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Let �Xi; 1 ≤ i < ∞� be i.i.d. with uniform distribution on �0;1�d
and let M�X1; : : : ;Xnyα� be min�∑e∈T′ �e�αy T′ a spanning tree on
�X1; : : : ;Xn��. Then we show that for α > 0,

M�X1; : : : ;Xnyα� −EM�X1; : : : ;Xnyα�
n�d−2α�/2d →N�0; σ2

α;d�

in distribution for some σ2
α;d > 0.

1. Introduction. Let �X1; : : : ;Xn� be a finite subset of �d, d ≥ 2. For
given α > 0, a minimal spanning tree (MST) on �X1; : : : ;Xn� with weight
function ψα�y� = yα is a connected graph T such that

M�X1; : : : ;Xn� =M�X1; : : : ;Xnyα�
=
∑
e∈T
�e�α

= min
{∑
e∈T′
�e�αy T′ a spanning tree on �X0; : : : ;Xn�

}
;

where �e� = �Xi−Xj� is the Euclidean length of the edge e = �Xi;Xj�. When
�Xi; 1 ≤ i < ∞� are i.i.d. with common distribution µ, which has compact
support in �d, d ≥ 2, Steele (1988) showed that for 0 < α < d,

n−�d−α�/dM�X1; : : : ;Xnyα� → c�α;d�
∫

�d
f�x��d−α�/d dx a.s.;(1.1)

where f is the density of the absolutely continuous part of µ and c�α;d� is a
strictly positive but finite constant which depends only on the power α and the
dimension d. Moreover, if �Xi; 1 ≤ i <∞� are i.i.d. with uniform distribution
on �0;1�d, then Aldous and Steele (1992) showed that

M�Xi; : : : ;Xnyd� → c�d;d� in L2:(1.2)

In this paper we prove a central limit theorem for minimal spanning trees on
uniformly distributed points in �0;1�d. Ramey (1982) already demonstrated
one approach to this problem. He argued that a certain property of continuum
percolation would imply a central limit theorem for minimal spanning trees for
d = 2, α = 1. However, he did not prove this property of continuum percolation,
and only very recently did Alexander (1996) prove a central limit theorem by
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Ramey’s approach for (the Poissonized version of) minimal spanning trees for
d = 2, α = 1.

Here we use a completely different approach to the problem. We represent
M�X1; : : : ;Xnyα� −EM�X1; : : : ;Xnyα� as the sum of martingale differences
[see (4.2) below] and apply Lévy’s martingale central limit theorem [see Lévy
(1937), Theorem 67.2]. In this way the proof of the central limit theorem for
minimal spanning trees is reduced to a kind of weak law of large numbers
estimate for certain conditional variances. Even though a weak law of large
numbers is much easier to obtain, in general, than a central limit theorem, it
still requires some independence. The required independence will be obtained
from a (deterministic) monotonicity property for minimal spanning trees which
allows us to approximate the conditional variances by quantities which “de-
pend only locally” on the Xi. This takes a surprising amount of work. This is
somewhat annoying because the monotonicity and the approximation which
we prove in Propositions 3 and 4 seems much stronger than needed for the
weak law of large numbers statement (4.19). Another drawback of our ap-
proach is that it is not quantitative. Further ideas are needed to obtain an
error estimate in our central limit theorem.

The next theorem is our principal result.

Theorem 1. Let �Xi; 1 ≤ i ≤ n� be i.i.d. with uniform distribution on
�0;1�d; d ≥ 2. Then; for any given α > 0;

M�X1; : : : ;Xnyα� −EM�X1; : : : ;Xnyα�
n�d−2α�/2d ⇒N�0; σ2

α;d�(1.3)

for some σ2
α;d > 0.

It is more natural for the proof to rescale the variables, so that the density
of the point set �X1; : : : ;Xn� remains constant. In our proof we shall therefore
work with n i.i.d. points which are uniform in �0; n1/d�d. This also allows us
to work with more general weight functions than ψα�y� = yα. Theorem 1 is
then a simple rescaled version of the following result.

Theorem 2. Let ψ: �0;∞� → �0;∞� be a strictly increasing function such
that

1
y

log ψ�y� → 0 as y→∞:(1.4)

Let X
�n�
1 ;X

�n�
2 ; : : : ;X

�n�
n be i.i.d. and uniform on �0; n1/d�d and define

M�X�n�1 ; : : : ;X
�n�
n � =M�X�n�1 ; : : : ;X

�n�
n yψ�

= min
{∑
e∈T′

ψ��e��: T′ a spanning tree on �X�n�1 ; : : : ;X
�n�
n �

}
:

(1.5)
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Then

M�X�n�1 ; : : : ;X
�n�
n yψ� −EM�X�n�1 ; : : : ;X

�n�
n yψ�

n1/2
⇒N�0; σ2

ψ;d�(1.6)

for some σ2
ψ;d > 0.

To avoid a few technicalities, one step in the proof (Lemma 10) will be car-
ried out only for ψ = ψα. Details for general strictly increasing ψ are available
from the authors.

A byproduct of our proof concerns a linearity property of nα/dEM�X1; : : :,
Xnyα�. Alexander (1994) and Redmond and Yukich (1994) proved in the case
α = 1 with i.i.d. uniformXi on �0;1�d that for a suitable constant 0 < c�1; d� <
∞,

�EM�X1; : : : ;Xny1� − c�1; d�n�d−1�/d� = O�n�d−2�/d�:(1.7)

The following is a corollary to the proof of Lemma 13.

Corollary 1. Under the hypotheses of Theorem 1, there exists for each
α > 0 a constant ρ�α;d� > 0 such that

lim
n→∞

nα/d−1E�M�X1; : : : ;Xnyα�� = ρ�α;d�(1.8)

and

lim
n→∞
��n+ 1�α/dE�M�X1; : : : ;Xn+1yα�� − nα/dE�M�X1; : : : ;Xnyα���

= ρ�α;d�:
(1.9)

Remark. We would like to mention here that Janson (1995) has proven
a central limit theorem for a minimal spanning tree on a large number of
points X1; : : : ;Xn under the assumption that all the “distances” between all
the pairs of points are i.i.d. uniform on �0;1�. This setup is sometimes called
the complete graph case, whereas our situation is described as the Euclidean
case.

In Section 2 we collect all deterministic properties of MST which we need. In
particular we prove the monotonicity ofD�A ;B� [see (2.5) for the definition of
D�A ;B�]. In Section 3 we estimate various moments of D�A ;B�. In Section
4 we prove Theorem 2 in a Poissonized version first and then the original
version of Theorem 2.

In this paper there are lots of strictly positive but finite constants whose
specific values are not of interest to us. We denote them by Ci, C�q� or Dd.
For any random variable X and probability distribution µ, we write µ�X� for
the expectation of X with respect to µ.

2. Monotonicity of D�AAA;BBB �. In this section we study two algorithms
for an MST: Kruskal’s greedy algorithm and the “add and delete” algorithm.
Using these algorithms we establish the monotonicity of D�A ;B�.
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Kruskal’s greedy algorithm. LetG=�V;E;w� be a connected weighted
graph with vertex set V, edge set E and weight function w: E→ �0;∞�. As-
sume that the cardinalities �V�, �E� of V, E, respectively, are finite. A minimal
spanning tree on �G;w� is a tree T with vertex set V (which makes it a span-
ning tree) and edge set contained inE (which we express by T ⊂ E for brevity)
and such that

w�T� x=
∑
e∈T

w�e� = min
{∑
e∈T′

w�e�: T′ ⊂ E; T′ a spanning tree
}
:

A minimal spanning tree T on G can be constructed by the following greedy
algorithm due to Kruskal (1956).

Step 1. Let T0 = φ and E0 = E \ �e ∈ E: �e� is a circuit�.
Step 2. Once Ti and Ei have been determined, choose an edge ei+1 ∈ Ei

such that w�ei+1� = mine∈Ei
w�e� and construct Ti+1 by adding the edge ei+1

to Ti, that is, take Ti+1 = Ti ∪ �ei+1�. Then take

Ei+1 = �e ∈ Ei \ �ei+1�: Ti+1 ∪ �e� does not contain a circuit�:
If there exists no such edge ei+1, that is, if Ei = φ, then let T = Ti and stop.

Step 3. Replace i by i+ 1. Return to Step 2.

Proposition 1. Let G = �V;E;w� be a connected weighted graph with
�V� < ∞, �E� < ∞ and let T ⊂ E be a tree obtained by Kruskal’s greedy
algorithm. Then T is an MST on �G;w�.

See Theorem 3A of Chartrand and Lesniak (1986) for the proof.

Add and delete algorithm. Let G = �V;E;w� and G′ = �V′;E′;w′� be
two connected weighted graphs with �V� <∞, �E� <∞ and such that V′ = V
or V′ = V∪�v′� for a single vertex v′ /∈ V and E′ = E∪�e′1; : : : ; e′n� for a finite
number of edges e′i /∈ E. Note that the connectedness of G′ requires that if v′

is present, at least one edge e′i connects v′ to some v ∈ V. We assume that
w′�e� = w�e� for all e ∈ E so that w′ is an extension of w. We shall therefore
drop the prime from the w′ in the sequel and denote the weight function on
G′ also by w.

Now let T be an MST on G and assume that we want to construct an
MST T′ on G′. We may, of course, construct an MST T′ by directly applying
the greedy algorithm to the graph G′. However, the greedy algorithm is not
“effective” in this case, because it does not use the fact that T is already an
MST on G. We propose the following add and delete algorithm to construct an
MST T′ on G′ from T.

Step 1′. Let E′ \E = �e′1; e′2; : : : ; e′n� in some order and take T′0 = T.
Step 2′. When T′i is given, add e′i+1 to T′i, that is, form T′i ∪ �e′i+1�. The

first time we add an edge to T′i which is incident to v′ /∈ V there will be
no circuit in T′i ∪ �e′i+1� and we take T′i+1 = T′i ∪ �e′i+1�. In all other cases,
T′i ∪ �e′i+1� contains a unique circuit C′i+1. Choose an edge f′i+1 ∈ C′i+1 such
that w�f′i+1� = maxe∈C′i+1

w�e�. Delete f′i+1 from T′i ∪ �e′i+1�. That is, define
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T′i+1 = T′i ∪ �e′i+1� \ �f′i+1�. If i = n and there exists no more edges e′i+1, then
let T′ = T′i and stop.

