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EXTREME VALUE THEORY FOR A CLASS OF NONSTATIONARY
TIME SERIES WITH APPLICATIONS1

By Xu-Feng Niu

Florida State University

Consider a class of nonstationary time series with the formYt = µt+ξt
where �ξt� is a sequence of infinite moving averages of independent ran-
dom variables with regularly varying tail probabilities and different scale
parameters. In this article, the extreme value theory of �Yt� is studied. Un-
der mild conditions, convergence results for a point process based on the
moving averages are proved, and extremal properties of the nonstationary
time series, including the convergence of maxima to extremal processes and
the limit point process of exceedances, are derived. The results are applied
to the analysis of tropospheric ozone data in the Chicago area. Probabilities
of monthly maximum ozone concentrations exceeding some specific levels
are estimated, and the mean rate of exceedances of daily maximum ozone
over the national standard 120 ppb is also assessed.

1. Introduction. In recent years, the study of extreme values in envi-
ronmental time series has been receiving growing interest because of its wide
applicability to the analysis of phenomena such as extreme ozone observations,
floods, storm winds and extreme temperatures. Three types of extreme value
limit distributions, first identified by Fisher and Tippett (1928), play a funda-
mental role in the analysis of extremes of environmental data. The extreme
value theory of independent and identically distributed (iid) random variables
is well documented. For example, a sequence of iid random variables with dis-
tribution function F belongs to the domain of attraction of the Type II extreme
value distribution if and only if 1−F�x� is regularly varying at∞ with index
−α (written 1−F�x� ∈ RV−α); that is, limt→∞�1−F�tx��/�1−F�t�� = x−α for
x > 0.

The extreme value theory of stationary random sequences has been ex-
tensively studied, where most of the work has focused primarily on the ex-
tension of classical results to stationary settings [see, e.g., Leadbetter (1974),
Hsing, Hüsler and Leadbetter (1988), Leadbetter and Hsing (1990), Davis and
Resnick (1985, 1988, 1991)]. In practice, however, many environmental time
series vary systematically in response to meteorological conditions, and there-
fore are often not stationary. Extreme value theory of nonstationary processes
has been discussed under certain conditions. For instance, Horowitz (1980)
considered the following model for daily ozone maxima �Yt�:

log�Yt� = f�t� + ξt;(1.1)
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where f�t� is a deterministic part, such as a seasonal component or trend, and
�ξt� is a normal stationary autoregressive process. Ballerini and McCormick
(1989) studied the limit theory for processes of the form Yt = f�t� + h�t�ξt,
where h�·� is positive and periodic and �ξt� is a stationary process satisfying
certain mixing conditions.

In this article, we study the limit theory for extreme values of a class of
nonstationary time series with the form

Yt = µt + ξt; ξt =
∞∑
j=0

cjZt−j;(1.2)

where �Zt = σtηty −∞ < t < ∞� and �ηty −∞ < t < ∞� is a sequence of iid
random variables with regularly varying tail probabilities.

The rest of this article is organized as follows. In Section 2, background on
point processes is briefly reviewed and some basic convergence results for a
sequence of point processes based on moving average processes are proved.
Extremal properties of the nonstationary moving-average processes, includ-
ing the convergence of maxima to extremal processes and the limit point pro-
cess of exceedances, are then derived from the convergence results. In Sec-
tion 3, we apply the results to analyze ground-level ozone concentrations in
the Chicago area. The probabilities of monthly ozone maxima exceeding some
specific thresholds are estimated based on the limit distribution for maxima,
and the mean rate of exceedances of daily maximum ozone over the national
standard 120 ppb (parts per billion) is also assessed.

2. Convergence results for extremes of random variables with reg-
ularly varying tails. We now study limit theory for moving averages of
independent random variables �Zt = σtηty −∞ < t <∞� with regularly vary-
ing tail probabilities. Some convergence results for point processes based on
one-sided moving averages �ξt =

∑∞
j=0 cjZt−j� are derived. Extreme proper-

ties of the nonstationary sequence �Yt� are then obtained from these conver-
gence results. In particular, we will show that the maximum of the sequence
�Yt� converges weakly to an extremal process generated by a given extreme
value distribution and that the exceedance point process converges weakly to
a compound Poisson process. The techniques used in this section are similar
to those used by Davis and Resnick (1985, 1988); see also Adler (1978) and
Hsing, Hüsler and Leadbetter (1988).

