as in the queueing examples
in Abate, Choudhury and Whitt (1994b).

All these cases can be treated by first modifying the distribution so that it
necessarily has all the desired properties. As in (5.2) of Abate, Choudhury
and Whitt (1994b), starting with a probability density f(x), we can construct
a new probability density f, by exponentially damping f, that is, by letting

(3.1) fu(x) = e™=f(x)/f(u).
Note that f, has Laplace transform
(3:2) fu(s) = f(s + u)/f(w),

where f( 8) is the Laplace transform of f(x). If f has rightmost singularity at
0, then f, has rightmost singularity at —u. Moreover, if

(3.3) f(x) ~ axPe ™ as x > o,
then
o
(3.4) fu(x) ~ m=——xPe MW* a5 x — oo,
f(u)

Given (3.4), the associated complementary cdf satisfies
axPBe (ntu)x
(3.5) F{(x) ~————— as x> x;
‘ (m + u)f(u)
see page 17 of Erdélyi (1956).

Hence, given the Laplace transform f(s) we can easily construct the new
Laplace transform f (s) using (3.2), calculate its moments from M, (z) =
f.(~2), obtain its asymptotic parameters from (1.6)-(1.8) or via extrapolatlon
and then obtain a, 8 and n from (8.5). If f satisfies (3.3) with 8 < —1 and
n = 0, then the complementary cdf satisfies

(3.6) Fe(x) ~

B+1
571 x as x — o,

Hence, we must multiply the asymptotic constant obtained for F/(x) by
uf(w) /(B + 1) to obtain the desired asymptotic constant for F°(x).

We close this section by pointing out that, once the asymptotic decay rate n
is known, exponential damping can be used in reverse to move the dominant
singularity to the origin and produce asymptotics of the form (3.3) with n = 0.
Instead of moments, we can then use Tauberian theorems as in Feller (1971)
to derive the remaining asymptotic parameters o and .

4. The asymptotic decay rate and constant. It is elementary to get
the asymptotic decay rate n from (1.6), and, given both the asymptotic decay
rate and the asymptotic power, the asymptotic constant « from (1.8) given

"only (1.4). Throughout this paper we will use basic properties of the gamma
functions T'(x) and the gamma distribution. The following is 6.1.46 of
Abramowitz and Stegun (1972).
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LEMMA 4.1. For any real number B, I'(n + B+ 1) ~n!nP as n - ©
through the integers.

Let X(n, v) be a random variable with a gamma density
. 1
4.1 = —— a7 0
(4.1) f(x) Ty e ®20,

with scale parameter n and shape parameter v, which has mean v/n and
variance v/7?%. We will use a bound on the gamma tail probabilities; we omit
the proof.

LEMMA 4.2. Forany B, x, > 0 and m > 0, there exist positive constants C,
and C, such that

(4.2) P(X(m,n + B) <x) < Cye C2"
for all suitably large n.

THEOREM 4.1. If (1.4) holds with n > 0 and a > 0, then

anl(n+B) a(n)nh
(4.3) m, ~ pUSY: ~ pUEY: asn — ©,
so that %, = m, &; , = a and af , > a for ), in (1.6), &, , in (1.8) and of ,

in (1.17).

ProOF. Relation (1.4) is equivalent to there being, for each £ > 0, an x,
such that
Fe(x) < (1+ &)axPe ™ for x > x,
and
Fe(x) = (1 - &)axPe ™ for x > x,.
Then, using elementary properties of the gamma distribution, we obtain

m, = [ na""F(x) dx
0

< fxonx"'ch(x) dx + a(l + e)nfwx”ﬁ'le'""dx
0 E2Y

(4.4) a(1 + &)nl(n + B)
<xy + P P(X(n,n + B) > x,)
, . a(l+e&)nl(n+ B)
Sxo + n”‘*‘ﬁ )
while

(45) m, » 207 83)"3” *B) p(X(n,m + B) > %,).

Since x2 is negligible compared to nI'(n + B)n~"*#) and P(X(n,n + B) >
x,) = 1 as n — ® by Lemma 4.2, (4.4) and (4.5) imply that

(4.6) m, ~anl'(n + B)/n"*? asn - «,
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which is (4.3). The second asymptotic relation in (4.3) follows from Lemma
4.1. The limits for %, and &; , and «af , are elementary consequences. O

In order to get a, we need to know 7 and B. Even in the case g = 0, we
cannot just usé any sequence of estimates of 7 in our estimate of a. The
following elementary result supports this claim. It shows that it suffices to
have 7, = 7+ o(n"!) and B, = B+ o(1/log n) as n — = in order to have

&, , converge to a with estimates 7, and B, instead of n and B.

