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EFFICIENT MONTE CARLO SIMULATION
OF SECURITY PRICES

BY DARRELL DUFFIE AND PETER GLYNN

Stanford University

This paper provides an asymptotically efficient algorithm for the
allocation of computing resources to the problem of Monte Carlo integra-
tion of continuous-time security prices. The tradeoff between increasing
the number of time intervals per unit of time and increasing the number
of simulations, given a limited budget of computer time, is resolved for
first-order discretization schemes (such as Euler) as well as second- and
higher-order schemes (such as those of Milshtein or Talay).

1. Introduction. It sometimes occurs that one must numerically com-
pute E[f(X;)], where f: RY > R and X is the solution of a stochastic
differential equation of the form

(1) dX, =a(X,,t)dt + b(X,,t)dB,, X,=x¢€R",

where B is a standard Brownian motion in R¢ on some given probability
space and where a: RY X [0,0) - R¥ and &: RY X [0,%) » RV*? are as-
sumed to have sufficient regularity to ensure the existence of a unique
solution to (1). A common application is the determination of the price of a
financial security. (An example of this appears in subsequent text.) Depend-
ing on the application and technical conditions, the usual Kolmogorov back-
ward equation gives, via one of many possible finite-difference algorithms, a
good numerical approximation for E[ f(X)].

In some cases, however, it is convenient and simple to obtain a Monte
Carlo approximation of E[ f(X;)] by simulating a discrete-time approxima-
tion of (1). For example, the Euler approximation, with periods of length
h > 0, takes the approximation X} ,n for Xp, where X k is the discrete-time
RN-valued process defined on some (possibly different) probability space
(Q,%, P) by

(2) Xl — Xp = (X}, kh)h + b(XE kR)VR &y, y,  Xf =2,

where ¢,, €,,... is an i.i.d. sequence of standard normal vectors valued in R<.

This paper shows how to make a computationally efficient tradeoff between
reducing the length % of a time period and increasing the number of Monte
Carlo simulations of the sample path of X". Extensions to path-dependent
and other cases are discussed in the concluding remarks.
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As a first step, we can ask: How good is f;, = E[ f(X2 ,»)] as an approxima-
tion for E[ f(X;)]? Let e, = E[ f(X;)] — f,, denote the approximation error. It
can be shown, under mild technical conditions, that lim, e, = 0. Even
better, we can given an order of convergence. A sequence {y,} has order-k
convergence if y,h~* is bounded in 4. The Euler approximation (2) is said to
be a first-order discretization scheme in that e, has order-1 convergence.
More precisely, under additional regularity conditions, there is a constant C
such that e, + Ch has order-2 convergence. The error coefficient C may be
positive or negative, and gives a notion of bias in the approximation. Al-
though C is usually unknown, it turns out that C can itself be approximated
to first order by C, = 2(f,, — f,)/h. As shown by Talay and Tubaro (1990),
these properties are satisfied under the following regularity condition:

ConDITION A. The function f is C* and satlsﬁes a polynomial growth
condition: for some positive integer s,

If(x)] < C(+1lx]7), xRV

Both a and b are C* and have bounded derivatives of any order.

The assumption that f is C” is not essential, and even continuity of f can
be sacrificed, as shown by Bally and Talay (1995).

Talay and Tubaro (1990) also provide references to more complicated
discretization schemes with order-2 error. For instance, with N =1 and
under the same technical conditions, an order-2 scheme is given by the
Milshtein (1978) approximation. Given w and o in C2(R) such that, for all ¢,
we have a(x,t) = w(x) and b(x,t) = o(x), the Milshtein approximation is
given by

A A A 1 A A A
Xy = Xf = b (X)) = So(X])o (X)) + VR o (X}) 2.
(3)
h R 5
+ 5o (X) o' (XP)ekor + B2 ( XL ) ey s + BPn(X]),

where

v(x) = 3u(x)o'(x) + 7u'(x) o (x) + o (x)" 0" ()
and

n(x) = zu(x)w'(x) + fu' (2) o (2)".
For N > 1, Talay (1984, 1986) provides second-order discretization schemes.
Kloeden and Platen (1992) review other approximation schemes, some of even
higher order, under conditions.

Of course, we cannot generally calculate even the approximation
© E[ f(XT ,»)], but we can in turn estimate this quantity by Monte Carlo
simulation. Let Y, = f(X} ,1) be defined as before. This is the first simulation
of the random variable whose mean is to be computed Let Y, be defined in
the same manner, with the exception that, for each j, we substitute ¢;, 1,
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for &;. Let Y; be defined likewise, substituting &;, 57, everywhere for &; and
so on. Since &, &,,... is ii.d., the sequence Y,,Y,,... qualifies for an
application of the law of large numbers, leaving

Yl + .- +Yk A
(4) < f(k,k) = =" > E[f(X},)] as.