For notation and background of point process theory, we follow Neveu
(1976); see also Kallenberg (1983) and Resnick (1987). In this article the state
space E is taken to be a subset of a compactified Euclidean space such as
Rd = �−∞;∞�d. Let E be the Borel σ-field of subsets of E. For x ∈ E and A ∈
E , define the measure εx on E by

εx�A� =
{

1; x ∈ A;
0; x 6∈ A:
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Let �xi; i ≥ 1� be a countable collection of (not necessarily distinct) points
of the space E. A point measure mp is defined to be a measure of the form
mp =

∑∞
i=1 εxi which is nonnegative integer-valued and finite on relatively

compact subsets of E. The class of point measures is denoted by Mp�E�.
Poisson processes on �E;E � play an important role in the study of extreme

theory of random sequences. Let µ be a Radon measure on E ; that is, µ�F� <
∞ for every compact setF ∈ E . A Poisson process or a Poisson random measure
with mean measure µ is denoted by PRM(µ). IfE = Rd and the mean measure
µ = λν0, where ν0 is the Lebesgue measure on E and λ > 0, then PRM(µ)
is called a homogeneous Poisson process and λ is called rate of the Poisson
process.

Let C+K�E� be the class of continuous and nonnegative-valued functions
on E (i.e., E → �0;∞�) with compact support. For each f ∈ C+K�E� and µ ∈
Mp�E�, define µ�f� =

∫
fdµ. For a sequence of point measures �µn� ∈Mp�E�,

we say that µn converges vaguely to µ ∈Mp�E� (written µn→v µ) if µn�f� →
µ�f� for all f ∈ C+K�E�.

We now state a basic convergence result for a point process based on inde-
pendent nonidentically distributed random variables, which is an extension of
a similar theorem for iid random variables and stationary processes [see, e.g.,
Resnick (1986), Hsing (1987)]. This result provides the link between nonsta-
tionary processes considered in this article and point processes. The proof of
the following lemma is almost identical to that of Proposition 3.1 of Resnick
(1986) and hence is omitted.

Lemma 2.1. Suppose for each n ≥ 1, �Wn;jyj ≥ 1� is a sequence of indepen-
dent nonidentically distributed random elements of �E;E � and ν×µ is a Radon
measure on the product space ��0;∞�×E;B×E �. Define Nn =

∑∞
j=1 ε�j/n;Wn;j�.

Assume that N is a PRM on �0;∞� × E with mean measure ν × µ and that
supj≥1 P�Wn;j ∈ A� → 0 for all compact sets A in E . Then Nn ⇒ N if and
only if

∞∑
j=1

εj/n�·�P�Wn;j ∈ ·� →v ν × µ:(2.1)

Throughout this article, we assume that the scale parameter σt satisfies
the condition 0 < σt ≤ δ0 <∞. Similarly to the setting in Davis and Resnick
(1985), we assume that

P��η1� > x� ∈ RV−α; α > 0(2.2)

and

lim
x→∞

P�η1 > x�
P��η1� > x�

= π0; lim
x→∞

P�η1 < −x�
P��η1� > x�

= 1− π0;(2.3)

where 0 ≤ π0 ≤ 1. Consider one-sided moving averages of the form

ξt =
∞∑
j=0

cjZt−j =
∞∑
j=0

cjσt−jηt−j; −∞ < t <∞;(2.4)



EXTREME VALUE THEORY FOR TIME SERIES 511

where �cj� is a sequence of real constants with c0 = 1 and
∞∑
j=0

�cj�γ <∞ for some 0 < γ < 1 ∧ α.(2.5)

Furthermore we assume that

1
n

n∑
t=1

σαt → σα as n→∞;(2.6)

where σ > 0.
The regular variation conditions in (2.2) and (2.3) lead to consideration of

such state spaces as �0;∞�d \ �0� and �−∞;∞�d \ �0� for some d ≥ 1 where
�0� is understood as the origin of the space Rd. The compact sets of the space
�−∞;∞�d \ �0� are those compact sets in Rd which are bounded away from
�0�. Let an be the �1− n−1� quantile of �η1�; that is, let

an = inf�xx P��η1� ≤ x� ≥ 1− n−1�(2.7)

and let Wn;j = a−1
n Zj. We first prove the following lemma which is related to

condition (2.1).