THEOREM 4.2. If %, =n(1 + yn ! +o(n"Y) and B, =B+ 8/logn +
o(1/log n) as n — o, then

Bt Pem, /ninPr > ae?"? asn > ».

Proor. To treat 7,, use (4.3) with
Hrtl = tB(L+ yn + o(n'l))nﬂB ~em"tP asn -
To treat B, note that nB~# — K if and only if (8, — B)log n — log K, but,
n — n
from the assumption, (8, — B)log n — 8, so that K =e® O

We have seen in (1.12) that it is indeed natural to have 7, = n + O(n™1)
for 4, in (1.6), but if we use ,(k) in (1.13) for £ > 1, then the error is o(n7%)
and so o(n~1). Hence, with suitable estimates of n and B, the estimator for
in (1.8) will converge.

It is easy to see that there is no difficulty in the case of a simple pole,
where there is an exponential rate of convergence [see Section 5.2 of Wilf
(1994)], provided the decay rate is not too small. The estimates 4, in (1.6) and
71.(2) in (1.15) are essentially equivalent in this case. We state the elementary
result without proof.

THEOREM 4.3. If
F°(x) — ae™ ™ ~ ye %" asx — o
for ¢ > m, then
il = A (1) =+ O((n/$)") asn—>
for 4, in (1.6) and
75(2) = n+ O(n(n/$)") asn >
for n¥(2) in (1.15), so that "
(D) "m,/n!> « .and 7¥(2)"m,/n!—> a asn - .

5. The asymptotic power and multiterm expansions. Assuming only

(1.4), it is relatively difficult to get a good estimator of the asymptotic power

B. The following establishes an estimator that converges as n — « with an
error that is O(1/log n), which is not good for numerical accuracy.
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THEOREM 5.1. If (1.4) holds, so that (4.3) holds, then
log(n"m,/n!) N log(an™?)
logn log n

1
log n

i

B}
(5.1)

+ o0

) asn—x,

Proor. Use (4.3) and Lemma 4.1. O

It is important to note that an estimate of B8 cannot be extracted directly
from 1/4, in (1.6), assuming only (1.4), because B appears in the O(n™!)
term of

1 m, n+pg

5.2 — = ~ :
( ) M nm,_, nm

that is, we cannot distinguish n + 8 from n on the right in (5.2) because of
the asymptotic relation. For example, we evidently would have difficulty with
(5.2) if we had
yxPe n*
(5.3) F¢(x) — axPe ™ ™ ~ ——— as x > o,
log x

However, we often have a better rate of convergence than (5.3). Indeed, we
often have (1.5) when B # 0. If we assume a stronger form of asymptotics
corresponding to (1.5), then we can obtain a better estimate of the asymptotic
power B than (5.1). We can also justify convergence of 7*(2) in (1.15). We
start with a generalization of (1.5). For example, condition (5.4) below can
arise in a mixture of two distributions satisfying (1.5) with the same asymp-
totic decay rate but different asymptotic power parameters. Condition (1.5) is
the special case of (5.4) in which ¢ = 1.

THEOREM 5.2. If
54 Fe(x) — axPe "% — yxP P 1% ~ §xB 20771 ggx —
Y

for strictly positive finite constants a, n and ¢ and for finite constants B, vy
and 6, then

anl'(n + B) yn®

(5.5) m, = SR 1+ o +0(n"2%)| asn—> o
and
m, n n
(5.6) r, = =—+ —’———E—+O(n1"”) asn — ®
m,_1 n (n - 1)7’

forl ¢ = min{l + ¢,2¢}. Hence, for ¢ > 1/2, ﬁn - B for ﬁn in (1.7) and
n¥(2) —» 7 for n¥(2) in (1.15).
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Proor. First assume that y and 8 are nonnegative. The condition implies
that for each & > 0 there exists x, such that

Fo(x) — axPe ™ m* — yxP % 1% < (1 + £)8xP 2% 7"
and R

Fo(x) — axPe " — yx P te % > (1 — £)5xP 2% "
for all x > x,. As in the proof of Theorem 4.1, we use properties of the gamma
distribution. As before, let X(n, v) be a gamma random variable with scale

parameter n and shape parameter v with density in (4.1). We now establish
an upper bound for m,. Note that