Step 3′. Replace i by i+ 1. Return to Step 2.
In order to prove that a tree T′ on V′ obtained by the add and delete

algorithm is an MST on G′, we need the following criterion for a spanning
tree to be an MST.

Lemma 1. Let G = �V;E;w� be a connected weighted graph with �V� <∞,
�E� < ∞, and let T ⊂ E be a spanning tree on V. Then T is an MST on V if
and only if for each edge e ∈ E \T;

w�e� ≥ max�w�f�: f ∈ C \ �e��;(2.1)

where C is the unique circuit in T ∪ �e�.

Proof. Let T be an MST on V. If there exists an edge e ∈ E \T such that
(2.1) fails, then there exists an edge f ∈ C \ �e� such that w�e� < w�f�. Note
that f ∈ T. Let T′ = T∪ �e� \ �f�. Then T′ is a spanning tree on V such that

∑
g∈T′

w�g� −
∑
g∈T

w�g� = w�e� −w�f� < 0:

This contradicts the fact that T is an MST on V, so for each e ∈ E \T; (2.1)
holds.

Conversely, let T be a spanning tree on V such that for each e ∈ E \ T,
(2.1) holds. Assume that T is not an MST on V. For the moment assume that
w�f1� 6= w�f2� for all f1 6= f2. Let Tg = �e1; : : : ; en� be an MST on V obtained
by the greedy algorithm, where ei is the ith edge obtained by the algorithm.
Let ei0 be the first edge in Tg such that ei0 /∈ T, that is, ei ∈ T for 1 ≤ i < i0
but ei0 /∈ T (note that necessarily T 6= Tg if T is not an MST). Add ei0 to T;
then T∪�ei0� contains a circuit C. This circuit C must contain an edge e /∈ Tg
because Tg does not contain a circuit. By (2.1) and by the assumption that
w�f1� 6= w�f2� for f1 6= f2, w�e� < w�ei0�. Now e /∈ Tg and e1; : : : ; ei0−1; e do
not form a circuit, because all those edges occur in T. Moreover, w�e� < w�ei0�.
Therefore, ei0 cannot be the i0th edge obtained by the algorithm for Tg. This
contradiction shows that T is an MST on V.

If w�f1� = w�f2� for some f1 6= f2, then we apply the preceding argument
to an MST Tg = �e1; : : : ; en� obtainable by the greedy algorithm and with the
following additional property:

τ�Tg;T� = max�τ�T′g;T�: T′g an MST obtainable by the greedy algorithm�;
where, for T′g = �e′1; e′2; : : : ; e′n�,

τ�T′g;T� = max�j+ 1: e′1 ∈ T; e′2 ∈ T; : : : ; e′j ∈ T�:
Let ei0 be the first edge in Tg such that ei0 /∈ T, that is, τ�Tg;T� = i0. The
tree T ∪ �ei0� contains a circuit C, and C contains an edge e /∈ Tg. By (2.1),
w�e� ≤ w�ei0�. If we can find such an e with w�e� < w�ei0�, then we reach a
contradiction as before. Assume then that w�e� = w�ei0� and construct an MST
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T′′g by the following greedy algorithm. For i ≤ i0 − 1 pick ei as the ith edge of
T′′g. At stage i0 pick e instead of ei0 as the i0th edge of T′′g. Then complete T′′g
by the greedy algorithm. This construction leads to

τ�T′′g;T� ≥ τ�Tg;T� + 1;

which is again a contradiction, so T is an MST on V. 2

Proposition 2. Let G = �V;E;w� be a connected weighted graph with
�V� < ∞, �E� < ∞, and let T be an MST on V. Let G′ = �V′;E′;w� be a new
connected weighted graph obtained by adding at most one vertex v′ /∈ V to V
and a finite number of weighted edges e′ /∈ E to E; and with w′ an extension
of w. Let T′ be a spanning tree of V′ obtained from T by the add and delete
algorithm. Then T′ is an MST on V′.

Proof. Let e /∈ T′. We will show that (2.1) holds, that is, w�e� ≥
max�w�f�: f ∈ C \ �e��, where C is the unique circuit in T′ ∪ �e�. Then by
Lemma 1, T′ is an MST on V′. Let the edges added to E be �e′1; : : : ; e′n� and
let T′i be the ith tree obtained in the add and delete algorithm as described
above. Thus T′i+1 = T′i ∪ �e′i+1� \ �f′i+1� except for the first i for which e′i+1 is
incident to v′; in this case T′i+1 = T′i ∪ �e′i+1�. If e ∈ E \T, then, since T is an
MST on V, by Lemma 1 there exists a circuit C′0 in T′0 ∪ �e� = T ∪ �e� with
w�e� ≥ max�w�f�: f ∈ C′0 \ �e��. If e ∈ T, but e /∈ T′, then e ∈ T′0 but e /∈ T′n
so that there is some i with e ∈ T′i−1 but e /∈ T′i, that is, e = f′i and e belongs
to a circuit C′i in T′i ∪ �e′i� and

w�e� = max�w�f�: f ∈ C′i�:(2.2)

Such a C′i also exists if e is one of the edges e′1; : : : ; e
′
n which does not belong

to the final T′.
Now let e /∈ T′ and C′i as just described. If C′i \ �e� ⊂ T′, then, by virtue

of (2.2), (2.1) holds. If not, let T′j, j > i, be the first spanning tree after T′i
in our sequence such that C′i \ �e� 6⊂ T′j. That is, C′i \ �e� ⊂ T′j ∪ �f′j� but
C′i \ �e� 6⊂ T′j. Then f′j ∈ C′i \ �e�. By choice of f′j, T

′
j ∪ �f′j� contains a circuit

C′j, f
′
j ∈ C′j, and w�f′j� ≥ max�w�f�: f ∈ C′j \�f′j��. Therefore (see Figure 1),

T′j ∪ �e� contains a circuit Cj ⊂ ��C′i \ �f′j�� ∪ �C′j \ �f′j��� such that

w�e� ≥ max�w�f�: f ∈ C′i \ �e��
= max�w�f�: f ∈ C′i \ �e; f′j�� ∨w�f′j�
≥ max�w�f�: f ∈ C′i \ �e; f′j�� ∨max�w�f�: f ∈ C′j \ �f′j��
≥ max�w�f�: f ∈ Cj \ �e��:

Therefore, if C′i \ �e� 6⊂ T′, then for some j > i there exists a circuit Cj in
T′j∪�e�withw�e� ≥ max�w�f�: f ∈ Cj\�e��. We can now repeat the argument
with C′i replaced by Cj. Applying this argument finitely many times, we see
that there exists a circuit C in T′ ∪ �e� with w�e� ≥ max�w�f�: f ∈ C \ �e��,
that is, (2.1) holds. 2
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Fig. 1. The circuit Cj in �C′i \ �f′j�� ∪ �C′j \ �f′j��. Circuit Cj consists of the boldly drawn parts.

Lemma 2. Let G = �V;E;w� be a connected weighted graph with �V� <∞
and �E� <∞. If there exists a path π = �e1; : : : ; en� in G from v1 ∈ V to v2 ∈ V
such that w�ei� ≤ λ; 1 ≤ i ≤ n; then in any MST T on G there exists a path
π ′ = �e′1; : : : ; e′m� in T from v1 to v2 such that w�e′j� ≤ λ, 1 ≤ j ≤m.

Proof. Let T be an MST on G. Then either ei is an edge in T or, if ei is
not an edge in T, by Lemma 1, T ∪ �ei� contains a circuit Ci such that for
all edges f in Ci we have w�f� ≤ w�ei� ≤ λ. Thus the endpoints of ei can be
connected in T by a path with edges e with w�e� ≤ λ. This is true for each i,
so also v1 and v2 are connected in T by a path with edges e with w�e� ≤ λ. 2

Let ψ: �0;∞� → �0;∞� be a given function. From now on we shall take our
weight function to be of the following form: for the edge �x;y� between x ∈ �d

and y ∈ �d,

w�x;y� = ψ���x;y���;(2.3)

where ��x;y�� is the Euclidean length of the line segment from x to y. Accord-
ingly, we make the following definition for a finite subset A of �d:

M�A � =M�A yψ�

= min
{ ∑

�x;y�∈T
ψ���x;y���: T a spanning tree on A

}
:

(2.4)

Note that M�A yψ� is just the weight of a minimal spanning tree for G =
�A ;E;w� when w is given by (2.3) and E consists of all edges between any
two points of A . Define further, for two disjoint finite subsets A ; B of �d,

D�A ;B� = D�A ;Byψ� =M�A ∪B� −M�B�:(2.5)

Let Qn be the cube

Qn = �0; n1/d�d:
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For x = �x1; : : : ; xd�, y = �y1; : : : ; yd� ∈ �d and L, l > 0, we write

B�x;y� =
d∏
i=1

�xi; yi�;

C�x� =
d∏
i=1

�xi; xi + 1�;

A�B�x;y�y l;L� =
d∏
i=1

�xi − l−L;yi + l+L� \
d∏
i=1

�xi − l; yi + l�:

We shall call B�x;y�, C�x� and A�B�x;y�; l;L� a rectangle, a cube and an
annulus, respectively.

Definition. Let δ > 0. A separating set of width δ for the rectangle B�x;y�
is a finite set S in the annulus A�B�x;y�y1; δ� with the property (see Fig-
ure 2):

Each line segment from ∂5�xi − 1; yi + 1� to ∂5�xi − 1− δ;
yi + 1+ δ� passes within distance 1/3 of some point of S .

(2.6)

Most of the time we shall consider situations in which all vertices of interest
lie in Qn = �0; n1/d�d. For weight functions w of the form w�e� = ψ��e�� with ψ
strictly increasing, it is reasonable to think of the edge �x;y� as the straight
line segment between x and y. Thus the edges of interest will also lie in Qn.
In this situation it is useful to relax (2.6) to the following property:

Each straight line segment from a point in ∂5�xi − 1; yi +
1� ∩Qn to another point in ∂5�xi − 1 − δ;yi + 1 + δ� ∩Qn

passes within distance 1/3 of some point S ⊂ Qn.
(2.7)

Fig. 2. A separating set S for the rectangle B�x;y�. The asterisk �∗� denotes a point of S within
distance 1/3 of the dashed line segment.
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We call a set S ⊂ Qn ∩A�B�x;y�y1; δ� with this property an n-separating set
of width δ for the rectangle B�x;y�. The reader should note that if ∂5�xi −
1 − δ;yi + 1 + δ� lies outside Qn, then S = φ satisfies (2.7) so that φ is an
n-separating set. The term “separating set” is justified by the next lemma.