Lemma 2.2. Suppose that the independent random variables �ηty −∞ <
t <∞� satisfy the regular variation conditions specified in (2.2) and (2.3) and
that the scale parameters σt satisfy the condition (2.6). Then

∞∑
j=1

εj/n�·�P�Wn;j ∈ ·� →v ν0 × µ(2.8)

in the space �0;∞� × �−∞;∞� \ �0�, where ν0 is Lebesgue measure on �0;∞�
and

µ�dx� = σα
(
π0αx

−α−1 dx1�0;∞��x� + �1− π0�α�−x�−α−1 dx1�−∞;0��x�
)
:

Proof. For any b > 0 and x > 0, it suffices to show that
∞∑
j=1

εj/n��0; b��P�Wn;j ∈ �x;∞�� →v ν0��0; b�� × µ��x;∞��:

By (2.2) and the definition of an, it is easy to show that

P��η1� > an� ∼ 1/n only as n→∞;(2.9)

where P��η1� > an� ∼ 1/n means that limn→∞ nP��η1� > an� = 1. Since
0 < σt ≤ δ0 <∞, from (2.3) we have

lim
n→∞

P��η1� > anx/σj�
P��η1� > an��x/σj�−α

= 1 uniformly for j ≥ 1:(2.10)

Similarly by (2.3) we have

lim
n→∞

P�η1 > anx/σj�
P��η1� > anx/σj�

= π0 uniformly for j ≥ 1:(2.11)
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Notice that

∞∑
j=1

εj/n��0; b��P�Wn;j ∈ �x;∞�� =
�nb�∑
j=1

P�η1 > anx/σj�;

where �nb� denotes the integer part of nb. Equations (2.9), (2.10) and (2.11)
imply that

lim
n→∞

�nb�∑
j=1

P�η1 > anx/σj� = lim
n→∞

�nb�∑
j=1

π0�x/σj�−α
n

=
(

lim
n→∞

1
n

�nb�∑
j=1

σαj

)
�π0x

−α�

= ν0��0; b�� × µ��x;∞��:

(2.12)

Similarly, for any b > 0 and x < 0, it can be shown that
∞∑
j=1

εj/n��0; b��P�Wn;j ∈ �∞; x��� →v ν0��0; b��µ��−∞; x��:(2.13)

Result (2.8) follows from (2.12) and (2.13). 2

Next we state a convergence result for a point process based on moving
averages �ξt� of the regularly varying random variables �Zt = σtηty −∞ <
t <∞�.

Theorem 2.1. Suppose the independent random variables �ηty −∞ < t <
∞� satisfy the regular variation conditions specified in (2.2) and (2.3) and
that the scale parameters σt satisfy the condition (2.6). Then in the space
Mp��0;∞�× �−∞;∞� \ �0��,

∞∑
k=1

ε�k/n;a−1
n Zk� ⇒

∞∑
k=1

ε�tk;Uk� as n→∞;(2.14)

where an is defined in (2.7) and
∑∞
j=1 ε�tj;Uj� is a PRM�ν0 ×µ� with the mean

measure ν0 × µ specified in Lemma 2.2. Furthermore, suppose that �ξt� is the
moving average sequence defined in (2.4) and that �cj� satisfies (2.5). Then in
Mp��0;∞�× �−∞;∞� \ �0���, we have

∞∑
k=1

ε�k/n;a−1
n ξt� ⇒

∞∑
k=1

∞∑
j=0

ε�tk; cjUk� as n→∞:(2.15)