=f°°nx"_1Fc(x) dx
sf nan 1F€(x)dx+[ x""1Fe(x) dx

ol
<xy +f anx"+ﬁ'1e"7"dx+f ynx™t B¢ lgmnx gy
o X0

(6.7) w
+f (1 + &)dnxnth-26-1gm% gy
Xo

N anl'(n + B) N ynI'(n + B — @)

= %o ,nn+ﬁ nn+p—¢
(1+s)6nI‘(n+B 2¢)
nn+ﬁ 2¢ ’

where the gamma distribution over the entire positive half line is used in the
last step. Note that x? is negligible compared to I'(n + B)/n"*# as n grows.
Since I'(n + b)/T(n + a) ~ n®~* by Lemma 4.1,

anl(n + B) Ly yn®

-2¢

(5.8) mn_<_ mCET n? + O0(n™*?)|.

Similarly, as a lower bound we obtain

m, > fmnx"'ch(x) dx
anl'(n +
> —(n—B)P(X(n,n + B) > x,)
n
59
(59) vnl"(n +B—¢)

SRR P(X(m,n+ B— ¢) > x)

1—-¢)énl'(n+B—2¢
( °) "7'”(3 37 )P(X(n,n+,3—2¢)>x0).
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Hence, we can combine (5.9) and Lemma 4.2 to obtain

anl'(n + B) yn? _
(510) nZT(l‘Fa—nd"FO(n 24’) .

Combining (5.8) and (5.10), we obtain (5.5). From (5.5), we obtain

m, n(n+B-1)(1+ 'yn"’/[a(n - 1)4’] + O(n~=2%%)
m,_y  (n=1)n 1+ yn?/(ang) + O(n"2%)

(% + (n ’_L l)g)(l +0(nY))

n
n

B - v
p— 1) . +O0(n'™Y)
for = min{2¢, 1 + ¢}, which is (5.6).

At the outset, we assumed that v and & are nonnegative. It is easy to
modify the proof to cover the other cases. If y < 0, then we can replace y by 0
in the upper bound and we can replace P(X(n,n + B — ¢) > x,) by 1 in the
lower bound. If § < 0, then we change the role of (1 + &) and (1 — ¢) in the §
terms. Finally, the limits for 8, in (1.7) and 1(2) in (1.15) follow easily from
(5.6). O

THEOREM 5.3. If (1.5) holds for strictly positive finite constants n and a;

and finite constants B, a,,..., a,,, then
a;nI'(n + B)
Ly
(5.11) K
x(1+ S, It +0(n"")) asn — ©
n n2 nm—l ’
where
@M asn® (B —1)ayn
1= —» Cy = - )
a, a, a
(5.12) . R .
am (28— 3)agn (B—1)"agm
¢y = - + ,
@, @, o
so that
mﬂ
r, =
‘5 " mn—l
13
( ) n ﬁ 1 d2 dm—2 —(m-1)
=—+—+—+4+ S5+ +—F0—5 +0(n ) asn — ®,
non n



ANALYSIS OF TAIL PROBABILITIES 997

where
a
(5.14) ' ,
: B Bay (2B—3)ay agn  2a3m
d2 = - - + + ) - .
n a; ay a a

Consequently, the expansion (1.12) holds for #, in (1.6), [§n in (1.7, &, , in
(1.8), B* in (1.16) o , in (117) and &, , in (1.18).

Proor. We will use the expansion
515) —— =~ 11+x+(x2 (")3+
. — = |——| == —+ =] +(=
(6.15) n—x n\l-(x/n) n n n) n
A minor modification of the proof of Theorem 5.2 yields
a;nl'(n + B) x

(5.16) m, = ———nn—_'_ﬂ-—— n
where
2
Qg M agm
=1
X +a1(n+[3—1)+a1(n+B—1)(n+B—2)
(517) am'r]m_l
+ X +
a(n+B-1(n+B-2)(n+B-—m+1)

+0(n™™).
Combining (5.15) and (5.16) yields (5.11) with (5.12). Similarly,
(5.18) X, ;=1+Cin ' +Cyn %2+ - +C,_;n "D+ 0(n"),
where C, =c¢,, C,=c¢; + ¢, and C3=c; + 2¢, + c3. Then, by 3.6.22 of
Abramowitz and Stegun (1972),