Lemma 3. Let ψ be strictly increasing. If S ⊂ A�B�x;y�y1; δ� is a sepa-
rating set for the rectangle B�x;y�; then in any MST T (with weight function
ψ) on any finite subset A of �d containing S (with all edges between a pair
of vertices in A allowed), there are no edges between vertices in B�x;y� and
vertices in �d \5�xi−2−δ;yi+2+δ�. If A ⊂ Qn; then the same result holds
for an n-separating set S .

Proof. We only deal with the first case, when S is unrestricted; the case
when all vertices and S are restricted to Qn is essentially the same.

Assume T contains an edge �v1; v2� between v1 ∈ B�x;y� and v2 ∈ �d \
5�xi − 2 − δ;yi + 2 + δ�. This edge �v1; v2� contains a line segment from
∂5�xi − 1; yi + 1� to ∂5�xi − 1 − δ;yi + 1 + δ�, and hence there exists an
s ∈ S ⊂ A within distance 1/3 of this edge. Removing the edge �v1; v2�
breaks up T into two components. If v1 and s lie in the same component, then
connect v2 to s. If v2 and s lie in the same component, then connect v1 to s. In
each case we obtain a new spanning tree T′. We claim that

∑
e∈T

ψ��e��−
∑
e∈T′

ψ��e�� ≥ ψ���v1; v2���−max�ψ���v1; s���; ψ���v2; s���� > 0:(2.8)

This leads to a contradiction. To prove our claim, note that ��v1; s�� ≥ 1 and
��v2; s�� ≥ 1 because B�x;y� has distance 1 to ∂5�xi−1; yi+1� and �d \5�xi−
2− δ;yi + 2+ δ� has distance 1 to ∂5�xi − 1− δ;yi + 1+ δ�. Let t be a point
on the line segment �v1; v2� such that ��t; s�� ≤ 1/3. Then

��v1; v2�� = ��v1; t�� + ��v2; t��
≥ ��v1; s�� + ��v2; s�� − 2��s; t��
= max���v1; s��; ��v2; s��� +min���v1; s��; ��v2; s��� − 2��s; t��

≥ max���v1; s��; ��v2; s��� + 1− 2
3

> max���v1; s��; ��v2; s���:
The last inequality in (2.8) now follows from the strict monotonicity of ψ. 2

The next proposition is about the “monotonicity” of D�A ;B�.

Proposition 3. Let ψ be strictly increasing and let S ⊂ A�B�x;y�y1; δ�
be a separating set for the rectangle B�x;y�. Let A and B be finite subsets of
�d such that A ⊂ B�x;y�; S ⊂ B and A ∩B = φ. Then for any finite subset
B′ of �d such that B ∩B′ = φ and

B′ ∩5�xi − 2− δ;yi + 2+ δ� = φ;(2.9)
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we have

D�A ;B� ≤ D�A ;B ∪B′�:(2.10)

Proof. If B′ = �v1; : : : ; vk�, then it suffices to prove

D�A ;B ∪ �v1; : : : ; vr�� ≤ D�A ;B ∪ �v1; : : : ; vr; vr+1��

for r = 0;1; : : : ; k − 1. Thus we may restrict ourselves to the case when we
add only one point to B, say

B ∪B′ = B ∪ �v�:

Also, if A = �u1; u2; : : : ; ul�, then

D�A ;B� =M�A ∪B� −M�B�

=
l∑

r=1

�M�B ∪ �u1; : : : ; ur�� −M�B ∪ �u1; : : : ; ur−1���

and

D�A ;B ∪B′� =
l∑

r=1

�M�B ∪B′ ∪ �u1; : : : ; ur�� −M�B ∪B′ ∪ �u1; : : : ; ur−1���:

We therefore only have to prove

M�B ∪ �u1; : : : ; ur�� −M�B ∪ �u1; : : : ; ur−1��
≤M�B ∪B′ ∪ �u1; : : : ; ur�� −M�B ∪B′ ∪ �u1; : : : ; ur−1��

for r = 1;2; : : : ; l. Thus it suffices to prove the proposition for the case A =
�u�, B′ = �v�.

Let �f1; : : : ; fm� be the edges from v to all the vertices of B in order of
increasing length; m is the cardinality of the set B. Let E be the set of edges
between all pairs of B. Let T be an MST for �B;E�. Then by the add and
delete algorithm construct an MST Tv on B ∪ �v�. Next let �h1; : : : ; hm� be
the edges from u to B again in order of increasing length. Again apply the add
and delete algorithm to T to construct an MST Tu on B ∪ �u�. Also construct
an MST Tvu on B ∪ �u; v� by applying the add and delete algorithm to Tv.
Since B contains a separating set S for B�x;y�, by Lemma 3, Tvu does not
contain the edge �u; v� (recall (2.9) and u ∈ A ⊂ B�x;y�). So when we apply
the add and delete algorithm to Tv in order to construct Tvu, we do not need
to add the edge �u; v�. Thus when carrying out the add and delete algorithm
to form Tvu from Tv, we only have to add the same set of edges h1; : : : ; hm
from u to B, as when forming Tu from T. Let Ti be the tree obtained from T
after adding f1; : : : ; fi and deleting appropriate edges g2; : : : ; gi, that is,

Ti = T ∪ �f1; : : : ; fi� \ �g2; : : : ; gi�:
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By Proposition 2, Ti is an MST on �B ∪ �v�; E ∪ �f1; : : : ; fi��. Also, let Ti; j
be the tree obtained from Ti after adding h1; : : : ; hj and deleting appropriate
edges ki;2; : : : ; ki; j. We shall prove

∑
e∈Ti; j+1

ψ��e�� −
∑

e∈Ti; j
ψ��e�� ≤

∑
e∈Ti+1; j+1

ψ��e�� −
∑

e∈Ti+1; j

ψ��e��(2.11)

for i = 1; : : : ;m− 1 and j = 1; : : : ;m− 1. This will give (by summing over j)
∑

e∈Ti;m
ψ��e�� −

∑
e∈Ti;1

ψ��e�� ≤
∑

e∈Ti+1;m

ψ��e�� −
∑

e∈Ti+1;1

ψ��e��

and, by iteration,
∑

e∈T1;m

ψ��e�� −
∑

e∈T1;1

ψ��e�� ≤
∑

e∈Tm;m
ψ��e�� −

∑
e∈Tm;1

ψ��e��:(2.12)

Note that T1;m is the tree obtained by adding f1 and then adding h1; : : : ; hm
and deleting k1;2; : : : ; k1;m. As long as we only add the single edge f1 from v
to B, v is a leaf and f1 is never deleted, so that T1;m is the same as Tu plus
the single edge f1. Therefore,

∑
e∈T1;m

ψ��e�� =M�B ∪ �u�� + ψ��f1��:

Similarly
∑

e∈T1;1

ψ��e�� =M�B� + ψ��f1�� + ψ��h1��;

∑
e∈Tm;m

ψ��e�� =M�B ∪ �u; v��;

∑
e∈Tm;1

ψ��e�� =M�B ∪ �v�� + ψ��h1��:

Thus (2.12) says

M�B ∪ �u�� −M�B� ≤M�B ∪ �u; v�� −M�B ∪ �v��:
This is the proposition for the case A = �u�, B′ = �v�. To prove the proposi-
tion, it therefore suffices to prove (2.11).

To prove (2.11) we constructTi+1; j andTi; j+1. By Proposition 2,Ti; j, which
is obtained by first adding f1; : : : ; fi toT and then adding h1; : : : ; hj toT, is an
MST on �B∪�u; v�; E∪�f1; : : : ; fi; h1; : : : ; hj��. To constructTi+1; j we should
first add f1; : : : ; fi+1 and then h1; : : : ; hj. By Proposition 2, Ti+1; j is then an
MST on �B∪�u; v�;E∪�f1; : : : ; fi+1; h1; : : : ; hj��. Consider instead of this the
following construction. First construct Ti; j, then add fi+1 and delete an edge
of maximal weight in the circuit formed in Ti; j∪�fi+1�. Let this circuit be 0i; j
and the deleted edge γi; j and let the resulting tree be Ti+1; j. By Proposition
2, Ti+1; j is also an MST on �B ∪ �u; v�; E ∪ �f1; : : : ; fi+1; h1; : : : ; hj��. We
may therefore replace

∑
e∈Ti+1; j

ψ��e�� in (2.11) by
∑
e∈Ti+1; j

ψ��e��. Similarly, we
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may form a tree Ti; j+1 by adding hj+1 to Ti; j and deleting an edge δi; j of
maximal weight from the circuit 1i; j in Ti; j ∪ �hj+1�. We may then replace∑
e∈Ti; j+1

ψ��e�� in (2.11) by
∑
e∈Ti; j+1

ψ��e��. Finally we can form a tree Ti+1; j+1

by adding first fi+1 to Ti; j and deleting γi; j; this gives Ti+1; j. Then add hj+1

and delete the edge δi; j of maximal weight in the circuit 1i; j of Ti+1; j∪�hj+1�.
Again

∑
e∈Ti+1; j+1

ψ��e�� =∑e∈Ti+1; j+1
ψ��e��. This gives

∑

e∈Ti; j+1

ψ��e�� −
∑

e∈Ti; j
ψ��e�� = ψ��hj+1�� − ψ��δi; j��;

∑

e∈Ti+1; j+1

ψ��e�� −
∑

e∈Ti+1; j

ψ��e�� = ψ��hj+1�� − ψ��δi; j��:

Thus (2.11) is equivalent to

ψ��δi; j�� ≥ ψ��δi; j��:(2.13)

This, however, is easy. If γi; j /∈ 1i; j, then 1i; j is present in Ti+1; j ∪ �hj+1� =
Ti;j ∪ �fi+1; hj+1� \ �γi; j�. Consequently, 1i; j = 1i; j, δi; j = δi; j and (2.13)
is trivial. If γi; j ∈ 1i; j, the situation is as in Figure 3. Circuit 1i; j is formed
from a piece of 1i; j and a piece of 0i; j, but then by the choice of δi; j,

ψ��δi; j�� ≥ max
e∈1i; j

ψ��e��y

γi; j ∈ 1i; j and the choice of γi; j in 0i; j further imply that

ψ��δi; j�� ≥ ψ��γi; j�� ≥ max
e∈0i; j

ψ��e��:

Fig. 3. The trees Ti+1; j = Ti; j ∪ �fi+1� \ �γi; j�, Ti; j+1 = Ti; j ∪ �hj+1� \ �δi; j� and Ti+1; j+1 =
Ti+1; j ∪ �hj+1� \ �δi; j�. Edges γi; j, δi; j and δi; j are the longest edges in the circuits 0i; j, 1i; j,
and 1i; j, respectively; 1i; j is the boldly drawn circuit and 1i; j is the dashed circuit.
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Therefore

ψ��δi; j�� ≥ max
e∈1i; j∪0i; j

ψ��e�� ≥ max
e∈1i; j

ψ��e�� = ψ��δi; j��:

Thus (2.13) holds. [In fact this argument shows that if δi; j ∈ 1i; j \ 0i; j, then
ψ��δi; j�� = ψ�δi; j�, but we do not need this fact.] 2

We close this section by stating that the degree of an MST is “uniformly
bounded.”