Proof. For any compact set A ⊂ �−∞;∞�\�0�, there is a δ > 0 such that
A ⊂ �−∞; δ� ∪ �δ;∞�. Hence we have

sup
j≥1

P�Wn;j ∈ A� ≤ sup
j≥1

P��η1� ≥ anδ/σj�:
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Since an→∞ and 0<σt≤ δ0<∞, by (2.2) we have supj≥1 P�Wn;j ∈ A�→0.
Now (2.14) follows directly from Lemma 2.1 and Lemma 2.2. The proof of (2.15)
is omitted. It is similar to that of Theorem 2.4 in Davis and Resnick (1985) with
some minor changes since we consider the heteroscedastic sequence �Zt =
σtηty −∞ < t <∞� instead of iid random variables. 2

Remark 1. To evaluate the structures of the limit point processes in (2.14)
and (2.15), we may consider the following. Let �Vj; j ≥ 1� be the points of a
homogeneous PRM(µ) on �0;∞� with rate σα, that is, with µ = σαν0, and let
�U∗j; j ≥ 1� be iid random variables independent of �Vj; j ≥ 1� and with the
density function

g0�x� =
(
π0αx

−α−1 dx1�0;∞��x� + �1− π0�α�−x�−α−1 dx 1�−∞;0��x�
)
:

Then by Proposition 3.8 of Resnick (1987), we have

∞∑
j=1

ε�tj;Uj� =d
∞∑
j=1

ε�Vj;U
∗
j�;

which implies that

∞∑
k=1

∞∑
j=0

ε�tk; cjU∗k� =d
∞∑
k=1

∞∑
j=0

ε�Vk;cjU
∗
k�:

Remark 2. The nonstationary aspect of the series �ξt� in this study is re-
flected by the nonconstant scale parameters �σt�. In the limit point process,
the scale parameter parameters are represented by the “average value” σ . In
fact, the limiting point process in (2.15) is identical to the one obtained from
a moving average

∑∞
j=0�cjσηt−j� as in Davis and Resnick (1985). In practice,

σα can be estimated by

σ̂α = 1
n

n∑
t=1

σ̂t
α̂;

where σ̂t and α̂ are estimated based on data.
The following corollary extends the result in (2.15) to the process �Yt�, and

the proof of this result is omitted.

Corollary 2.1. Suppose that the assumptions in Theorem 2.1 hold and
that µt = E�Yt� is a bounded function on �0;∞�. Then in the spaceMp��0;∞�×
�−∞;∞� \ �0��,

∞∑
k=1

ε�k/n;a−1
n Yk� ⇒

∞∑
k=1

∞∑
j=0

ε�tk;cjUk� as n→∞;(2.16)

where an is defined in (2.7).
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For the nonstationary time series Yt in (1.2), define

Xn�t� =
{
a−1
n max1≤k≤�nt� Yk; if t ≥ n−1;

a−1
n Y1; if 0 < t < n−1:

(2.17)

Furthermore, set

c+ = max�cj ∨ 0;0 ≤ j <∞�; c− = max�−cj ∨ 0;0 ≤ j <∞�:
Then based on Corollary 2.1 and the proof of Theorem 3.1 of Davis and Resnick
(1985), we have that Xn�t� ⇒ X�t� in the space D�0;∞�, where X�t� is an
extremal process generated by the extreme value distribution exp�−σα�cα+π0+
cα−�1 − π0��x−α� for x > 0. In particular, Xn�1� = a−1

n max1≤k≤nYk ⇒ X�1�,
where X�1� has an extreme value distribution.

We now study exceedances over high thresholds by the nonstationary time
series �Yt�. For a given level u and B ∈ B��0;∞��, define

Nn�B� = #
{
k/n ∈ Bx a−1

n Yk > u
}
:

We will refer to Nn as the exceedance point process on �0;∞�. Moreover, Nn

can be expressed as

Nn =
∞∑
k=1

εk/n 1�Yk>anu� =
∞∑
k=1

ε�k/n; a−1
n Yk��· × �u;∞��:(2.18)

Let �Vj; j ≥ 1� be the points of a homogeneous PRM(µ) on �0;∞� with rate
σαu−α and let �U∗j; j ≥ 1� be iid random variables independent of �Vj; j ≥ 1�
and with common density function

g�x�=
(
π0αx

−α−1 dx1�u;∞��x�+ �1−π0�α�−x�−α−1 dx 1�−∞;−u��x�
)
uα:(2.19)