In practice, one often substitutes pseudorandom numbers for {¢;}, using
some deterministic scheme. Variance reduction techniques can improve the
convergence properties of Monte Carlo simulation. For example, our previous
first approach was to simulate Y, with the disturbance sequence

D; = (‘91+T(i-—l)/h’ €24 T(i-1)/h> E3+T(G—-1)/hs+"*> ‘9Ti/h)‘
Instead, one can typically improve the convergence properties of the simula-
tion by substituting, for even-numbered i, the disturbance sequence —D,_,.
Barraquand (1993) reviews other variance reduction techniques in this
setting.

At this point, (4) gives us an approx1mat10n f(h, k) of E[ f(X;)] based on a
discrete-time approximation X” of the Itb process X with periods of length
h, and with %2 simulations of the process X", The number of additions
required to compute f(k, k) is roughly proportional to N2Tk /h. Since N and
T are presumably fixed for a given problem, we are concerned about the size
of k/h, given limited computation time. We are also concerned with the error
size e(h, k) = |f(h, k) — E[ f(Xp)Il.

2. Main result. This section presents the optimal tradeoff between A
and % in a general setting. We fix a probability space and a random variable
Z. Suppose that we want to compute a = E(Z) by Monte Carlo simulation,
but we cannot generate the random variable Z directly. However, for every
h > 0, we can generate a corresponding random variable Z(h) In our princi-
pal application, Z = f(X;) and Z(h) = f(XT ,1)» Where X" is a discrete
approximation of the solution X of a given stochastic differential equation,
using periods of length A. As with this example, we assume that the family
{Z(R): b > 0} can be chosen so that a(k) 2 E[Z(h)] - « as h | 0.

ASSUMPTIONS.

G) Z(h) = Z as h | 0.
(ii) E[Z2%(h)] > E(Z?) < » as h |0 (i.e., {Z%(h): h > 0} is uniformly inte-
grable).
(ii) a(h) = a + BhP? + o(hP) as h |0, where B+ 0 and p > 0.
(iv) The (computer) time required to generate Z(#) is given by 7(h), where
7(h) is deterministic and satisfies 7(kh) = yh~ 9+ o(h™?) as h |0, where
vy>0and g > 0.

Given ¢ units of computer time, consider the estimator
n(t, h)

' 1
(5) a(t,h) = ooy L AR,
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where Z(h), Z,(h),... is a sequence of i.i.d. copies of Z(k) and n(¢,h) =
[¢/7(R)]. For our main example of simulation of f(X;), these four assump-
tions are satisfied for ¢ = 1 and p = 1 (for first-order schemes such as Euler)
or p = 2 [for second-order schemes, such as those of Milshtein (1978) or Talay
(1984, 1986, 1990)] under Condition A, or under other sets of technical
conditions given, for example, in Talay and Tubaro (1990) or Kloeden and
Platen (1992). The following theorem describes the convergence characteris-
tics of a(t, h,).

THEOREM 1. Suppose Assumptions (1)—-(iv) hold.

@ Ifh,tY9*2P - toworifh, t/9*2P - 0 as t > «, then, ast — o,

(6) tP/@*2P)| (¢, h,) — al = +.
(b) If h, tY9*2P) > ¢, where 0 < ¢ < «, then, as t — ,
(7 tP/@+2P(a(t, h,) — a) = o (y/c?)/*W + Bc?,

where W is standard normal and o? = var(Z).

Proor. Note that

n(t, h
(t h,) igll (ht) +a(hy) —«a

where Z,(h) = Z,(h) — a(h). Then,

a(t,h,) —

L2 n(¢, hy) 2-(ht)
tP/@+2p)( o t,h) — a = tp/@t2p)(p t,h - —
(a(t,hy) ) (n(t.h0)) igl yn(t, hy)

+ /@20 (o (R,) — a).

The uniform integrability conditions (i) and (ii) guarantee that the
Lindberg-Feller theorem applies here. That is, as ¢ — o,

"2k
i=1 yn(t, k)
where W is standard normal. We use the facts that, as ¢t — o,
tP/@+2p)(q(h,) — a) = B(h, tl/(q+2p))" + o(h, t¥/3+2P),

tp/@+2p(¢ b)) V% = y'/2(h, t1/<1+2p))*‘1/2 + o(hye/2tm9/@1+4m),

= oW,

Combining these results completes the proof. O

We can interpret Theorem 1 as follows. As the total budget ¢ of computer
time gets large, the length %, of a time interval should converge to zero with
order 1/(q + 2p). If this rule is followed, then (7) implies that the estimation
error has convergence with ¢ of order p/(q + 2p) (in distribution) to zero. If
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this rule is not followed, then (6) implies that the estimation error does not
converge in distribution to zero “as quickly” (i.e., the error does not converge
at this order). It follows that this rule is “optimal,” in the sense of asymptotic
distribution. We therefore call a scheme {4,} for reducing % (the length of a
time interval, in our main application) asymptotically optimal if h, ¢*/(9*2P)
— ¢, with 0 < ¢ < o,

Just to formalize the application to SDE’s, we can record the following
proposition, which follows from Theorem 1 of Talay and Tubaro (1990).