Lemma 4. Let ψ be strictly increasing. Then there is a finite constant Dd;
which depends only on d; such that; for any MST T on a finite subset of �d;
T has maximum vertex degree bounded by Dd.

The same proof works for all strictly increasing weight functions. See
Lemma 4 of Aldous and Steele (1992) or Talagrand [(1995), proof of
Lemma 11.3.1].

3. Moment estimates. In Section 4 we represent M�X�n�1 ; : : : ;X
�n�
n � −

EM�X�n�1 ; : : : ;X
�n�
n � as the sum of martingale differences and then we approxi-

mate (in the sense of Proposition 4) the martingale differences by some random
variables which depend only on the “local configuration of �X�1�1 ; : : : ;X

�n�
n �.”

This can be justified by the estimates of moments in this section.
We denote the (random) set of a Poisson point process of density λ in �d by

P �λ� and the corresponding probability measure by µP�λ�. If we are interested
in the process only on Qn, we denote the Poisson points and the corresponding
probability measure by Pn�λ� and µPn�λ�, respectively. Thus Pn�λ� = P �λ� ∩
Qn.

In the case λ = 1 we simplify the notations P �1�, µP�1�, Pn�1� and µPn�1� to
P , µP, Pn and µPn , respectively.

Lemma 5. There exist constants 0 < C1; C2 <∞ such that for all rectangles
B�x;y� and for 1/2 ≤ λ ≤ 2;

µP�λ��there is no separating set of width δ of Poisson points

for the rectangle B�x;y� in the annulus A�B�x;y�y1; δ��
≤ C1γ

2�d−1� exp�−C2δ�;
(3.1)

where γ =
[∑�yi −xi + 2+ 2δ�2

]1/2
is the diameter of the rectangle 5�xi − 1−

δ;yi + 1+ δ�. Moreover; for B�x;y� ∩Qn 6= φ,

µPn�λ� �there is no n-separating set of width δ of Pn�λ�-points

for the rectangle B�x;y� in the annulus A�B�x;y�y1; δ��
≤ C1γ

2�d−1� exp�−C2δ�:
(3.2)
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Proof. Partition ∂5�xi − 1; yi + 1� into at most C3�γ − 2δ�d−1 �d − 1�-
dimensional cubes of edge length at most 1/�3�d − 1�1/2�. Similarly partition
∂5�xi − 1 − δ;yi + 1 + δ� into C3γ

d−1 such cubes. Assume there exists a line
segment from ∂5�xi−1; yi+1� to ∂5�xi−1−δ;yi+1+δ� such that no point
from the Poisson process in the annulus 5�xi−1−δ; xi+1+δ�\5�xi−1; yi+1�
lies within distance 1/3 of the segment. Let the segment run from a point p1
in a �d−1�-dimensional cube F1 on ∂5�xi−1; yi+1� to a point p2 in a �d−1�-
dimensional cube F2 on ∂5�xi−1−δ;yi+1+δ�. Let fi be the center of Fi and
note that �fi − pi� ≤ 1/6. Then no Poisson point π in the annulus lies within
distance 1/6 from the line segment connecting f1 ∈ F1 to f2 ∈ F2, because
�π−αp1−�1−α�p2� ≤ �π−αf1−�1−α�f2� + 1/6, 0 ≤ α ≤ 1. For each f1 and
f2,

µP�λ��there is no Poisson point in the annulus within
distance 1/6 of the segment �f1; f2��

≤ C4 exp�−C2δ�:

The number of choices for each of F1 and F2 is at most C5γ
d−1 so that the

probability in (3.1) is at most

C1γ
2�d−1� exp�−C2δ�:

This proves (3.1) and the proof of (3.2) is essentially the same. 2

We shall also choosem vertices uniformly in the cubeQn and independently
of each other. We denote these random points by X�n�1 ; : : : ;X

�n�
m and denote the

set of these random points by Un�m�. The corresponding probability measure
governing Un�m� is denoted by µUn�m�. In the case m = n we simplify the
notations Un�m� and µUn�m� to Un and µUn , respectively.

Lemma 6. There exist constants 0 < C1; C2; C6; C7 < ∞ such that for all
rectangles B�x;y� with B�x;y� ∩Qn 6= φ and for all 3n/4 ≤m ≤ 5n/4

µUn�m��there is no n-separating set S ⊂ Un�m� for the

rectangle B�x;y� in the annulus A�B�x;y�y1; δ��
≤ C1γ

2�d−1� exp�−C2δ� +C6 exp�−C7n�;
(3.3)

where; as in Lemma 5; γ =
[∑�yi − xi + 2 + 2δ�2

]1/2
is the diameter of the

rectangle 5�xi − 1− δ;yi + 1+ δ�.

Proof. Choose points in Qn according to a Poisson process with density
1/2. If the Poisson process has l points in Qn with l ≤ m, then add m − l
independent points, chosen uniformly in Qn. If l > m, then choose m new
independent points uniformly in Qn. It is easy to see that the resulting set
of m points in Qn has the distribution µUn�m�. Therefore, since increasing the
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number of points can only create more separating sets, the left-hand side of
(3.3) is at most

µP�1/2��l > 3n/4� + µP�1/2��there is no n-separating set of
P �1/2�-points for the rectangle B�x;y�

in the annulus A�B�x;y�y1; δ��:
(3.4)

Now

µP�1/2��l > 3n/4� ≤ C6 exp�−C7n�:(3.5)

So (3.3) follows from (3.4), (3.5) and (3.2). 2

We shall apply Proposition 3 when A is the set of Poisson points inC�x�∩Qn

and B is the set of Poisson points in Qn \ C�x�. In this case we shall want
to approximate D�C�x� ∩Qn ∩ P �λ�; �Qn \ C�x�� ∩ P �λ�� by D�C�x� ∩Qn ∩
P �λ�;B′ ∩ P �λ��, where (for a suitable L′) B′ = �5�xi − L′; xi + 1 + L′� ∩
Qn� \ C�x�. We shall also want to approximate D��x�; �Qn \ �x�� ∩ P �λ�� by
D��x�;B′′ ∩ P �λ��, where B′′ = �5�xi − L′′; xi + L′′� ∩ Qn� \ �x�. For these
situations it is convenient to have some abbreviated notation. For a locally
finite set W of points in �d we define

D̃L�xyW � = D�C�x� ∩W ; �5�xi −L;xi + 1+L� \C�x�� ∩W �;
DL�xyW � = D��x�; �5�xi −L;xi +L� \ �x�� ∩W �:

The following lemma provides a simple estimate for the various functions D.

Lemma 7. Let ψ be strictly increasing. Let A be a finite subset of the rect-
angle B�x;y� with cardinality �A � and let B be a finite subset of �d which
contains a separating set S for B�x;y� in the annulus A�B�x;y�y1; δ�. Then

�D�A ; �B \A ��� ≤ C8�A �ψ�γ + 2d1/2�;(3.6)

where γ is the diameter of 5�xi− 1− δ;yi+ 1+ δ�. Similarly; if W is a locally
finite set of points in �d which contains a separating set for C�x� in the annulus
A�C�x�y1; δ�; then

�D̃L�xyW �� ≤ C8�C�x� ∩W �ψ���2δ+ 5� ∧ �2L+ 1��d1/2�;(3.7)

and if W contains a separating set for �x� in the annulus A��x�y1; δ�; then

�DL�xyW �� ≤ C8ψ���2δ+ 4� ∧ �2L��d1/2�:(3.8)

Finally; if W ∩ Qn contains an n-separating set for C�x� in the annulus
A�C�x�y1; δ�; then

�D�C�x� ∩W ∩Qn; �W ∩Qn� \C�x���
≤ C8�C�x� ∩W ∩Qn�ψ���2δ+ 5� ∧ n1/d�d1/2�:

(3.9)
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Proof. We begin with (3.6). It is trivial that

M�A ∪B� ≤M�B� + �A �ψ�γ�
because we can connect each vertex of A to an MST on B by connecting it
to some vertex of S ⊂ B. Conversely, if we take an MST on A ∪ B, then
we can obtain a spanning tree on B by deleting all the edges incident to
any vertex in A \ B (by Lemma 4 we delete at most Dd�A � edges) and by
reconnecting the at most �Dd�A �+1� components, which by Lemma 3 all have
a vertex in 5�xi − 2 − δ;yi + 2 + δ�. Note that the diameter of the rectangle
5�xi − 2− δ;yi + 2+ δ� is at most γ + 2d1/2, so

M�B� ≤M�A ∪B� +Dd�A �ψ�γ + 2d1/2�:
This proves (3.6). Equations (3.7)–(3.9) can be proven in the same way if one
takes into account that any pair of points in5�xi−L;xi+1+L�,5�xi−L;xi+L�
or Qn are at most a distance �2L + 1�d1/2, �2L�d1/2 or n1/dd1/2, respectively,
apart. 2

Lemma 8. Assume that ψ is strictly increasing and that

lim
x→∞

1
x

log ψ�x� = 0:(3.10)

Then; for each q > 0; there exists a constant C�q� such that

µP�λ���D̃L�xyP �λ���q� ≤ C�q�;
µP�λ���DL�xyP �λ���q� ≤ C�q� uniformly in L; x; 1/2 ≤ λ ≤ 2;