For convenience, we assume that �cj� ≤ 1. In this case cjU
∗
k ∈ �x;∞� implies

U∗k ∈ �x;∞� or U∗k ∈ �−∞;−x�. By Corollary 2.1 and Remark 1 after Theo-
rem 2.1, we have

∞∑
k=1

ε�k/n; a−1
n Yk� ⇒

∞∑
k=1

∞∑
j=0

ε�Vk; cjU
∗
k�:

Hence by the continuous mapping theorem

Nn =
∞∑
k=1

ε�k/n; a−1
n Yk��· × �u;∞�� ⇒

∞∑
k=1

∞∑
j=0

ε�Vk; cjU
∗
k��· × �u;∞��

=
∞∑
k=1

∞∑
j=0

εVk
1�cjU∗k>u� =

∞∑
k=1

ζkεVk
;

(2.20)

where ζk =
∑∞
j=0 1�cjU∗k>u� are iid random variables. The point process∑∞

k=1 ζkεVk
is a compound Poisson process with the points �Vk; k ≥ 1� as

“centers” of clusters of exceedances and �ζk; k ≥ 1� as “cluster size” random
variables.



EXTREME VALUE THEORY FOR TIME SERIES 515

3. Applications. In this section, the results in Section 2 are applied
to the analysis of tropospheric ozone data. Ground-level ozone arises as a
consequence of the emissions of nitrous oxides and hydrocarbons into the
atmosphere. Meteorological conditions, including daily temperature, relative
humidity and wind speed and direction, also play an important role in deter-
mining the severity of ozone concentration.

In recent years, various statistical techniques have been used to estimate
the influence of meteorological variables on ozone trends. Cox and Chu (1992)
proposed a model for the daily maxima of hourly ozone concentrations based
on the Weibull distribution, in which the scale parameter was allowed to vary
as a function of meteorological conditions. Niu (1996) introduced a class of
nonlinear additive time series models for daily maxima of ozone concentrations
in which both mean levels and variances were nonlinear functions of relevant
meteorological variables. As an alternative approach to analyze tropospheric
ozone data, here we focus on estimating probabilities of monthly maximum
ozone observations exceeding some specific levels and calculating the mean
rate of exceedances of daily maximum ozone over the national standard level
120 ppb.

Specifically, let �ξt;1 ≤ t ≤ n� be daily maximum values of hourly ozone
readings in a specific area. We consider the following autoregressive model for
�ξt�:

ξt −
p∑
j=1

φjξt−j = Zt;(3.1)

where �Zt = σtηt� and �ηty −∞ < t < ∞� is assumed to be a sequence of iid
random variables with the Type II extreme value distribution

F�ηt��x� = exp �−�x�−α� for x > 0 and α > 0.(3.2)

Furthermore, the scale parameter σt is modeled as a nonlinear function of
meteorological variables of the form

σt = exp
{
β0 +

m∑
j=1

βjxtj

}
:(3.3)

Let φ�z� = 1−φ1z− · · · −φpzp. When all roots of φ�z� = 0 lie outside the
unit circle, ξt can be expressed in the form

ξt =
∞∑
j=0

ψjZt−j;

where the coefficients ψj decrease exponentially as j tends to infinity. Hence
for any γ > 0,

∑∞
j=0 �ψj�γ <∞ and condition (2.5) is satisfied.

As an illustration, we now apply the model specified in (3.1)–(3.3) to ana-
lyze tropospheric ozone concentrations in the Chicago Metropolitan Statistical
Area where ozone levels have been historically high. Daily maxima of hourly
ozone observations over 42 stations in the area were obtained from the Techni-
cal Support Division, U. S. Environmental Protection Agency. The observations
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were over the period 1983–1992 and limited to the seven-month ozone “sea-
son” of 1 April to 31 October, during which daily maximum ozone levels were
likely to be near or above 120 ppb. Figure 1a shows daily maximum ozone
series for the ten-year period, from which we can see that the national stan-
dard was exceeded many times in each of the ten years. In fact, there were
113 daily maxima of ozone concentrations which exceeded 120 ppb during the
ten-year period, and these exceedances are shown in Figure 1b. The average
of the daily maximum ozone values for the ten-year period is µ = 69. For this
analysis we will use the mean corrected series �ξt = Yt − µ� where �Yt� is
the daily maximum ozone series.