X
5.19 " =14+ D;n '+ Dyn 2+ +D,_n ™V +0(n""),
X _, 1 2 m -1
where D, = 0, D, = a,n/a, and

2B-3)a ain?  2aym?
(5.20) D3=( B )agm + 2"21 _ 3M .

a; ay ay

Hence, by 3.6.21 of Abramowitz and Stegun (1972), we obtain (5.13) with
(5.14) from

m, _n(n+B—1) X,
m,_i - (n__ 1)77 Xn—l
- (5.21) =(2+E+—'B—+—B—§+---)
m M o n
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The expansions for 7,, B,, &1 ns B, and af , follow by similar arguments. To
relate &; , in (1.8) and af, in (1.17), use the asymptotic expansion of the
gamma function; see 6.1.37 and 6.1.47 of Abramowitz and Stegun (1972). O

6. Weibull-like tails. Suppose that, instead of (1.4), the complementary
cdf has the tail “behavior in (1.23), where & is a positive constant. When
B =0, F has the tail behavior of a Weibull distribution; see Chapter 20 of
Johnson and Kotz (1970). The case (1.23) can be treated by reducing it to
(1.4). In particular, if X has cdf F satisfying (1.23), then X? has complemen-
tary cdf of the form (1.4), that is,

(6.1) P(X?>x) ~ax'P/®e 1" agx — o,

Hence, we can apply previous results with the moments of X?; for example,
Theorem 4.1 implies that

(6.2) ms, ~al(r+ (B/8) +1)/n" B/ agr — o,

where r is a positive real number.

However, the numerical inversion algorithm only computes the integer
moments m,. If § is an integer (e.g., § = 2 for normal tails), then this
approach can be applied directly. For example, instead of (1.6)—-(1.8), we have

nmeg, 1)

6.3 n = ———— > asn — o,
(6.3) M, . n
A m
(6.4) ana(_"_l_an__n)_)ﬁ asn — o,
Msin-1)
R
(65) an=—’-l—!;17/—g———>a as n — oo,

assuming that (1.5) is valid. Moreover, the estimates (6.3)—(6.5) have the
asymptotic form (1.12), so that we can extrapolate to greatly speed up the

convergence.
More generally, we can estimate 8 as well as n, 8 and a by exploiting
(6.2). The following result can be proved in the same way as previous results.

THEOREM 6.1. If X° satisfies (1.5) with B/8 in place of B, then the
estimators

6.6) 8= ——,
( n(rn+1 - rn)
n
6.7 N, = ——
(6.7) T r2s’
(65) Bo=5((n)2r, —m = 1) + 1,
(n+p)/8

, N n
(6.9) “ = T((n + B)/5)’
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where r, = m,/m, _,, converge to the appropriate limits as n — « and have
the asymptotic form in (1.12). Consequently, we can extrapolate with (6.6)—
(6.9) using (1.13).

7. An RBM example. In this section we give a numerical example
illustrating how the moment-based estimates of the asymptotic parameters
perform. We use an elementary example here, for which we can calculate the
moments and asymptotic parameters directly, so that it is easy to verify our
results. We apply our methods to more difficult examples, polling models, in
Choudhury and Whitt (1996).

In particular, here we consider the time-dependent mean of canonical
reflected Brownian motion (RBM) starting off empty, which was considered in
Abate and Whitt (1987, 1996). By canonical RBM, we mean that the drift is
—1 and the diffusion coefficient is 1. If we divide the mean by the steady-state
mean 1/2, then we obtain a bonafide cdf (cumulative distribution function)
with mean 1/2, denoted by H,(x). We will further scale the distribution so
that it has mean 1. Thus, we consider the cdf

(7.1) Hy(x) =1-(x+2)[1 - ®(Vx/2) + 2/x/26(y2/2)], =x=0,

where @ is the standard (mean 0, variance 1) normal cdf and ¢ is its density
function. It is known that H{(x) = 1 — H,(x) has asymptotic form (1.4) with
n=1/4, B= —3/2 and a = 8/ V= ; see Corollary 1.3.5 of Abate and Whitt
(1987) and make the adjustment for the mean being increased from 1/2 to 1.
It is also easy to show that H{(x) satisfies (1.5) by applying 26.2.12 of
Abramowitz and Stegun (1972). The associated Laplace—Stieltjes transform
of H, is

A 2
7.2 h =
(72) ) =TT 4
and the moments are
(7.3) . m, = (2n)!/(n + 1)!