(3.11)

µPn�λ���D�C�x� ∩Qn ∩Pn�λ�; �Qn \C�x�� ∩Pn�λ���q�
≤ C�q� uniformly in n; x ∈ Qn; 1/2 ≤ λ ≤ 2;

(3.12)

µPn�λ���D̃L�xyPn�λ���q� ≤ C�q� uniformly in n;

x ∈ Qn; L; 1/2 ≤ λ ≤ 2;
(3.13)

µUn�m���D��X�n�m �;Un�m− 1���q� ≤ C�q� uniformly in n;

3n/4 ≤m ≤ 5n/4;
(3.14)

µUn�m���DL�X
�n�
m yUn�m− 1���q� ≤ C�q� uniformly in n;

3n/4 ≤m ≤ 5n/4 and L:
(3.15)

Proof. Consider a Poisson field P �λ�, 1/2 ≤ λ ≤ 2, in �d. Let

δ̃ = inf�δ: ∃ separating set S ⊂ P �λ� for C�x�
in the annulus A�C�x�y1; δ��:
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Then, by (3.7),

�D̃L�xyP �λ��� ≤ C8�C�x� ∩P �λ��ψ���2δ̃+ 5� ∧ �2L+ 1��d1/2�:(3.16)

Therefore

µP�λ���D̃L�xyP �λ���q�

= µP�λ���D̃L�0yP �λ���q� (by translation invariance)

≤ C9�µP�λ���C�0� ∩P �λ��2q��1/2�µP�λ��ψ��2δ̃+ 5�d1/2�2q��1/2

≤ C10�µP�λ��ψ��2δ̃+ 5�d1/2�2q��1/2:

Now by Lemma 5 and (3.10), µP�λ��ψ��2δ̃ + 5�d1/2�2q� is bounded for 1/2 ≤
λ ≤ 2. Thus we get the first part of (3.11). Almost the same argument works
for the second part of (3.11). Similarly, for (3.12) and (3.13) we merely have to
replace δ̃ by

δ = inf�δ: ∃ n-separating set S ⊂ Pn�λ� for C�x�
in the annulus A�C�x�y1; δ��(3.17)

and use (3.6) and (3.7). For (3.14) and (3.15) we use Lemma 6 instead of
Lemma 5. 2

We remind the reader that µPn is the distribution of Pn = Pn�1� = P �1� ∩
Qn = P �1� ∩ �0; n1/d�d.

Lemma 9. Let ψ be strictly increasing. For all ε > 0; there exists an L =
L�ε� such that for x ∈ �L;n1/d −L− 1�d and L′ ≥ L;

µPn��D�C�x� ∩Pn�1�; �Qn \C�x�� ∩Pn�1�� − D̃L′�xyPn�1��� ≥ ε� ≤ ε:(3.18)

Proof. Choose δ so large that

µP�there is no separating set for C�x� in A�C�x�y1; δ�� ≤ ε/3:
Such a δ exists by Lemma 5. Also choose N so that

µP�C�x� contains more than N Poisson points� ≤ ε
3
:

On the event

�∃ separating set for C�x� in A�C�x�y1; δ�; C�x�
contains at most N Poisson points�(3.19)

we have, by (3.16),

�D̃L�xyP �1��� ≤ C8Nψ��2δ+ 5�d1/2�
and, by Proposition 3,

D̃L�xyP �1�� is increasing in L for L ≥ δ+ 2:
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Therefore, D̃L�xyP �1�� converges to a finite limit a.e. µP and one can choose
L = L�ε� ≥ δ+ 2 so large that

µP
{
(3.19) fails or sup

L′≥L�ε�
�D̃L′�xyP �1�� − D̃L�ε��xyP �1��� ≥ ε/2

}
≤ ε:(3.20)

Note that this estimate is uniform in x, by the translation invariance of µP.
If x ∈ �L;n1/d −L− 1�d, L′, L′′ ≥ L and Qn ⊂ 5�xi −L′′; xi + 1+L′′�, then

by Proposition 3 one has on the event
{

(3.19) holds and sup
L′≥L
�D̃L′�xyP �1�� − D̃L�xyP �1��� < ε/2

}
(3.21)

that

0 ≤ D�C�x� ∩Pn�1�; �Qn \C�x�� ∩Pn�1�� − D̃L′�xyPn�1��

= D�C�x� ∩P �1�; �Qn \C�x�� ∩P �1�� − D̃L′�xyPn�1��

≤ D�C�x� ∩P �1�; �Qn \C�x�� ∩P �1�� − D̃L�xyPn�1��

= D�C�x� ∩P �1�; �Qn \C�x�� ∩P �1�� − D̃L�xyP �1��

≤ D̃L′′�xyP �1�� − D̃L�xyP �1�� < ε:

(3.22)

So (3.18) follows from (3.20), (3.21) and (3.22). 2

We next want to use Proposition 3 when A is a single (random) point and B
is the collection of Poisson points in Qn. That is, we want to see what the influ-
ence of adding a single point is on the weight of an MST. Choose P �λ�, the set
of Poisson points in �d of density λ, and then choose a point Yn, independent
of P �λ�, uniformly inQn. We denote the corresponding probability by µP�λ�;Yn .
Similarly, we denote by µPn�λ�;Yn the joint distribution of Pn�λ� = P �λ� ∩Qn

and Yn.

Lemma 10. Let ψ be strictly increasing. For all ε > 0; there exists a K =
K�ε� and an n1 = n1�ε� such that uniformly for 1/2 ≤ λ ≤ 2; n ≥ n1;

µPn�λ�;Yn��D��Yn�; �Qn \ �Yn�� ∩Pn�λ�� −DK�YnyPn�λ��� ≥ ε�
= µP�λ�;Yn��D��Yn�; �Qn \ �Yn�� ∩P �λ�� −DK�YnyPn�λ��� ≥ ε�
≤ ε

(3.23)

and

µP�λ�;Yn�there is no separating set for �Yn�
in A��Yn�y1;K� ∩P�λ�� ≤ ε/4:

(3.24)

Proof. We give the proof only for ψ�y� = ψα�y� = yα. When λ = 1, then
(3.23) is very similar to (3.18) except that in (3.18) the �Yn� is replaced by
C�x�, x ∈ �L;n1/d − 1−L�d. However, the basic estimate is the same, except



LIMIT THEOREM FOR SPANNING TREES 513

that an extra term comes in to take care of the case when Yn is too close to
∂Qn. Specifically, choose δ, independent of 1/2 ≤ λ ≤ 2, so large that for all
n ≥ 1,

µP�λ�;Yn�there is no separating set for �Yn� in A��Yn�y1; δ�� ≤ ε/4:

This can be done by virtue of Lemma 5 and the translation invariance of µP�λ�.
The inequality (3.24) will hold if we take K ≥ δ. On the event

�∃ separating set for �Yn� in A��Yn�y1; δ��(3.25)

we have, by Lemma 7, �DK�YnyP �λ��� ≤ C8ψ��2δ+4�d1/2� for K ≥ δ+1 and,
by Proposition 3, DK�YnyP�λ�� is increasing in K for K ≥ δ + 2. We claim
that one can choose K�ε� ≥ δ+ 2 and n1�ε� so that uniformly for 1/2 ≤ λ ≤ 2,
n ≥ n1,

µP�λ�;Yn

{
Yn /∈ �K;n1/d −K�d or (3.25) fails or

sup
K′≥K�ε�

�DK′�YnyP �λ�� −DK�ε��YnyP �λ��� ≥ ε/2
}
≤ ε:

Indeed, since, for any fixed x, λ−1/dP �1�+x has the same distribution as P �λ�,
and ψ�λ−1/dy� = λ−α/dψ�y�, we have

µP�λ�;Yn

{
sup
K′≥K

�DK′�YnyP �λ�� −DK�YnyP �λ��� ≥ ε/2
}

= µP;Yn

{
sup

K′≥Kλ1/d

�DK′�0yP � −DKλ1/d�0yP �� ≥ �ε/2�λα/d
}
:

Choose K�ε�2−1/d ≥ δ+ 2 so that

µP;Yn

{
sup

K′≥K�ε�2−α/d
�DK′�0yP � −DK�ε�2−α/d�0yP �� ≥ �ε/4�2−α/d

}
≤ ε/4:

Finally, we choose n1�ε� so that for n ≥ n1�ε�,

P�Yn /∈ �K;n1/d −K�d� ≤ ε/4:

The rest of the proof is the same as that of Lemma 9. 2

Next we prove an analogue of Lemma 10 when Pn�λ� is replaced by Un�m�,
a configuration of m i.i.d. points, each one uniformly distributed in Qn. Let us
write X�1�1 ; : : : ;X

�n�
m for m such points in Qn.

Lemma 11. Let ψ be strictly increasing. For all ε > 0; there exists a K =
K�ε� and an n2 = n2�ε� such that uniformly for n ≥ n2; n−n3/4 ≤m ≤ n+n3/4;

�3:26� µUn�m���D��X�n�m �; �Qn\�X
�n�
m ��∩Un�m��−DK�X

�n�
m yUn�m��� ≥ ε� ≤ ε:
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Proof. Consider two independent Poisson variables N1 and W with
means n − 2n3/4 and 4n3/4, respectively. Then N2 x= N1 +W is a Poisson
variable with mean n+ 2n3/4. We now choose in succession N2 i.i.d. uniform
points on Qn. The first N1 of these points forms a realization of P �1−2n−1/4�
on Qn and the total forms a realization of P �1+2n−1/4� on Qn. On the event

�N1 ≤ n− n3/4 < n+ n3/4 ≤N2�(3.27)

we further take the first m points as our realization of µUn�m�, say,
X
�n�
1 ; : : : ;X

�n�
m (recall that n − n3/4 ≤ m ≤ n + n3/4). If (3.27) is not the

case, we pick m new i.i.d. uniform points on Qn to get a realization of µUn�m�.
Finally let Yn be another uniform point on Qn, independent of N1, W and
the X�n�i .