There are many meteorological variables that are potentially important pre-
dictors of daily ozone levels. In this study, the following eight meteorological
variables will be used: daily maximum surface temperature (Temp), morning
average wind speed (MWS), afternoon average wind speed (AWS), relative hu-
midity (Humidity), opaque cloud cover (Cloud), morning mixing height (MMH),
morning average wind direction (MWD) and afternoon average wind direction
(AWD). Among the eight variables, morning mixing height is the height below
which the surface pollutants are free to mix up. The original measurements
of wind directions were from 0◦ to 360◦, and the cosine transformation is
performed on the morning and afternoon average wind directions.

Fig. 1. (a) Daily maximum ground-level ozone observations in the Chigago area; (b) daily maxi-
mum ozone values over the national standard 120 ppb.
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3.1. Parameter estimation. To build models for the daily maximum ozone
series, we use the maximum likelihood method to estimate the unknown pa-
rameters in (3.1), (3.2) and (3.3). Define

f = �φ1; : : : ; φp�′; b = �β0; : : : ; βm�′; jn = �ξ1; : : : ; ξn�′:
The likelihood function of j can be written in the form

L�α;f;b�j� = p�ξ1; : : : ; ξp�L∗�α;f;b�j�;
where p�ξ1; : : : ; ξp� denotes the joint density function of the first p random
variables of the series and L∗�α;f;b�j� is called the conditional likelihood
function, which has the form

L∗�α;f;b�j� = αn−p
n∏

t=p+1

[∣∣∣∣ξt −
p∑
j=1

φjξt−j

∣∣∣∣
−α−1

σαt

]

× exp
{
−

n∑
t=p+1

( �ξt −
∑p
j=1φjξt−j�
σt

)−α}
:

When the sample size n is large, the likelihood function L�α;f;b�j� will
be dominated by the conditional likelihood function, and the influence of
p�ξ1; : : : ; ξp�will be negligible. In this study, the parameters α, f and b will be
estimated by maximizing the conditional log-likelihood function l∗�α;f;b�j�.

For 0 < α < 2, the variance of ηt is infinite. Asymptotic properties of vari-
ous types of parameter estimators in time series models with infinite variance
have been discussed extensively in literature. For example, when �Z1; : : : ;Zn�
in model (3.1) are iid random variables and in the domain of attraction of a
stable law with index α ∈ �0;2�, Knight (1987) proved that least squares es-
timates of the autoregressive parameters are strongly consistent and have a
very fast rate of convergence, and Davis, Knight and Liu (1992) showed that
nondegenerate limit laws exist for M-estimates if the loss function is suffi-
ciently smooth. For the model specified in (3.1)–(3.3), asymptotic properties of
the maximum likelihood estimates of parameters, including consistency, limit
distribution and robustness, have not been addressed yet; these will be studied
in another paper.

For the daily maxima ozone series in the Chicago area, the model defined
in (3.1)–(3.3) is fitted. The number of parameters in the model is chosen by
using the Schwarz Bayesian criterion [Schwarz (1978)] which is similar to the
well-known Bayesian criterion (BIC). Assume that a statistical model of M
parameters is fitted to a data set. Then the Schwarz Bayesian criterion for
the fitted model is defined as

SBC�M� = −2 log�L�α̂; f̂; b̂�j�� +M log�n�:
In this study, the conditional likelihood function L∗�α;f;b�j� is used in

SBC�M� instead of L�α;f;b�j�. The final selected model for �ξt� is the fol-
lowing AR(1) model:

ξt = 0:804ξt−1 +Zt for 2 ≤ t ≤ 2140,(3.4)
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Table 1

Estimated tail probabilities 1− F̂�x� based on F̂�ηt��x� and �η̂t�

x 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Based on F̂�ηt��x� 0.632 0.277 0.154 0.100 0.071 0.053 0.042 0.034
Based on �η̂t� 0.689 0.294 0.163 0.107 0.077 0.057 0.048 0.035

where the estimate value for α is α̂ = 1:625. Four out of the eight meteoro-
logical predictors, Temp, Cloud, MWS and AWS, are found to have significant
impacts on the scale parameters. Based on the fitted model, the estimated
scale parameters �σ̂t� are calculated. The limit σα = limn→∞

∑n
t=1 σ

α
t /n is

estimated by σ̂ α̂ =∑2140
t=1 σ̂

α̂
t /2140 = 17:11.