[see (10.12) and (10.15) of Abate and Whitt (1996)].

Using the explicit expression for the moments in (7.3) and the asymptotic
expansion for m, in (5.11), we can also identify the asymptotic constants for
all terms in (1.5). In particular,

(7.4) ak/ak_1= —(4k_‘2), kZZ.

Hence, in this case we know all the asymptotic constants appearing in (1.5) in
advance. Moreover, from (7.4), we see that, for any fixed x, the asymptotic
series on the right in (1.5) is actually divergent. This is a familiar phe-
nomenon with asymptotic expansions. It implies, for each x, that additional
terms in (1.5) will only help up to a point. (We illustrate this below.)
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For this example, we can directly compute the estimators for n, 8 and «.
First, for 9, in (1.6),

N _nm,_, n(n + 1)
75 = (1) = m,  2n(2n - 1)
(7.5) 1 1+1/m) 1 3 3 3

L — =+
4(1-1/2n) 4 8n  16n2 = 3217
Next, for ﬁn in (1.7),

L mm, 1(4n® —2n
", 4\ Tar1 )T
(7.6)
-3/2 —3(1 1 . 1 1 )
= — = — —_—— _— = — + By .
(1+1/n) 2 n n? nd®"

Then, for af , in (1.17), using 6.1.12 in Abramowitz and Stegun (1972) for
I'(n + 1/2), we obtain

n"*"fm, 8 (Zn—l)
T(n+B+1) Vm\2n+2

_8@a-@sm2ny) 8. 3 3 .
Vo (1 + (1/n)) \[E( 2n+2n2+ )

Now we want to see how the moment-based estimates of the asymptotic
parameters perform, where we use only computed values (instead of the exact
values) at each step. All computations were done with double precision. First,
we calculated and stored the first 40 moments by numerically inverting the
moment generating function h(-2z) for A(s) in (7.2), using the algorithm
described in Choudhury and Lucantoni (1993, 1995). In this case, computing
the first 40 or first 200 moments is not difficult, but it is the biggest part of
the computation. [For the polling problem in Choudhury and Whitt (1996),
computing the first 100 moments is much more difficult, taking a few minutes
on a SUN SPARC2 workstation, because the transform is not available
explicitly.] Our computation of the H; moments consistently yielded good
accuracy, with at least nine significant digits for each of the first 40 moments.
(In general, the accuracy can be checked by doing the inversion for two
different values of the roundoff-error control variable [.) This nine-digit
accuracy is more than we usually care about for the moments themselves, but
we will exploit it for estimating the asymptotic parameters.

Next, we calculated the kth-order estimates of n for all n, 1 < n < 40, and
all 2, 1 <k <5. [Here #,(1) is 7, in (1.6).] We display the first-order and
fifth-order estimates for several values of n in Table 1. As can be seen from
. Table 1, the first-order estimate still has about 4% error at n = 40, whereas
the fifth-order estimate already has four significant digits by n = 6. Since the
fifth-order estimate 7),(5) uses the last six moments prior to n, we must have
n > 6 to use the fifth-order estimate. We find that the fifth-order estimate
7,(5) monotonically decreases in n from n = 6 until n = 17, with 7,,(5) =

* —
Ay n =

(7.7)
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0.250000022, and thereafter 7,(5) oscillates and even degrades slightly as n
increases to 40. Evidently, numerical errors cause some loss of accuracy as n
gets larger. Hence, we look for the value of n where #,(5) stops being
monotone and use that for our best numerical estimator of 7. In this case, we
use 7);;(5) in all estimates of all remaining asymptotic parameters in which 7
appears. Note that );,(5) has seven significant digits, so we have two fewer
significant digits than in our estimate of the moments themselves.

We also did a sensitivity analysis on the estimates of 7. We first truncated
all moments to six places and then all to three places. With these modifica-
tions, it is more difficult to pick out a good estimator of 7. For example, the
fifth-order estimate can perform poorly. However, it is easy to see that a
reasonable estimator based on the first five orders has only three and one
significant digits, respectively, when the moments have six and three signifi-
cant digits.