Let K =K�ε� and n1 = n1�ε� be such that (3.23) holds and such that (3.24)
holds even with K replaced by K − 2. Assume that for some given n ≥ n1,
(3.27) occurs and

�D��Yn�;Pn�1+ 2n−1/4�� −DK��Yn�yPn�1+ 2n−1/4��� < ε:(3.28)

Assume further that

none of the W points numbered N1; : : : ;N2

fall in 5��Yn�i −K− 2; �Yn�i +K+ 2�(3.29)

and that

∃ separating set in Pn�1− 2n−1/4� for �Yn� in A��Yn�y1;K− 2�:(3.30)

We claim that, if (3.27)–(3.30) hold, then

�D��Yn�;Un�m− 1�� −DK��Yn�y Un�m− 1��� ≤ ε(3.31)

for n−n3/4 ≤m ≤ n+n3/4. Indeed, by (3.27) and (3.29), for eachN1 ≤m ≤N2,

D��Yn�;Un�m− 1� ∩5��Yn�i −K; �Yn�i +K��
= D��Yn�;Pn�1+ 2n−1/4� ∩5��Yn�i −K; �Yn�i +K��:

(3.32)

Moreover, by (3.30) and Proposition 3, as we keep adding points,

D��Yn�;Un�r�� increases in r; N1 ≤ r ≤N2:(3.33)

Therefore, if (3.27)–(3.30) hold, then for n ≥ n1, n− n3/4 ≤m ≤ n+ n3/4,

0 ≤ D��Yn�;Un�m− 1�� −DK��Yn�y Un�m− 1��
[by (3.30) and Proposition 3]

≤ D��Yn�;Pn�1+ 2n−1/4�� −DK��Yn�y Un�m− 1��
[by (3.27) and (3.33)]

= D��Yn�;Pn�1+ 2n−1/4�� −DK��Yn�y Pn�1+ 2n−1/4�� [by (3.32)]

< ε:
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This proves our claim (3.31). Next we show that the probability that (3.27)–
(3.30) hold is close to 1. It is trivial that P�(3.27) fails� ≤ ε/4 for large n, say
n ≥ n2. By Lemma 10, for n ≥ n1�ε/4�, P�(3.28) fails� ≤ ε/4. Also

P�(3.29) fails� ≤ �EW��2K+ 4�d
n

= �2K+ 4�d4n−1/4:

We assumed that (3.24) holds with K replaced by K− 2 and we may further
assume that n2 ≥ n1 is so large that, for n ≥ n2, P�(3.29) or (3.30) fails� ≤ ε/2.
Then for n ≥ n2;

P�(3.27)–(3.30) hold� ≥ 1− ε:(3.34)

Since the joint distribution of Yn and Un�m−1� is the same as that of X�n�m
and Un�m− 1�, (3.31) and (3.34) together imply

µUn�m���D��X�n�m �;Un�m− 1�� −DK�X
�n�
m yUn�m− 1��� ≥ ε� ≤ ε:

The inequality (3.26) follows because D��X�n�m �; �Qn \ �X
�n�
m �� ∩ Un�m�� =

D��X�n�m �;Un�m− 1�� and DK�X
�n�
m yUn�m− 1�� = DK�X

�n�
m yUn�m��. 2

4. Central limit theorem for an MST. We order the vertices v in �d ∩
�0; n1/d�d in some way, say lexicographically, as v�1�; : : : ; v���n1/d� + 1�d� and
define Fk by

Fk = σ
(

Pn�1� ∩
[ ⋃
i≤k
C�v�i��

])

(F0 is the trivial σ-field). Also define M̃n and 1k by

M̃n = min
{∑
e∈T′

ψ��e��: T′ a spanning tree on Pn�1�
}
;

1k = µPn�M̃n � Fk� − µPn�M̃n � Fk−1�:
(4.1)

From now on we assume that ψ is strictly increasing, continuous, and satisfies
the growth condition (3.10).

Lemma 12. The quantity M̃n is a function of the independent random vari-
ables A1 = Pn�1� ∩Cv�1�; : : : ;Al = Pn�1� ∩Cv�l�, l = ��n1/d�+ 1�d. Moreover;

M̃n −EM̃n =
l∑

k=1

1k(4.2)
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and

1k =
∫
µPn�dak; dak+1; : : : ; dal�

×
[
D

(
Ak;

[ ⋃
i<k

Ai

]
∪
[ ⋃
i>k

ai

])
−D

(
ak;

[ ⋃
i<k

Ai

]
∪
[ ⋃
i>k

ai

])]
;

(4.3)

where µPn�dak; : : : ; dal� is short for µPn�Ak ∈ dak; : : : ;Al ∈ dal�.

Proof. Clearly M̃n is a function of A1; : : : ;Al. In fact, with the appropri-
ate topology on the range of �A1; : : : ;Al�, M̃n is a Borel function of A1; : : : ;Al.
Equation (4.2) is then immediate from the fact that M̃n is Fl-measurable.
Moreover, by definition,

1k =
∫
µPn�dak; dak+1; : : : ; dal�

×
[
M̃n

([ ⋃
i≤k

Ai

]
∪
[ ⋃
i>k

ai

])
− M̃n

([ ⋃
i<k

Ai

]
∪
[⋃
i≥k
ai

])]
:

Now subtract and add M̃n

([⋃
i<k Ai

]
∪
[⋃

i>k ai
])

to the expression in square
brackets and note that

M̃n

([ ⋃
i≤k

Ai

]
∪
[ ⋃
i>k

ai

])
− M̃n

([ ⋃
i<k

Ai

]
∪
[ ⋃
i>k

ai

])

= D
(

Ak;

[ ⋃
i<k

Ai

]
∪
[ ⋃
i>k

ai

])
;

and similarly if Ak is replaced by ak. 2

Now we write 1k;L for the expression in (4.3) when D�Ak;B� and D�ak;B�
are replaced by D̃L�v�k�yAk ∪B� and D̃L�v�k�yak ∪B�, respectively. That is,

1k;L =
∫
µPn�dak; dak+1; : : : ; dal�

×
[
D̃L

(
v�k�y

[ ⋃
i≤k

Ai

]
∪
[ ⋃
i>k

ai

])
− D̃L

(
v�k�y

[ ⋃
i<k

Ai

]
∪
[ ⋃
i≥k
ai

])]
:

(4.4)

Proposition 4. For all ε > 0 there exists anL = L�ε� and; for eachL′ ≥ L;
an n3 = n3�L′� such that for L′ ≥ L; n ≥ n3;

1
n

∑
k

µPn��12
k − 12

k;L′ �� ≤ ε:(4.5)
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Proof.

1k − 1k;L′

=
∫
µPn�dak; : : : ; dal�

×
[{
D

(
Ak;

[ ⋃
i<k

Ai

]
∪
[ ⋃
i>k

ai

])
− D̃L′

(
vky

[ ⋃
i≤k

Ai

]
∪
[ ⋃
i>k

ai

])}

−
{
D

(
ak;

[ ⋃
i<k

Ai

]
∪
[ ⋃
i>k

ai

])
− D̃L′

(
vky

[ ⋃
i<k

Ai

]
∪
[ ⋃
i≥k
ai

])}]
:

(4.6)

By (4.6), (3.12) and (3.13), �1k − 1k;L′ � is uniformly [in �n;k;L′�] integrable.
By (3.18), �1k − 1k;L′ � → 0 as L′ → ∞ (uniformly in n and k with v�k� ∈
�L′; n1/d −L′ − 1�d� in µPn -measure, that is,

µPn��1k − 1k;L′ �� → 0(4.7)

as L′ → ∞ uniformly in n and k with v�k� ∈ �L′; n1/d − L′ − 1�d. This is
close to what we want. First we note that the number of k for which v�k� /∈
�L′; n1/d − L′ − 1�d is at most C11L

′n�d−1�/d and the sum of µPn��12
k − 12

k;L′ ��
over those k is therefore at most C12L

′n�d−1�/d, by (4.3), (4.4), (3.12) and (3.13).
Thus, this part of the sum in (4.5) contributes at most C12L

′n−1/d. For the
remaining summands we note that

�12
k − 12

k;L′ � = �1k − 1k;L′ � · �1k + 1k;L′ �
≤ 2K�1k − 1k;L′ � · I��1k� ≤K; �1k;L′ � ≤K�
+ 12

kI��1k� > K� + 12
k;L′I��1k;L′ � > K�:

(4.8)

By (4.7),

2KµPn��1k − 1k;L′ �� → 0(4.9)

as L′ →∞ uniformly in n and k with v�k� ∈ �L′; n1/d−L′ − 1�d. Moreover, by
(4.3), (4.4), (3.12) and (3.13),

µPn�12
kI��1k� > K�� ≤

1
K
µPn��1k�3� ≤

C13

K
;�4:10�

µPn�12
k;L′I��1k;L′ � > K�� ≤

1
K
µPn��1k;L′ �3� ≤

C13

K
:�4:11�

Now, for a given ε > 0, choose K large so that C13/K ≤ ε/4. Then choose L
large so that 2KµPn��1k − 1k;L′ �� ≤ ε/4 for L′ ≥ L, v�k� ∈ �L′; n1/d −L′ − 1�d
and finally for given L′ ≥ L choose n3 large so that C12L

′n−1/d ≤ ε/4 for
n ≥ n3. The proposition follows from (4.8)–(4.11), together with the fact that
the boundary part of the sum in (4.5) contributes at most C12L

′n−1/d. 2

Lemma 13. Define ρK by

�4:12� ρK = µP�DK�0yP �1���:
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Then

�4:13� ρ = lim
K→∞

ρK

exists and ρ is finite. Moreover; for ε > 0 and A > 0, there exists an n4 =
n4�ε;A� such that; for n ≥ n4;

�4:14�

µUn�n+An1/2�{�M�X�n�1 ; : : : ;X
�n�
s �

−M�X�n�1 ; : : : ;X
�n�
n � − �s− n�ρ� ≥ εn1/2

for some n−An1/2 ≤ s ≤ n+An1/2}

≤ �1+ 12ε4 + 48C�2�ε+ 24Aε�ε:

Proof. By the same argument as for (3.18), as K → ∞, DK�0yP �1�� is
eventually bounded and increasing, so DK�0yP �1�� converges a.e. as K→∞.
Moreover, by (3.11), DK�0yP �1�� is uniformly integrable, so (4.13) holds and
ρ is finite.