The standardized residuals are defined by

η̂t = Ẑt/σ̂t for 2 ≤ t ≤ 2140.

The estimated distribution function for ηt based on the fitted model is

F̂�ηt��x� = exp�−�x�−1:625�:(3.5)

Tail probabilities 1 − F�x� for some given x values are estimated based on
F̂�ηt��x� and the standardized residuals. The two sets of probability estimates,
listed in Table 1, coincide with one another well, especially for x ≥ 2. There-
fore we conclude that the assumption in (3.2) about the distribution of ηt is
reasonable.

3.2. Exceedance probabilities. One important problem in tropospheric
ozone data analysis is to estimate probabilities that some specific levels are
exceeded by maximum ozone concentrations. Based on the fitted model in
(3.4), the mean-corrected daily maximum ozone series �ξt� in the Chicago
area can be approximated by the following process:

ξ̂t =
∞∑
j=0

φ̂
j
1Ẑt−j:(3.6)

It is obvious that the series �ξ̂t� satisfies the conditions specified in Section 2.
Since φ̂1 = 0:804, we have ĉj = 0:804j, ĉ+ = 1 and ĉ− = 0.

For a given level x, the probabilities of η1 and �η1� exceeding x can be
estimated by the relative frequencies

P̂�η1 > x� =
Number of �tx η̂t > x�

2139
and

P̂��η1� > x� =
Number of �tx �η̂t� > x�

2139
;
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Table 2
Frequencies of some given high levels exceeded by the sequences �η̂t� and ��η̂t��

Level x Number of �t: ĥt > x� Number of �t: �ĥt�> x� Ratio of the frequencies

8.0 44 93 0.473
8.5 37 81 0.457
9.0 32 68 0.471
9.5 26 58 0.448

10.0 23 48 0.479
10.5 18 38 0.474
11.0 16 32 0.500
11.5 14 27 0.519
12.0 13 25 0.520

respectively. The frequencies of some given high levels exceeded by the se-
quences �η̂t� and ��η̂t�� are calculated and listed in Table 2. Ratios of the
frequencies, which can be used as estimates for the probability ratios P�η1 >
x�/P��η1� > x�, are listed in the fourth column of Table 2.

In this study, the limit probability ratio π0 = limx→∞ P�η1 > x�/P��η1� >
x� is estimated by the average of the nine frequency ratios listed in the fourth
column of Table 2; that is,

π̂0 = 1
9

∑
P̂�η1 > x�/P̂��η1� > x� = 0:482:

According to the results in Section 2, Xn�1� = a−1
n max1≤k≤n ξk has approxi-

mately the extreme value distribution

F0�x� = exp�−17:11× 0:482× x−1:625� for x > 0:(3.7)

We now estimate the probabilities of monthly maximum ozone concentra-
tions over the national standard 120 ppb and other thresholds in the Chicago
area. From the definition (2.7), the normalizing constant an for the extreme
value distribution given in (3.2) is

an =
[

1
log�n/n− 1�

]1/α

:

For n = 30 and α̂ = 1:625, we have ân ≈ 9:2 and

P

(
max
1≤k≤n

Yk > x

)
= P

(
max
1≤k≤n

ξk > x− 69
)

= P
(
a−1
n max

1≤k≤n
ξk > a

−1
n �x− 69�

)

≈ 1− exp
{
−17:11× 0:482×

(
x− 69

9:2

)−1:625}
:

(3.8)

The last term in (3.8) can be used to estimate the exceedance probability of
monthly maximum ozone over a given level x.
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Table 3

Estimated probabilities and relative frequencies of some specific thresholds exceeded by monthly
maximum ozone in the Chicago area

Threshold (ppb) Estimated exceedance probability REF(x)