PROPOSITION 1. Under Condition A, let Z(h) = f()f%'/h) and Z = f(Xy),
where X is the solution of (1). For p = 1 or p = 2, let X" be the solution of the
first-order (Euler) scheme (2) or of one of the second-order schemes of Talay
(1984, 1986), respectively. Then the conclusions of Theorem 1 apply for p =1
or p = 2, respectively.

We can also view the result in terms of the asymptotic relation between
the number % of Monte Carlo simulations and the size # of a time interval.
The theorem implies that, asymptotically, it is optimal to have % increasing
at the order of A~2?. For instance, with the Euler scheme (p = 1), the
number of simulations should quadruple with each doubling of the number of
time intervals. With a second-order scheme, the number of simulations
should be on the order of the number of time intervals to the fourth power
and so on. Similarly, with an optimal Euler scheme, asymptotically speaking,
for each doubling of the number of time intervals the root-mean-squared
estimation error is halved. For an asymptotically optimal second-order scheme
such as the Milshtein (1978) scheme (for N = 1) or Talay (1984, 1986) scheme
(for N > 1), for each doubling of the number of time intervals, the root-
mean-squared estimation error is reduced by a factor of 4.

The option pricing example shown in the next section has estimation
errors for finite samples that are consistent with this asymptotic error
behavior. Numerical examples given by Kloeden and Platen (1992) are also
consistent with this predicted behavior.

3. An option pricing example. We illustrate the results with a simple
option pricing example. We assume a constant continuously compounding
interest rate r. Under a given probability measure @, an asset price process
X is assumed to satisfy a stochastic differential equation of the form

(8) dX, = —rX, dt + o X} dB,,

where o # 0 and y € [0.5, 1] are constant parameters. [In order to formally
map into the setting of the previous sections, we actually take the diffusion
function b to be given by b(x) = o x” for x > 0 and b(x) = 0 otherwise.] This
is the so-called constant-elasticity-of-variance model of Cox (1975) and Cox
and Ross (1976), which specializes to the Black and Scholes (1973) model for
v = 1. As explained by Harrison and Kreps (1979) [following on Black and
Scholes (1973) and Cox and Ross (1976)], the absence of arbitrage implies
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that a financial security, whose payoff at time T is a finite-variance random
variable Y measurable with respect to the sample path {X,: ¢ € [0, T]}, has
the initial price E(e "7Y), where E denotes expectation under @. We could
take, for example, the case examined by Black and Scholes of a European call
option on the asset with strike price K and expiration date T, in which case
Y = (X; — K)*. For simplicity, however, we take the rescaling Y = e"7(X, —
K)*, so that in our main application we can take f(x) = (x — K)*.

For the Black—Scholes special case (y = 1), all of the regularity required by
Condition A is satisfied, except for the single point K at which f is not
differentiable. In this particular case, however, f can be uniformly well
approximated from above by a C* family of functions {f;: & € (0, 1)}, where

x—K+\(x—K)*+8

fs(x) = 2

Of course, f; satisfies the polynomial growth condition of Condition A. If we
take & to be of order 4~ 2P, we therefore preserve the quality of the approxi-
mation given in the previous proposition. Even this smoothing of f is
unnecessary, as shown in an as yet unpublished work by Bally and Talay
(1995).

For vy € [0.5, 1), however, little can be done to get into a situation covered
formally by Condition A. We nevertheless have convergence in distribution of
Z(h) = (X#/h - K)* to (X; — K)* by the results of Yamada (1976) (who in
fact shows convergence in mean of X} ,n to Xp) and by the dominated
convergence theorem.