Fix K such that

�ρK − ρ� ≤ ε/�4�2A+ 1��

and such that (3.26), with ε replaced by ε6/A, holds for n ≥ n2�ε6/A�. Now
take t = �n−An1/2� and note that

�4:15� M�X�n�1 ; : : : ;X
�n�
s � =M�X�n�1 ; : : : ;X

�n�
t � +

s∑
p=t+1

D��X�n�p �;Un�p− 1��;

and

sup
n−An1/2≤s1≤s2≤n+An1/2

∣∣∣∣
s2∑

p=s1+1

[
D��X�n�p �;Un�p− 1��

−DK�X
�n�
p yUn�p− 1��

]∣∣∣∣

≤
n+An1/2∑

n−An1/2

∣∣D��X�n�p �;Un�p− 1�� −DK�X
�n�
p yUn�p− 1��

∣∣:

(4.16)

Introduce

2K�X
�n�
p � = D��X�n�p �;Un�p− 1�� −DK�X

�n�
p yUn�p− 1��:

Then, by virtue of (3.14), (3.15) and the fact that

µUn�n+An1/2��f� = µUn�p��f�
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if f depends only on X�n�1 ; : : : ;X
�n�
p , p ≤ n+An1/2, one has

µUn�p�{∣∣2K
(
X
�n�
p

)∣∣}

≤ µUn�p�
{∣∣2K

(
X
�n�
p

)∣∣y
∣∣2K

(
X
�n�
p

)∣∣ ≤ ε
6

A

}

+ 2µUn�p�
{∣∣D

({
X
�n�
p

}
;Un�p− 1�

)∣∣y
∣∣D
({
X
�n�
p

}
;Un�p− 1�

)∣∣ ≥ A

ε3

}

+ 2µUn�p�
{∣∣DK

(
X
�n�
p yUn�p− 1�

)∣∣y
∣∣DK

(
X
�n�
p yUn�p− 1�

)∣∣ ≥ A

ε3

}

+ µUn�p�
{∣∣2K

(
X
�n�
p

)∣∣y
∣∣2K

(
X
�n�
p

)∣∣ > ε6

A
;
∣∣D
({
X
�n�
p

}
;Un�p− 1�

)∣∣ ≤ A

ε3
;

∣∣DK

(
X
�n�
p yUn�p− 1�

)∣∣ ≤ A

ε3

}

≤ ε
6

A
+ 2

ε3

A
µUn�p�{D2({X�n�p

}
;Un�p− 1�

)}

+ 2
ε3

A
µUn�p�{D2

K

(
X
�n�
p yUn�p− 1�

)}
+ ε

6

A

2A
ε3

[
by (3.26) with ε replaced by

ε6

A

]

≤
(
ε6

A
+ 4

ε3

A
C�2� + 2ε3

)
:

(4.17)

So, if 3An1/2 ≥ 2An1/2 + 1, say for n ≥ n4�ε;A�, then

µUn�n+An1/2�
{

sup
n−An1/2≤s1≤s2≤n+An1/2

∣∣∣∣
s2∑

p=s1+1

2K�X
�n�
p �

∣∣∣∣ ≥
1
4εn

1/2
}

≤
n+An1/2∑

n−An1/2

µUn�p���2K�X
�n�
p ���/

( 1
4εn

1/2)

≤ �12ε4 + 48C�2�ε+ 24Aε�ε:
Thus, it suffices to show

µUn�n+An1/2�
{

sup
�s−n�≤An1/2

∣∣∣∣
s∑
t+1

�DK�X
�n�
p yUn�p− 1�� − ρK�

∣∣∣∣ ≥
1
4
εn1/2

}

≤ ε:
(4.18)

To do this we observe that the distribution of �Un�p− 1� −X�n�p � ∩ �−K;K�d
converges to that of a Poisson field with mean 1 in �−K;K�d as n→ ∞ and
p/n→ 1. In particular we have

�4:19� µUn�p��DK�X
�n�
p yUn�p− 1��� → ρK = µP�DK�0yP �1���
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uniformly in n − An1/2 ≤ p ≤ n + An1/2. We can therefore further replace
�DK�X

�n�
p yUn�p− 1�� − ρK� by

Zp x= �DK�X
�n�
p yUn�p− 1�� − ρK� − µUn�p��DK�X

�n�
p yUn�p− 1�� − ρK�:

It then suffices to show that

µUn�n+An1/2�
{

sup
�s−n�≤An1/2

∣∣∣∣
s∑
t+1

Zp

∣∣∣∣ ≥
1
8εn

1/2
}
≤ ε:

By (3.8) (with δ = ∞), theZp are bounded by C14�K� and µUn�p��Zp� = 0. The
Zp are not independent, but we have that for p1 6= p2 the joint distribution of

�Un�p1−1�−X�n�p1 �∩ �−K;K�d and �Un�p2−1�−X�n�p2 �∩ �−K;K�d converges
to the distribution of two independent Poisson fields on �−K;K�d as n→∞.
From this it follows that EZp1

Zp2
→ 0 and

1
n
E
( s∑
t+1

Zp

)2
→ 0

as n→∞, uniformly in n−An1/2 ≤ s ≤ n+An1/2. Therefore, for fixed η > 0,

n−1/2
t+jηAn1/2∑

t+1

Zp→ 0

in µUn�n+An1/2�-measure, uniformly for j = 1;2; : : : ; �2/η�. This proves

�4:20� n−1/2 sup
�s−n�≤An1/2

∣∣∣
s∑
t+1

Zp

∣∣∣→ 0

in µUn�n+An1/2�-measure because

sup
t+jηAn1/2≤s≤t+�j+1�ηAn1/2

∣∣∣∣
s∑
t+1

Zp −
t+jηAn1/2∑

t+1

Zp

∣∣∣∣ ≤ ηAn
1/2C14�K�:

Inequality (4.18) and hence (4.14) now follow from (4.20). 2

Proof of Corollary 1. Note that

µUn�n+1��M�X�n�1 ; : : : ;X
�n�
n+1�� − µUn�n��M�X�n�1 ; : : : ;X

�n�
n �� − ρ

= µUn�n+1��D��X�n�n+1�;Un�n��� − ρ

= µUn�n+1��2K�X
�n�
n+1� +DK�X

�n�
n+1yUn�n��� − ρK + ρK − ρ:

It therefore follows from (4.17), (4.19) and (4.13) that

µUn�n+1��M�X�n�1 ; : : : ;X
�n�
n+1�� − µUn�n��M�X�n�1 ; : : : ;X

�n�
n �� → ρ �n→∞�:
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In the special case when ψ�x� = xα, rescaling to the unit cube shows that
(with X�1�1 ;X

�1�
2 ; : : : i.i.d. and uniform on �0;1�d)

�4:21� nα/d�E�M�X�1�1 ; : : : ;X
�1�
n+1yα�� −E�M�X

�1�
1 ; : : : ;X

�1�
n yα��� → ρ

�n→∞�:
This implies the following asymptotic equivalences as n→∞:

E�M�X�1�1 ; : : : ;X
�1�
n yα�� ∼

n∑
1

ρk−α/d ∼ ρd

d− αn
1−α/d if α < d;�4:22�

E�M�X�1�1 ; : : : ;X
�1�
n yd�� ∼

n∑
1

ρk−1 ∼ ρ log n;�4:23�

E�M�X�1�1 ; : : : ;X
�1�
n yα�� ∼ −

∞∑
n

ρk−α/d ∼ ρd

d− αn
1−α/d if α > d;�4:24�

provided

�4:25� E�M�X�1�1 ; : : : ;X
�1�
n yα�� → 0 �n→∞�

in case α > d.
Now, first, if α < d, (4.22) shows that

��n+ 1�α/d − nα/d�E�M�X�1�1 ; : : : ;X
�1�
n+1yα�� →

ρα

d− α �n→∞�;

which together with (4.21) proves (1.9) with ρ = ρd/�d − α� in this case.
Equation (1.8) is just (4.22).

Next, if α = d, then (4.23), together with (1.2) shows that ρ = 0. Then, by
(4.21) and (1.2),

�n+ 1�E�M�X�1�1 ; : : : ;X
�1�
n+1yd�� − nE�M�X

�1�
1 ; : : : ;X

�1�
n yd��

= o�1� +E�M�X�1�1 ; : : : ;X
�1�
n+1yd�� → c�d;d�:

This proves (1.9) when α = d while (1.8) is immediate from (1.2).
Finally, when α > d, we must first prove (4.25). This follows from Lemmas

3 and 6. Indeed, if δ = δ�x� is defined as in (3.17), then by Lemma 3, for any
MST T on Un�n� = �X

�n�
1 ; : : : ;X

�n�
n �, it holds that

∑
e∈T; one endpoint

of e in C�x�

�e�α ≤ dα/2�δ�x� + 3�α�C�x� ∩Un�n��:

Therefore, the expectation of the left-hand side with respect to µUn is at most

dα/2�µUn��δ�x� + 3�2α�µUn��C�x� ∩Un�n��2��1/2 ≤ C15

for some C15, independent of x, n. Summing over x = v�1�; v�2�; : : : ;
v���n1/d� + 1�d� proves that for ψ�x� = xα,

µUn�M�X�n�1 ; : : : ;X
�n�
n yψ�� ≤ C15��n1/d� + 1�d:
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Rescaling again to the unit cube shows that

E�M�X�1�1 ; : : : ;X
�1�
n yα�� ≤ C16n

1−α/d:

Thus (4.25) and (4.24) follow. We leave it to the reader to derive (1.8) and (1.9)
for α > d.