120 0.400 0.471
125 0.355 0.442
130 0.317 0.386
135 0.285 0.300
140 0.258 0.243
145 0.234 0.214
150 0.214 0.191
155 0.196 0.169
160 0.181 0.140
165 0.167 0.126
170 0.155 0.113
175 0.144 0.100
180 0.134 0.086

Based on the daily maximum ozone observations, 70 monthly maximum
values during the ten-year period are calculated. Denote the monthly maxi-
mum ozone series by �Mt�. Then the relative exceedance frequency (REF) of
the monthly ozone maxima over a specific threshold x is defined by

REF�x� = Number of �txMt > x�
70

:(3.9)

The quantity REF�x� can be used as an alternative estimate for the probability
of monthly maximum ozone values over the the given threshold x.

Table 3 lists the estimated exceedance probabilities and the relative ex-
ceedance frequences of monthly maximum ozone observations in the Chicago
area over some specific thresholds. Compared with the relative exceedance
frequencies, the estimated exceedance probabilities based on the fitted model
are lower for thresholds 120–135 ppb but slightly higher for thresholds 140
and up. In particular, the estimated probability of monthly ozone maxima over
the national standard 120 ppb is about 0.4 based on the fitted model, which
implies that about three monthly maxima will exceed the national standard
in the seven-month ozone season of a given year.

3.3. Exceedances. We now examine the exceedances of daily maximum
ozone observations over the national standard 120 ppb in the Chicago area.
The 113 exceedances during the ten-year period are shown in Figure 1b. Con-
secutive exceedances are said to form a cluster. For convenience, an isolated ex-
ceedance is also called a cluster. Based on this definition, the 113 exceedances
are divided into 79 clusters, and the average cluster size is about 1.43. The
longest cluster of exceedances occurred in October 1988, where six consecutive
daily maximum ozone observations exceeded the national standard.
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According to the results in Section 2, cluster center points of the ex-
ceedances are from a homogeneous PRM(µ) with rate σαu−α and cluster sizes
�ζk =

∑∞
j=0 1�cjU∗k>u�� are iid random variables where �U∗k; k ≥ 1� is also a

sequence of iid random variables with the common density specified in (2.19).
Based on these results and the fitted model, the mean value of the cluster
sizes and the mean rate of cluster center points of the exceedances can be
estimated. Specifically, the mean value of the cluster size is

Eζk =
∞∑
j=0

P
(
cjU

∗
k > u

)
=
∞∑
j=0

∫ ∞
u/cj

g�x�dx

=
∞∑
j=0

�π0αu
α�
∫ ∞
u/cj

x−α−1 dx = π0

∞∑
j=0

cαj:

For π0 = 0:482, ĉj = 0:804j and α̂ = 1:625, we have Eζk ≈ 0:482/�1 −
0:8041:625� = 1:61; that is, the mean value of cluster size based on the fit-
ted model is estimated to be about 1.6.

Similarly, the rate at which clusters occur, µ = EVk = σαu−α, can be esti-
mated by σ̂ α̂u−α̂. Notice that Yt > 120 is equivalent to a−1

n ξt > a
−1
n × 51 and

u−α = �a−1
n 51�−α = aαn/51α. For n = 2140 and α̂ = 1:625, we have aα̂n = 2139:5

and u−α̂ ≈ 3:593. Since σ̂ α̂ = 17:11, the mean rate of cluster center points of
exceedances is estimated by σ̂ α̂u−α̂ = 61:48. Furthermore, the mean number
of exceedances can be estimated by

E�N��0;1��� = µE�ζk� ≈ 61:48× 1:61 ≈ 99:0

Compared with the observed 113 exceedances over the national standard dur-
ing the ten-year period, the mean number 99.0 based on the fitted model is a
slightly lower estimate.

Extreme value theory is an elegant and mathematically fascinating theory
which pervades an enormous variety of applications. In this article, some basic
results of extreme value theory for a special class of nonstationary processes
are derived and applied to the analysis of tropospheric ozone concentrations
in the Chicago area. The results here can be extended to infinite moving av-
erages of random variables which belong to the domain of two other types of
extreme value distributions. Applications of these results to the analysis of
other environmental time series will also be pursued.
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