In general, we have found, as one would expect, that the higher-order
estimates converge more rapidly. For example, the best fifth-order estimate of
1 occurs for n = 17, whereas the best jth-order estimate occurs for n > 40
for j < 4. However, we have also found that the accuracy of the best jth-order
estimate can decline in j. Hence, for any given n, it is good to examine
several orders of the estimates, say from 1 through 5, in order to locate the
best estimate. For this H, example, the best estimate 7),(k) for n < 40 and
k < 5 iS 7]17(5). R . R

Using ),;(5), we next estimate B using f,(k) based on B,(1) = g, in (1.7)
and B(k) based on B(1) = B} in (1.16), where the kth-order estimate is
obtained by extrapolation using (1.13). The estimators B;*(k) are interesting
because they do not directly involve n. We remark that the estimates of B
would be very bad if we used the first-order estimate 7),(1) even for n = 40 or
n = 100.

We display the first-order estimates én(l) and B}(1) and the fifth-order
estimates ,(5) and B;(5) for several values of n in Table 1. Again, the
fifth-order estimates are much more accurate. Again, the fifth-order estimates
monotonically improved until some point, which turns out to be n = 16 for
B,(5) and n = 15 for B}*(5), and then oscillate and degrade as n approaches
40. These best estimates have six and five significant digits, respectively.
Hence, we have one less digit accuracy for B than for n. These results
indicate that it is somewhat better to estimate B using a good estimate of 0
than to try to estimate B without using 7.

We also did a sensitivity analysis on estimating B based on n when there
is an error in 7. We found that a 10% or 1% error in 7 causes a serious
problem in estimating B. For example, a 1% error in. n might lead to a 20%
error in B. However, numerical evidence indicates that the overall tail
probability match tends not to be quite so bad, because the error in 8 tends

' to compensate somewhat for the error in 7 (since the moments are given).

Next, we estimated the first four asymptotic constants «;, a,, @z and a,.
In each case we used the previous best estimates of n and B, 17(5) and
B1s(B) = —1.4999924. For a,, we also used the best estimate for «; and so
forth. We display the first-order estimates &; (1) and the fifth-order esti-
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TABLE 2
A comparison of the asymptotic approximations (based on the exact asymptotic
parameters) with the exact values obtained by direct numerical transform inversion for
the complementary cdf for the RBM example in Section 7

R Complementary cdf F°(x)

x Exact One term Two terms Four terms 10 terms

8 1.1537E-02 2.7E-02 6.70E-03 -1.20E-02 -5.59E +01
16 7.6564E-04 1.3E-03 8.07E-04 845E-04 2.80E-03
24 6.4916E-05 9.5E-05 7.13E-05 7.55E-05 7.03E-05
32 6.1804E-06 8.4E-06 6.80E-06 7.07E-06 7.10E-06
40 6.3033E-07 8.1E-07 6.88E-07 7.08E-07 7.11E-07
48 6.7304E-08 8.3E-08 7.30E-08 T45E-08 T47E-08
56 7.4270E-09 9.0E-09 8.00E-09 8.12E-09 8.13E-09
64 8.4012E-10 9.9E-10 9.00E-10 9.10E-10 9.11E-10
72 9.6891E-11 1.13E-10 1.03E-10 1.04E-10 1.04E-10
80 1.3499E-11 1.30E-11 1.203E-11 1.213E-11 1.213E-11

mates @; .(8) for j = 1,2,3,4 and several values of n in Table 1. Our best
estimators of &; ,(5) were &, ,,(5) = 4.51333, @&;, 15(5) = —27.0747, &; 14(5) =
270.514 and @&, ,5(5) = —8777.1. The number of significant digits in these
best estimates is four for j = 1, three for j = 2, three for j = 3 and two for
Jj=4.

We also computed the exact values of the tail probabilities H(x) for this
example by numerically inverting [1 — A,(s)]/s for A,(s) in (7.2) using the
algorithm EULER from Abate and Whitt (1992). We compare the asymptotic
approximations to these exact values in Table 2 and Figure 1. In the
asymptotic approximations we use the exact values of all the asymptotic
parameters, but that makes negligible difference.

In Table 2 we show the multiterm asymptotic expansions in (1.5) with 2, 4
and 10 terms as well as the one-term asymptote in (1.4) for 10 values of x.
Over these values of x, the tail probabilities range from about 0.01 to 10711,
First, the convergence as x increases is slow. The one-term asymptote has
errors of 134%, 46% and 15% at x = 8, x = 24 and x = 80, respectively; the
four-term asymptote has errors of 16% and 7% at x =24 and x = 80,
respectively. However, for very small tail probabilities, it is more appropriate
to consider the probabilities in log scale. Figure 1 shows that the one-term
and four-term asymptotes provide excellent approximations in log scale for
x > 20.