The strict positivity of ρ follows in all cases by the argument of Steele
[(1988), end of Section 4]. 2

Lemma 14. If along some subsequence n−1/2�M̃n − µPn�M̃n�� converges in

distribution to F with characteristic function F̂; then along the same subse-

quence n−1/2�M�X�n�1 ; : : : ;X
�n�
n �−µP�M̃n�� converges in distribution to G with

characteristic function

Ĝ�θ� =
∫

exp�iθx�dG�x� = F̂�θ� · exp� 1
2θ

2ρ2�:

Proof. Couple Pn and Un�m� by first choosing an infinite sequence
X
�n�
1 ;X

�n�
2 ; : : : of i.i.d. uniform random variables on Qn and, independently

of the X�n�i , a Poisson variable N = Nn with mean n. Then �X�n�1 ; : : : ;X
�n�
m �

has the distribution µUn�m� and �X�n�1 ; : : : ;X
�n�
N � has the distribution

µPn . In particular, M̃n has the same distribution as M�X�n�1 ; : : : ;X
�n�
N �,

n−1/2�Nn − n� ⇒N�0;1� and, by Lemma 13,

�4:26� n−1/2�M�X�n�1 ; : : : ;X
�n�
N � −M�X

�n�
1 ; : : : ;X

�n�
n � − �Nn − n�ρ� → 0

in probability. Thus, if n−1/2�M̃n−µPn�M̃n�� is tight, then n−1/2�M�X�n�1 ; : : : ;

X
�n�
n � − µPn�M̃n�� is tight. Therefore, if along some subsequence n−1/2�M̃n −

µPn�M̃n�� converges in distribution to F with characteristic function F̂, then
along the same subsequence, by (4.26), n−1/2�M�X�n�1 ; : : : ;X

�n�
n � −µPn�M̃n�+

�Nn−n�ρ� converges in distribution toF. SinceNn is independent of theX�n�i ,

along the same subsequence, n−1/2�M�X�n�1 ; : : : ;X
�n�
n � − µPn�M̃n�� converges

in distribution to G with characteristic function Ĝ, where Ĝ�θ� exp�− 1
2θ

2ρ2� =
F̂�θ�. 2

Proof of Theorem 2. At first we prove the theorem in the Poissonized
version which says that n−1/2�M̃n − µPn�M̃n�� converges in distribution to a
normal distribution with mean 0 and variance τ2 for some τ > 0. By virtue of
the representation (4.2) of M̃n −µPn�M̃n� as a sum of martingale differences
and Theorem 2.3 in McLeish (1974), it suffices to verify the following relations
(4.27)–(4.30):

�4:27� 1
n

∑
k

12
k→ τ2 in µPn -measure;
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where

τ2 = lim
L→∞

τ2
L;�4:28�

τ2
L = µP

[
µP�D�C�0� ∩P ; ��−L;L+ 1�d \C�0�� ∩P � � F �

− µP�D�C�0� ∩P ; ��−L;L+ 1�d \C�0�� ∩P � � F ′�
]2
;

F = σ�C�x� ∩P : x ∈ �d;C�x� ∩ �−L;L+ 1�d 6= \;

x strictly precedes 0 in the lexicographical order or x = 0�
and

F ′ = σ�C�x� ∩P : x ∈ �d; C�x� ∩ �−L;L+ 1�d 6= \;

x strictly precedes 0 in the lexicographical order�y

�4:29� n−1/2 max
k
�1k� → 0 in µPn -measure

and

�4:30� n−1µPn
{

max
k
�1k�2

}
is bounded in n

[the existence of the limit in (4.28) is part of what needs to be proven].
First let us deal with the easy relations (4.29) and (4.30). Equation (4.29)

holds, because

µPn
{
n−1/2 max

k
�1k� ≥ ε

}
≤ µPn

{∑
k

�1k�3
}
/�εn1/2�3 ≤ nC17C�3�/�εn1/2�3

by (4.3) and (3.12). For (4.30) we observe that

µPn
{

max
k
�1k�2

}
≤
∑
k

µPn�12
k� ≤ nC17C�2�;

again by (4.3) and (3.12).
Finally we prove that for fixed L,

�4:31� 1
n

∑
k

12
k;L→ τ2

L in µPn -measure:

We claim that (4.31) implies (4.27). To see this, note first that (4.28) holds, as in
the argument for (4.13), by the eventual monotonicity in L of µP�D�C�0�∩P ,
��−L;L+ 1�d \C�0�� ∩P ��F �. We may therefore choose L is so large that for
all L ≥ L,

�4:32� �τ2 − τ2
L� < ε/3:
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Now, for given ε > 0, we can [by (4.5)] choose L = L�ε2� ≥ L so that in
addition to (4.32), for n ≥ n3�L�,

�4:33� 1
n

∑
k

µPn��12
k − 12

k;L�� < ε2:

Finally, by (4.31), we can obtain an n4�L;ε� ≥ n3 so that for n ≥ n4,

µPn
{∣∣∣∣

1
n

∑
k

12
k;L − τ2

L

∣∣∣∣ >
ε

3

}
< ε:

Then, for n ≥ n4, by (4.33) and (4.32),

µPn
{∣∣∣∣

1
n

∑
k

12
k − τ2

∣∣∣∣ > ε
}

≤ µPn
{∣∣∣∣

1
n

∑
k

12
k −

1
n

∑
k

12
k;L

∣∣∣∣ >
ε

3

}
+ µPn

{∣∣∣∣
1
n

∑
k

12
k;L − τ2

L

∣∣∣∣ >
ε

3

}

≤ ε2

ε/3
+ ε:

Thus (4.31) indeed implies (4.27).
To see (4.31) we merely note that 1k;L and 1j;L are independent as soon

as 5��v�k��i−L; �v�k��i+L+1�∩5��v�j��i−L; �v�j��i+L+1� = φ and that
for all v�k� ∈ �L;n1/d − L − 1�d; µPn�12

k;L� = τ2
L as defined above, provided

we order the v�k� lexicographically (as we may). Since the contribution of the
terms with v�k� /∈ �L;n1/d−L−1�d to (4.31) is at most C18n

−1/d, (4.31) follows
from a simple variance estimate and Chebychev’s inequality.

As stated above, the relations (4.27)–(4.30) prove that

M̃n − µPn�M̃n�
n1/2

⇒N�0; τ2�:

By Lemma 14 we then have

�4:34� M�X�n�1 ; : : : ;X
�n�
n � − µPn�M̃n�

n1/2
⇒N�0; σ2�;

where τ2 = σ2 + ρ2. Below we will show that σ2 > 0. This then completes the
proof of the Poissonized version of Theorem 2.

To prove the original version of Theorem 2, we observe first that

�4:35� n−1/2�µPn�M̃n� − µUn�M�Un��� → 0;

because [see (4.26)]

�4:36� n−1/2�M̃n −M�Un�� ⇒N�0; ρ2�
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and (4.15) shows that (when we use the coupling of Lemma 14, that is, N =
Nn, a Poisson variable with mean n)

1
n
E��M̃n −M�Un��2�

≤ 1
n
E

{ ∞∑
j=n+1

I�N = j�
∣∣∣∣

j∑
p=n+1

D��X�n�p �; Un�p− 1��
∣∣∣∣
2

+
n−1∑
j=0

I�N = j�
∣∣∣∣

n∑
p=j+1

D��X�n�p �; Un�p− 1��
∣∣∣∣
2}

≤ 1
n
E

[ ∞∑
j=n+1

I�N = j��j− n�
j∑

p=n+1

E�D2��X�n�p �; Un�p− 1���

+
n∑
j=0

I�N = j��n− j�
n∑

p=j+1

E�D2��X�n�p �; Un�p− 1���
]

(by Schwarz’s inequality)

≤ 1
n
C19E��Nn − n�2� ≤ C20:

Therefore, the left-hand side of (4.35) is uniformly integrable and hence, by
(4.36), (4.35) holds. We may therefore replace µPn�M̃n� by µUn�M�Un�� in
(4.34).

Finally we show σ2 > 0, by proving that M�Un� cannot be concentrated on
an interval of length o�n1/2�. This is done by a block argument which is similar
to that of Avram and Bertsimas [(1993), Proposition 5]. We just describe our
block for d = 2 and leave the case d ≥ 3 to the reader. For d = 2 we consider
a 13×13 square W ⊂ Qn. For each 1×1 square along the boundary of W (see
Figure 4) we require that

�4:37� there is at least one point of Un in the 1× 1 square:

We also require that

�4:38� Un contains exactly one point vi in each of Bi; i = 1;2;

where Bi are 1× 1 squares as in Figure 4. Finally we require that

�4:39� apart from v1; v2 and the points in the 1× 1 squares along
the boundary of W, there are no points of Un in W.

We claim that, if Un ∩W has these properties, then in any MST T on Un,
there is only one edge incident to v2 ∈ B2, and this edge connects v2 to v1.
Indeed, for any v ∈ Un \ �v1; v2�, the line segment �v; v2� must intersect a
1 × 1 square on the boundary of W. Choose a Un-point w1 in this square.
Next choose a Un-point w2 in the adjacent boundary square. Keep choosing
Un-points wj in successive adjacent boundary squares until we choose a Un-
point wm in B3 (see Figure 4). Then π = �v;w1; : : : ;wm; v1; v2� is a path from
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Fig. 4. If Un contains this 13 × 13 square configuration, then in any MST on Un the only edge
incident to v2 is the edge �v1; v2�.

v to v2 in Un such that ��v;w1�� < ��v; v2��, ��wi−1;wi�� < ��v; v2��, 2 ≤ i ≤ m,
��wm; v1�� < ��v; v2�� and ��v1; v2�� < ��v; v2��. Therefore, by Lemma 2, �v; v2�
cannot be an edge in any MST T on Un. This proves our claim that the only
edge in T incident to v2 is the edge �v1; v2�.

It follows from this claim that, if Un ∩W satisfies (4.37)–(4.39), then

M�Un� =M�Un \ �v2�� + ψ���v1; v2���:
As in Avram and Bertsimas (1993), this proves that Var �M�Un�� ≥ C21n for
some constant C21 > 0. However, without a proof of uniform integrability of
n−1�M�Un� − µUn�M�Un���2, this does not guarantee σ2 > 0. For ψ�x� =
�x�, this uniform integrability is in fact contained in Talagrand’s much more
detailed and deeper tail estimates forM�Un� [see Theorem 11.3.2 in Talagrand
(1995)]. Alternatively, we can use the following well known argument. Choose
M = �C22n� disjoint 13× 13 squares W1; : : : ;WM in Qn. Let Wi1

; : : : ;Wis
be

the random collection of those squares for which Un ∩Wij has the properties
(4.37)–(4.39) (after a suitable translation). Let v1; j and v2; j be the analogues
in Wij of v1 and v2, respectively. Then conditioned on the index set �i1; : : : ; is�
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and Un \
[⋃s

j=1�v2; j�
]
, the ψ���v1; j; v2; j��� are independent and

1√
s

s∑
j=1

ψ���v1; j; v2; j���

is asymptotically normal with some mean, but with a variance ν2 ≥ C23 for
some constant C23 > 0. In addition, it is easy to see that there exists some
C24 > 0 such that

µUn�s ≥ C24n� → 1

as n→∞. Standard arguments now show that

sup
a
µUn�a ≤ n−1/2M�Un� ≤ a+ ε� → 0

as ε ↓ 0, uniformly in n. Together with (4.34) this implies σ2 > 0. This com-
pletes the proof of Theorem 2. 2
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