Tables 1 and 2 show the results of an experiment for the particular case
0=02,r=0.1, K=40, X, = 42 and T = 0.5. Various cases are considered:

1. Euler and Milshtein discretization schemes;
2. y=05and y= 1,
3. &, normally distributed and uniformly distributed.

TABLE 1
Option price estimation: Euler scheme, sample root mean squared error (10 trials)

vy = 1.0 vy=05

n k Gaussian Uniform Gaussian Uniform
8 64 0.33386 0.59804 0.13023 0.11984
16 256 0.31877 0.36335 0.04152 0.06275
32 1,024 0.14807 0.11988 0.01742 0.03525
64 4,096 0.10105 0.09688 0.01356 0.01568
128 16,384 0.02606 0.04554 0.00854 0.00428
256 65,536 0.01732 - 0.01246 0.00402 0.00341
512 262,144 0.00636 0.01040 0.00160 0.00171
1024 1,048,576 0.00616 0.00468 0.00064 0.00065

Avg. reduction 1.97 2.16 2.22 2.23
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TABLE 2
Option price estimation: Milshtein scheme, sample root mean squared error (10 trials)

vy =10 vy =05
n kE Gaussian Uniform Gaussian Uniform
32 15 1.19471 1.22362 0.00041 0.00030
64 240 0.21429 0.41149 0.00009 0.00006
128 3,840 0.04765 0.08138 0.00001 0.000005
256 61,440 0.02003 0.02069 0.000002 0.000001
Avg. reduction 4.15 3.99 6.11 743

As shown by Talay (1984, 1986), under technical conditions, Assumptions
(1)-(iii) are not affected by substitution of normally distributed increments
with i.i.d. increments of other distributions with zero mean and unit variance,
under technical conditions.

In each case, as the number n = T'/h of time intervals is doubled, the
number %k of simulations of sample paths of X is increased by the factor
prescribed by Theorem 1 (a factor of 2 for the Euler scheme and a factor of 4
for the Milshtein scheme). Despite the fact that the assumptions of Theorem
1 are not satisfied in every case and that the conclusions of the theorem are
only guaranteed to apply asymptotically, Tables 1 and 2 show results that
conform well to the conclusions of the theorem. In particular, for the Euler
scheme, the sample root-mean-squared error of the estimated option price are
reduced at each time by a factor of roughly 2 (the average reduction factor is
shown in each case) and, for the Milshtein scheme, the sample root-mean-
squared errors are reduced at each stage by a factor of roughly 4.

4. Concluding remarks. For applications of Monte Carlo methods to
asset pricing problems in continuous time settings, see, for example, Boyle
(1977, 1988, 1990), Jones and Jacobs (1986) and Boyle, Evnine and Gibbs
(1989). For an alternative (large deviations) perspective on the tradeoff
between number of time periods and number of Monte Carlo simulations, see
Chapter 10 of Duffie (1992).

Extensions to several cases are possible. For example, with path-
dependent security payoffs, one can sometimes augment the state space so as
to reduce the problem to the setting considered here. Consider, for instance,
with N = 1, an “Asian” option paying (X, — (X, dt)* at time T. Let Y, = 0
and dY, = X, dt. Then (X,Y) is a diffusion in R? .whose drift and diffusion
have bounded derivatives of all orders, provided the same is true of X.
Extensions of this example are obvious. Next consider the case of stochastic
short-term interest rates of the form r, = R(X,) for some measurable R:
‘RN — R. The price of a claim to f(X;) at time T can be reduced, under
technical conditions and possibly after a change of measure, to the form
E[Y, f(Xp)], where dY, = —R(X,)Y, dt, with Y, = 1. [For a survey, see Duffie
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(1992).] By augmenting the state process from X to (X,Y), we have a Monte
Carlo problem of the same form, although strong conditions will be required
on R in order to apply the standard results on weak orders of convergence.
For a path-dependent option of the “lookback” payoff form X, — inf, X,, we
can once again augment the state process by including Y, = inf, _, X, and
reduce the problem to the computation of E(X, — Y;). Although (X,Y) is not
the solution of a standard stochastic differential equation, at least low orders
of convergence can be obtained from the strong convergence of X" to X. See,
for example, the same arguments used in Talay and Tubaro (1990). In order
to obtain high orders of convergence using the “Feynman-Kac” style of
approach for weak convergence used by Talay and Tubaro, however, one
would want to establish the smoothness of E(Y;) as a function of X,.

For more general path-dependent functionals, one would want to extend
the general theory of weak convergence to apply to functions on the sample
path space, with suitable growth conditions. Our theorem is of course applica-
ble whenever one can obtain an order of convergence of E[ f(X")] to E[ f(X)].

For the case of X which is a diffusion with reflection in a well-behaved
domain, we can immediately apply Theorem 1 by using the weak convergence
results for the discretizations of Slominski (1993, 1994) and Liu (1993). For
the case of diffusions that are stopped at a well-behaved boundary, we can
apply our theorem with the aid of the weak convergence results for discretiza-
tions given by Milshtein (1993).

We have allowed for a resource requirement that is of some general order
g in the discretization step #. While a time constraint would generally
require g = 1, one can imagine a setting in which parallel processing and the
need to consider a path-dependent payoff would call for a memory constraint
that is of an order g possibly higher than 1.
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