Next, the cases x = 8 and x = 16 clearly show that having more terms
does not necessarily help; for x = 8, having 4 terms or 10 terms yields
negative values. More generally, the improvement provided by additional
~ terms is not impressive. Overall, because of its simplicity, the one-term
asymptote in (1.4) seems most valuable.

8. A long-tail example. In this section we illustrate the exponential
damping approach to computing the asymptotic parameters of long-tail distri-
butions described in Section 3. For this purpose, we consider a Pareto mixture
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"cdf in log scale for the RBM example in Section 7.
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of exponential (PME) distributions from Section 2 of Abate, Choudhury and
Whitt (1994b); see (2.14) and (2.19) there. The specific distribution has
Laplace transform

9 27 81 4
(8.1) 84(s) =1-s+ gs - —1_6—58 + o1’ ln(l + —?;)
density
(8.2) g4(x) = Eili(1 - (1 + i + 8a” + 128 + 32x4)e‘4x/3)
8x® 3 9 9 243 ’

complementary cdf

(83)  Gi(x) =

3 1 1 4x 8x2 323 45 /3
1+ —+—+ —4x/3 )
32x% 3 9 g1 )¢

mean 1 and squared coefficient of variation ¢? = 5/4. We also consider the
distribution of the steady-state waiting time W in the M/G/1 queue with
arrival rate p and this PME distribution as a service-time distribution, which
has transform

1 —_
(8.4) B(s) _f e=** dP(W < x) = Tj—péf(s—),
where
(8.5) 8.(5) =1—-484(s)-

The asymptotic behavior of the tail probabilities P(W > x) is described in
Section 3 of Abate, Choudhury and Whitt (1994b). The first term is

e 81p
T GO~ o=y ===

We first calculated fu(s) in (3.2) for u = 1 associated with f(s) = 8,(s) in
(8.1). We directly obtain 0.9992, —4.999998 and 59.575 for the asymptotic
decay rate, power and constant for F¢(x), based on the first 40 moments
using extrapolation. Since g,(1) = 0.509861, we obtain — 0.0008, —3.999998
and 7.59375 for the asymptotic parameters of G{(x), agreeing exceptionally
well with (8.3). A

We next calculated f,(s) in (8.2) for u = 1 associated with f(s) = #(s) in
(8.3). In the case p = 0.2 the waiting-time distribution proved to be substan-
tially more difficult, but we obtained reasonably good estimates based on 150
moments. The second-order estimate yielded an asymptotic decay rate of
0.999. Assuming 7 = 1, the second-order estimate yielded asymptotic power
of —3.99 and asymptotic constant 2.14. Here f (1) = 0.88694522, so that our
. final estimate of the asymptotic power and constant are —2.99 and 0.6327,
which agree with (8.6) to three digits. Taking out the atom at 0 by looking at
the conditional distribution P(W < x|W > 0) improved the numerics some-
what but not greatly.

(8.6) P(W>x) ~
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9. Conclusions. In this paper we presented both simple and refined
estimates of asymptotic parameters of a complementary distribution function
based on its moments when the asymptotic form is as in (1.4), (1.5) or (1.23),
focusing especially on the case with an asymptotic power ( 8 # 0). We have
shown that these estimates converge to the true asymptotic parameters
under suitable conditions and we have determined the rate of convergence.
Unfortunately, the conditions will often not be directly verifiable in many
applications. Nevertheless, the theorems here provide useful background. For
practical purposes, convergence of the estimates as the moment index in-
creases will confirm that the conditions are satisfied (even though Section 2
shows that this is not strictly valid). In many cases it will also be possible to
confirm the asymptotics by directly computing some of the tail probabilities,
as in Table 2 and Figure 1 here. For example, this is done for the polling
models in Choudhury and Whitt (1996). Computational efficiency is obtained
by exploiting extrapolation as in (1.13). Extrapolation often makes it possible
to obtain very good estimates of asymptotic parameters with remarkably few
moments. Even in difficult cases, such as the waiting-time example in Section
8, the accuracy seems to be sufficient for most engineering applications.

Acknowledgment. The authors thank a referee for pointing out the
alternative asymptotic approach via Mellin transforms in (1.22).
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